Cyclic sieving phenomenon on dominant maximal weights

Young-Hun Kim ${ }^{* 1,2}$, Se-jin $\mathrm{Oh}^{\dagger 3}$, and Young-Tak $\mathrm{Oh}^{\ddagger 1,4}$
${ }^{1}$ Department of Mathematics, Sogang University, Seoul, Republic of Korea
${ }^{2}$ Research Institute for Basic Science, Sogang University, Seoul, Republic of Korea
${ }^{3}$ Department of Mathematics, Ewha Womans University, Seoul, Republic of Korea
${ }^{4}$ Korea Institute for Advanced Study, Seoul, Republic of Korea

Abstract

Dominant maximal weights are significant objects in the representation theory of affine Kac-Moody algebras. We construct a (bi)cyclic sieving phenomenon on the union of dominant maximal weights for highest weight modules over affine Kac-Moody algebras in a way not depending on types, ranks and levels. Exploiting this phenomenon, we derive closed and recursive formulae for the number of dominant maximal weights for every highest weight module and observe level-rank duality on the cardinalities. We also observe interesting interrelations among the recursive formulae of classical affine Kac-Moody algebras.

Keywords: affine Kac-Moody algebra, dominant maximal weight, (bi)cyclic sieving phenomenon

1 Introduction

Let \mathfrak{g} be an affine Kac-Moody algebra and $V(\Lambda)$ be the irreducible highest weight module with highest weight $\Lambda \in P^{+}$, where P^{+}denotes the set of dominant integral weights. Due to Kac [6], all weights of $V(\Lambda)$ are given by the disjoint union of δ-strings attached to maximal weights and every maximal weight is conjugate to a unique dominant maximal weight under Weyl group action.

In [6], Kac established lots of fundamental properties concerned with $\mathrm{wt}(\Lambda)$, the set of weights of $V(\Lambda)$, using the orthogonal projection ${ }^{-}: \mathfrak{h}^{*} \rightarrow \mathfrak{h}_{0}^{*}$. In particular, he showed that $\max ^{+}(\Lambda)$, the set of dominant maximal weights, is in bijection with $\ell \mathcal{C}_{\mathrm{af}} \cap(\bar{\Lambda}+\bar{Q})$ under this projection, thus it is finite. Here ℓ denotes the level of Λ and Q denotes the

[^0]root lattice of \mathfrak{g}. Based on this result, there have been a number of studies on $\max ^{+}(\Lambda)$ (see $[5,13]$). However, in the best knowledge of the authors, approachable combinatorial models and cardinality formulae of $\max ^{+}(\Lambda)$ have not been available up to now except for limited cases, which motivates our study.

The cyclic sieving phenomenon was introduced by Reiner-Stanton-White in [8]. It was generalized and developed in various aspects including combinatorics and representation theory (see [1, 10] for examples).

The main purpose of this extended abstract is to investigate $\max ^{+}(\Lambda)$ by constructing a combinatorial model for $\max ^{+}(\Lambda)$ and a (bi)cyclic sieving phenomenon on this model in a way not depending on types, ranks and levels. As applications, we derive closed and recursive formulae of $\left|\max ^{+}(\Lambda)\right|$ for all affine types, and observe interesting symmetries by considering $\max ^{+}(\Lambda)$ for all ranks and levels. We find out intriguing interrelations among the recursive formulae of various affine Kac-Moody algebras. We also realize that our symmetry for $A_{n}^{(1)}$ type gets along with the level-rank duality introduced by Frenkel [3].

For details and more results, we refer the reader to [7].

2 Preliminaries

Let $I=\{0,1, \ldots, n\}$ be an index set. An affine Cartan datum $\left(\mathrm{A}, P, \Pi, P^{\vee}, \Pi^{\vee}\right)$ consists of (a) an affine Cartan matrix $\mathrm{A}=\left(\mathrm{a}_{i j}\right)_{i, j \in I}$ of corank $1,(\mathrm{~b})$ the weight lattice $P=\oplus_{i=0}^{n} \mathbb{Z} \Lambda_{i} \oplus \mathbb{Z} \delta$, (c) the set of simple roots $\Pi=\left\{\alpha_{i} \mid i \in I\right\} \subset P$, (d) the coweight lattice $P^{\vee}=\operatorname{Hom}(P, \mathbb{Z})$, (e) the set of simple coroots $\Pi^{\vee}=\left\{h_{i} \mid i \in I\right\} \subset P^{\vee}$ subject to the condition $\left\langle h_{i}, \alpha_{j}\right\rangle=\mathrm{a}_{i j}$ and $\left\langle h_{j}, \Lambda_{i}\right\rangle=\delta_{i j}$ for all $i, j \in I$. Here $\delta=\sum_{i=0}^{n} a_{i} \alpha_{i}$ is the null root. Let

$$
c=a_{0}^{\vee} h_{0}+a_{1}^{\vee} h_{1}+\cdots+a_{n}^{\vee} h_{n}
$$

be the canonical central element. We say that a weight $\Lambda \in P$ is of level ℓ if $\langle c, \Lambda\rangle=\ell$. We call the free abelian group $Q:=\bigoplus_{i \in I} \mathbb{Z} \alpha_{i}$ the root lattice. The elements of $P^{+}:=\{\Lambda \in P \mid$ $\left.\left\langle h_{i}, \Lambda\right\rangle \in \mathbb{Z}_{\geqslant 0}, i \in I\right\}$ are called dominant integral weights. For a nonnegative integer ℓ, we set

$$
P_{\ell}^{+}:=\left\{\Lambda \in P^{+} \mid\langle c, \Lambda\rangle=\ell\right\} \quad \text { and } \quad P_{\mathrm{cl}, \ell}^{+}:=P_{\ell}^{+} / \mathbb{Z} \delta .
$$

The affine Kac-Moody algebra \mathfrak{g} associated with the affine Cartan datum ($\mathrm{A}, ~ P, \Pi, P^{\vee}$, $\left.\Pi^{\vee}\right)$ is the Lie algebra over \mathbb{C} generated by $e_{i}, f_{i}(i \in I)$ and $h \in P^{\vee}$ with defining relations. Let C be the Cartan matrix associated to a finite simple Lie subalgebra \mathfrak{g}_{0} of \mathfrak{g}.

It is well known that the category $\mathcal{O}_{\text {int }}$, consisting of integrable weight \mathfrak{g}-modules, is a semisimple tensor category such that every irreducible object is isomorphic to the highest weight module $V(\Lambda)\left(\Lambda \in P^{+}\right)$.

Let $\operatorname{wt}(V(\Lambda))$ be the set of weights of $V(\Lambda)$. The elements of $\max _{\mathfrak{g}}(\Lambda):=\{\mu \in$ $\mathrm{wt}(V(\Lambda)) \mid \mu+\delta \notin \mathrm{wt}(V(\Lambda))\}$ is called maximal weights. We set

$$
\max _{\mathfrak{g}}^{+}(\Lambda):=\max _{\mathfrak{g}}(\Lambda) \cap P^{+} .
$$

We sometimes omit the subscript \mathfrak{g} for simplicity. It is well known that $\max (\Lambda)=$ $W \cdot \max ^{+}(\Lambda)$, where W is the Weyl group of \mathfrak{g}.

Let \mathfrak{h}_{0} be the vector space spanned by $\left\{h_{i} \mid i \in I_{0}:=I \backslash\{0\}\right\}$. The orthogonal projection ${ }^{-}: \mathfrak{h}^{*} \rightarrow \mathfrak{h}_{0}^{*}$ and the set $\mathcal{C}_{\text {af }}$ are introduced in [6].
Proposition 2.1 ([6, Proposition 12.6]). The map $\mu \longmapsto \bar{\mu}$ defines a bijection from $\max ^{+}(\Lambda)$ onto $\ell \mathcal{C}_{\mathrm{af}} \cap(\bar{\Lambda}+\bar{Q})$ where Λ is of level ℓ.

Throughout this paper, we denote by \bullet the dot product on \mathbb{Q}^{n}. In addition, for $k \in \mathbb{Z}_{>0}$ and $m, m^{\prime} \in \mathbb{Z}$, we write $m \equiv_{k} m^{\prime}$ if $k \mid m-m^{\prime}$, and $m \not \equiv_{k} m^{\prime}$ otherwise.

3 Embedding $\max ^{+}(\Lambda)$ into $P_{\mathrm{cl}, \ell}^{+}$

In this section, we will assume that Λ is of the form $\sum_{0 \leqslant i \leqslant n} p_{i} \Lambda_{i}$ because $\ell \mathcal{C}_{\text {af }} \cap(\bar{\Lambda}+\bar{Q})=$ $\ell \mathcal{C}_{\mathrm{af}} \cap(\overline{\Lambda+k \delta}+\bar{Q})$ for all $k \in \mathbb{Z}$.

An equivalence relation \sim on P, defined by $\Lambda \sim \Lambda^{\prime}$ if and only if $\Lambda-\Lambda^{\prime} \in Q$, was introduced in [2, Definition 3.1]. We note that it induces an equivalence relation, called the sieving equivalence relation, on $P_{\mathrm{cl}, \ell}^{+}$defined as follows: For $\Lambda, \Lambda^{\prime} \in P_{\mathrm{cl}, \ell}^{+}$,

$$
\begin{equation*}
\Lambda \sim \Lambda^{\prime} \quad \text { if and only if } \ell \mathcal{C}_{\mathrm{af}} \cap(\bar{\Lambda}+\bar{Q})=\ell \mathcal{C}_{\mathrm{af}} \cap\left(\overline{\Lambda^{\prime}}+\overline{\mathrm{Q}}\right) . \tag{3.1}
\end{equation*}
$$

Let $\Pi_{0}:=\left\{\bar{\alpha}_{i} \mid i \in I_{0}\right\}$ be the set of simple roots of \mathfrak{g}_{0} and $\boldsymbol{a}:=\left\{\omega_{i} \mid i \in I_{0}\right\}$ the set of fundamental dominant weights of \mathfrak{g}_{0}. Let $P_{0}:=\mathbb{Z} \boldsymbol{\omega}$ be the weight lattice of \mathfrak{g}_{0} and $Q_{0}:=\mathbb{Z} \Pi_{0}$ the root lattice of \mathfrak{g}_{0}. Then P_{0} / Q_{0} is known to be a finite group, called the fundamental group of Φ_{0} (the set of roots of \mathfrak{g}_{0}). Its structure is well known in the literature. For instance, see [4].

We note that there are at most $\left|P_{0} / Q_{0}\right|$ equivalence classes on $P_{\mathrm{cl}, \ell}^{+}$. For each type, we define a set $\operatorname{DR}\left(P_{\mathrm{cl}, \ell}^{+}\right)$, called the set of distinguished representatives. Indeed it is designed so that every $\Lambda \in \operatorname{DR}\left(P_{\mathrm{c}, \ell}^{+}\right)$is of the form $(\ell-1) \Lambda_{0}+\Lambda_{i}$. For instance,

$$
\operatorname{DR}\left(P_{\mathrm{cl}, \ell}^{+}\right)= \begin{cases}\left\{(\ell-1) \Lambda_{0}+\Lambda_{i} \mid i=0,1, \ldots, n\right\} & \text { if } \mathfrak{g}=A_{n}^{(1)}, \\ \left\{(\ell-1) \Lambda_{0}+\Lambda_{i} \mid i=0,1, n-1, n\right\} & \text { if } \mathfrak{g}=D_{n}^{(1) .}\end{cases}
$$

For other types, see [7, Table 2.2].
Lemma 3.1. $\operatorname{DR}\left(P_{\mathrm{c}, \ell}^{+}\right)$is a complete set of pairwise inequivalent representatives of $P_{\mathrm{c}, \ell}^{+}, / \sim$, the set of equivalence classes of $P_{\mathrm{cl}, \ell}^{+}$under the sieving equivalence relation. In particular, the number of equivalence classes is given by $\left|P_{0} / Q_{0}\right|$.

For $\Lambda \in \operatorname{DR}\left(P_{\mathrm{cl}, \ell}^{+}\right)$, set $P_{\mathrm{cl}, \ell}^{+}(\Lambda):=\left\{\Lambda^{\prime} \in P_{\mathrm{cl}, \ell}^{+} \mid \Lambda \sim \Lambda^{\prime}\right\}$ and consider the map $\iota_{\Lambda}:$ $\ell \mathcal{C}_{\mathrm{af}} \cap(\bar{\Lambda}+\bar{Q}) \rightarrow P_{\mathrm{cl}, \ell}^{+}(\Lambda)$ defined by

$$
\sum_{1 \leqslant i \leqslant n} m_{i} \omega_{i} \mapsto m_{0} \Lambda_{0}+\sum_{1 \leqslant i \leqslant n} m_{i} \Lambda_{i}\left(m_{0}:=\ell-\sum_{1 \leqslant i \leqslant n} a_{i}^{\vee} m_{i}\right) .
$$

Proposition 3.2. For $\Lambda \in \operatorname{DR}\left(P_{\mathrm{cl}, \ell}^{+}\right)$, the map ι_{Λ} is a bijection.
Note that $\left(\ell \mathcal{C}_{\mathrm{af}} \cap(\bar{\Lambda}+\bar{Q})\right) \cap\left(\ell \mathcal{C}_{\mathrm{af}} \cap\left(\overline{\Lambda^{\prime}}+\bar{Q}\right)\right)=\varnothing$ if $\Lambda \nsim \Lambda^{\prime}$, which yields a bijection

$$
\begin{equation*}
\bigsqcup_{\Lambda \in \mathrm{DR}\left(P_{\mathrm{cl}, \ell}^{+}\right)} \ell \mathcal{C}_{\mathrm{af}} \cap(\bar{\Lambda}+\bar{Q}) \stackrel{1-1}{\longleftrightarrow} \bigsqcup_{\Lambda \in \mathrm{DR}\left(P_{\mathrm{cl}, \ell}^{+}\right)} P_{\mathrm{cl}, \ell}^{+}(\Lambda)=P_{\mathrm{cl}, \ell}^{+} . \tag{3.2}
\end{equation*}
$$

Now, we introduce a simple description of $P_{\mathrm{cl}, \ell}^{+}(\Lambda)$ for each $\Lambda \in \mathrm{DR}\left(P_{\mathrm{cl}, \ell}^{+}\right)$. To do that, we need preparations: Let $\mathrm{N}:=\left|P_{0} / Q_{0}\right|$ and $\hat{\mathrm{N}}:=\max \left\{|g| \mid g \in P_{0} / Q_{0}\right\}$. For a subset $S \subset \mathbb{Z}^{n}$, set $\operatorname{red}_{\mathrm{N}}(S):=\left\{\overline{\mathbf{s}} \subset\left(\mathbb{Z}_{\mathrm{N}}\right)^{n} \mid \mathbf{s} \in S\right\}$, where $\overline{\mathbf{s}}=\mathbf{s}+(\mathrm{NZ})^{n}$.

Definition 3.3. Let \mathfrak{g} be an affine Kac-Moody algebra. We call a subset $S \subset \mathbb{Z}^{n}$ a rootsieving set if, for all $\mathbf{x} \in P_{0}$, (1) $\mathbf{x} \in Q_{0}$ if and only if $\mathbf{s} \bullet[\mathbf{x}]_{\infty} \equiv_{N} 0$ for all $\mathbf{s} \in S$, (2) the set $\operatorname{red}_{\mathrm{N}}(S) \subset\left(\mathbb{Z}_{\mathrm{N}}\right)^{n}$ is $\mathbb{Z}_{\hat{N}}$-linearly independent, and (3) $\left|\operatorname{red}_{\mathrm{N}}(S)\right|=|S|$. In this case, the elements of S are called root-sieving vectors of S.

Convention 3.4. (1) We choose a special root sieving set, denoted by S, as follows:

$$
\boldsymbol{S}= \begin{cases}\{\boldsymbol{s}=(1,2, \ldots, n)\} & \text { if } \mathfrak{g}=A_{n}^{(1)} \\ \{\boldsymbol{s}=(2,0,2,0, \ldots, 0,2,1,3)\} & \text { if } \mathfrak{g}=D_{n}^{(1)}\left(n \equiv_{2} 1\right) \\ \left\{\boldsymbol{s}^{(1)}=(0,0, \ldots, 0,2,2), \boldsymbol{s}^{(2)}=(2,0,2,0, \ldots, 2,0,2,0)\right\} & \text { if } \mathfrak{g}=D_{n}^{(1)}\left(n \equiv_{2} 0\right)\end{cases}
$$

For other types, see [7, Table 2.4].
(2) For a root sieving vector $\boldsymbol{s}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, we denote $\left(0, s_{1}, s_{2}, \ldots, s_{n}\right)$ by $\widetilde{\boldsymbol{s}}$.

With the root sieving sets S given in Convention 3.4, we define a new statistics $\mathrm{ev}_{S_{S}}$, called the S-evaluation, by

$$
\begin{equation*}
\mathrm{ev}_{s}: P_{\mathrm{cl}, \ell}^{+} \rightarrow \mathbb{Z}_{\geqslant 0}^{k}, \quad \sum_{0 \leqslant i \leqslant n} m_{i} \Lambda_{i} \mapsto\left(\widetilde{\boldsymbol{s}}^{(k)} \bullet \mathbf{m}\right)_{k=1 \text { or } 1,2} \tag{3.3}
\end{equation*}
$$

where $\mathbf{m}=\left(m_{0}, m_{1}, \ldots, m_{n}\right)$.
Theorem 3.5. Let \boldsymbol{S} be the set given in Convention 3.4. For any $\Lambda \in \operatorname{DR}\left(P_{\mathrm{cl}, \ell}^{+}\right)$, we have

$$
\begin{equation*}
P_{\mathrm{cl}, \ell}^{+}(\Lambda)=\left\{\Lambda^{\prime} \in P_{\mathrm{cl}, \ell}^{+} \mid \mathrm{ev}_{\mathrm{S}}\left(\Lambda^{\prime}\right) \equiv_{\mathrm{N}} \mathrm{ev}_{\mathrm{s}}(\Lambda)\right\} . \tag{3.4}
\end{equation*}
$$

Note that Theorem 3.5 does not depend on the choice of a root-sieving set.

4 Sagan's action and generalization

From this section, we will investigate the structure and enumeration of $P_{\mathrm{cl}, \ell}^{+}(\Lambda)$ for all $\Lambda \in \mathrm{DR}\left(P_{\mathrm{cl}, \ell}^{+}\right)$in a viewpoint of (bi)cyclic sieving phenomena ([8]). In order to do this, we give a suitable (bi)cyclic group action on $P_{\mathrm{cl}, \ell}^{+}$by generalizing Sagan's action in [9]. For details of Sagan's action and our generalization, see [7, Section 3].

Throughout this section, we assume that d, k are positive integers and ℓ is a nonnegative integer. Given a $k d$-tuple $\mathbf{m}=\left(m_{0}, m_{1}, \ldots, m_{k d-1}\right) \in \mathbb{Z}_{\geqslant 0}^{k d}$, we set $\mathbf{m}[j ; d]:=$ $\sum_{0 \leqslant t \leqslant d-1} m_{j d+t}$ for $0 \leqslant j \leqslant k-1$. Also, given a k-tuple $v=\left(v_{0}, v_{1}, \ldots, v_{k-1}\right) \in \mathbb{Z}_{>0}^{k}$, we set

$$
\mathbf{M}_{\ell}(d ; \boldsymbol{v}):=\left\{\mathbf{m}=\left(m_{0}, m_{1}, \ldots, m_{k d-1}\right) \in \mathbb{Z}_{\geqslant 0}^{k d} \mid \sum_{0 \leqslant j \leqslant k-1} v_{j} \mathbf{m}[j ; d]=\ell\right\} .
$$

To each $\mathbf{m}=\left(m_{0}, m_{1}, \ldots, m_{k d-1}\right) \in \mathbf{M}_{\ell}(d ; \boldsymbol{v})$ we associate a word $\mathbf{w}(\mathbf{m} ; d ; \boldsymbol{v})$ with entries in $\left\{0, v_{0}, v_{1}, \ldots, v_{k-1}\right\}$ produced by the following algorithm:

Algorithm 4.1. Assume we have a $k d$-tuple $\mathbf{m}=\left(m_{0}, m_{1}, \ldots, m_{k d-1}\right) \in \mathbf{M}_{\ell}(d ; \boldsymbol{v})$.
(A1) Set \mathbf{w} to be the empty word and $j=0, t=0$. Go to (A2).
(A2) Set \mathbf{w} to be the word obtained by concatenating $m_{j d+t} v_{j}$'s at the right of \mathbf{w}. If $j=k-1$ and $t=d-1$, return \mathbf{w} and terminate the algorithm. Otherwise, go to (A3).
(A3) Set \mathbf{w} to be the word obtained by concatenating 0 at the right. Go to (A4).
(A4) If $t \neq d-1$ then set $t=t+1$ and go to (A2). If $t=d-1$ set $j=j+1$ and $t=0$, and go to (A2).

Set $\mathcal{W}_{\ell}(d ; \boldsymbol{v}):=\left\{\mathbf{w}(\mathbf{m} ; d ; \boldsymbol{v}) \mid \mathbf{m} \in \mathbf{M}_{\ell}(d ; \boldsymbol{v})\right\}$. Let $\Psi: \mathbf{M}_{\ell}(d ; \boldsymbol{v}) \rightarrow \mathcal{W}_{\ell}(d ; \boldsymbol{v})$ be a map defined by $\Psi(\mathbf{m})=\mathbf{w}(\mathbf{m} ; d ; \boldsymbol{v})$.

Lemma 4.2. The map Ψ is a bijection.
Now we define a $C_{d}=\left\langle\sigma_{d}\right\rangle$-action on $\mathcal{W}_{\ell}(d ; \boldsymbol{v})$. First, we break $\mathbf{w}=w_{1} w_{2} \ldots w_{u}$ into subwords of length d as many as possible as follows:

$$
\mathbf{w}=w^{1}\left|w^{2}\right| \cdots\left|w^{t}\right| w_{t d+1} \cdots w_{u}
$$

where $t=\lfloor u / d\rfloor$ and $w^{j}=w_{(j-1) d+1} w_{(j-1) d+2} \cdots w_{j d}$ for $1 \leqslant j \leqslant t$. Note that σ_{d} acts on each subword w^{j} by cyclic shift, i.e., $\sigma_{d} \cdot w^{j}:=w_{j d} w_{(j-1) d+1} w_{(j-1) d+2} \cdots w_{j d-1}$. Assume that j_{0} is the smallest integer such that $\sigma_{d} \cdot w_{0}^{j} \neq w_{0}^{j}$. Then we set

$$
\begin{equation*}
\sigma_{d} \cdot \mathbf{w}:=w^{1}\left|w^{2}\right| \cdots\left|w^{j_{0}-1}\right| \sigma_{d} \cdot w^{j_{0}}\left|w^{j_{0}+1}\right| \cdots\left|w^{t}\right| w_{t d+1} \cdots w_{u} . \tag{4.1}
\end{equation*}
$$

If there is no such j_{0}, we set $\sigma_{d} \mathbf{w}:=\mathbf{w}$.

Theorem 4.3. For any $v=\left(v_{0}, v_{1}, \ldots, v_{k-1}\right) \in \mathbb{Z}_{>0}^{k}$, the action defined as above is indeed a C_{d}-action on $\mathcal{W}_{\ell}(d ; v)$.

Now we define a C_{d}-action on $\mathbf{M}_{\ell}(d ; \boldsymbol{v})$ by transporting the C_{d}-action \bullet on $\mathcal{W}_{\ell}(d ; \boldsymbol{v})$ via the bijection Ψ, that is,

$$
\begin{equation*}
\sigma_{d} \bullet \mathbf{m}:=\Psi^{-1}\left(\sigma_{d} \bullet \Psi(\mathbf{m})\right) \quad \text { for all } \mathbf{m} \in \mathbf{M}_{\ell}(d ; v) \tag{4.2}
\end{equation*}
$$

Remark 4.4. Suppose that C_{d} acts on $\mathbf{M}_{\ell}(d ; \boldsymbol{v})$ as in (4.2). Then, for any $r \in \mathbb{Z}_{>0}, \mathbf{M}_{\ell}(d ; \boldsymbol{v})$ is also equipped with a $C_{r d}$-action \bullet_{d} given by

$$
\begin{equation*}
\sigma_{r d} \mathbf{m}_{d} \mathbf{m}:=\sigma_{d} \bullet \mathbf{m} \tag{4.3}
\end{equation*}
$$

Let us generalize the above setting a little further. Let $d, k, k^{\prime}, r \in \mathbb{Z}>0$ and $\ell \in \mathbb{Z}_{\geqslant 0}$. For $\boldsymbol{v}=\left(v_{0}, v_{1}, \ldots, v_{k-1}\right) \in \mathbb{Z}_{>0}^{k}$ and $\boldsymbol{v}^{\prime}=\left(v_{0}^{\prime}, v_{1}^{\prime}, \ldots, v_{k^{\prime}-1}^{\prime}\right) \in \mathbb{Z}_{>0}^{k^{\prime}}$, set

$$
\begin{equation*}
\mathbf{M}_{\ell}\left(r d, d ; \boldsymbol{v}, \boldsymbol{v}^{\prime}\right):=\left\{\mathbf{m} \in \mathbb{Z}_{\geqslant 0}^{k r d+k^{\prime} d} \mid \sum_{0 \leqslant j \leqslant k-1} v_{j} \mathbf{m}[j ; r d]+\sum_{0 \leqslant j \leqslant k^{\prime}-1} v_{j}^{\prime} \mathbf{m}[k r+j ; d]=\ell\right\} \tag{4.4}
\end{equation*}
$$

Using the actions given in (4.2) and (4.3), we define a new $C_{r d}$-action, denoted by $\mathbf{P}_{r d, d}$, on $\mathbf{M}_{\ell}\left(r d, d ; \boldsymbol{v}, \boldsymbol{v}^{\prime}\right)$ as follows: Given $\mathbf{m} \in \mathbf{M}_{\ell}\left(r d, d ; \boldsymbol{v}, \boldsymbol{v}^{\prime}\right)$, we break it into $\mathbf{m}_{\leqslant k r d-1}:=$ $\left(m_{0}, m_{1}, \ldots, m_{k r d-1}\right) \in \mathbf{M}_{l}(r d ; \boldsymbol{v})$ and $\mathbf{m}_{\geqslant k r d}:=\left(m_{k d}, m_{k d+1}, \ldots, m_{k r d+k^{\prime} d-1}\right) \in \mathbf{M}_{l^{\prime}}\left(d ; \boldsymbol{v}^{\prime}\right)$, where $\ell=l+l^{\prime}$. Now, we define

$$
\sigma_{r d} \cdot{ }_{r d, d} \mathbf{m}:= \begin{cases}\left(\sigma_{r d} \bullet \mathbf{m}_{\leqslant k r d-1}\right) * \mathbf{m}_{\geqslant k r d} & \text { if } \sigma_{r d} \bullet \mathbf{m}_{\leqslant k r d-1} \neq \mathbf{m}_{\leqslant k r d-1}, \tag{4.5}\\ \mathbf{m}_{\leqslant k r d-1} *\left(\sigma_{r d} \mathbf{m}_{\geqslant k r d}\right) & \text { otherwise }\end{cases}
$$

where $\mathbf{m} * \mathbf{m}^{\prime}$ is the tuple obtained by concatenating \mathbf{m} and \mathbf{m}^{\prime}.

5 (Bi)cyclic sieving phenomena on $P_{\mathrm{cl}, \ell}^{+}$

The cyclic sieving phenomenon was introduced by Reiner-Stanton-White in [8]. Let X be a finite set, with an action of a cyclic group C of order m. Elements within a C-orbit share the same stabilizer subgroup, whose cardinality is called the stabilizer-order for the orbit. Let $X(q)$ be a polynomial in q with nonnegative integer coefficients. For $d \in \mathbb{Z}_{>0}$, let ω_{d} be a d th primitive root of the unity. We say that $(X, C, X(q))$ exhibits the cyclic sieving phenomenon if, for all $c \in C$, we have

$$
\left|X^{c}\right|=X\left(\omega_{o(c)}\right)
$$

where $o(c)$ is the order of c and X^{c} is the fixed point set under the action of c. Note that this condition is equivalent to the following congruence:

$$
X(q) \equiv \sum_{0 \leqslant i \leqslant m-1} b_{i} q^{i}\left(\bmod q^{m}-1\right),
$$

where b_{i} counts the number of C-orbits on X for which the stabilizer-order divides i.
A generalization of the cyclic sieving phenomenon, called the bicyclic sieving phenomenon, was introduced in [1, Section 3]. Let X be a finite set with a permutation action of a finite bicyclic group, that is, a product $C_{m} \times C_{m^{\prime}}$ for some $m, m^{\prime} \in \mathbb{Z}_{>0}$. Fix embeddings $\omega: C_{m} \rightarrow \mathbb{C}^{\times}$and $\omega^{\prime}: C_{m^{\prime}} \rightarrow \mathbb{C}^{\times}$into the complex roots of unity. Let $X\left(q_{1}, q_{2}\right) \in \mathbb{Z}_{\geqslant 0}\left[q_{1}, q_{2}\right]$. We say that the triple $\left(X, C_{m} \times C_{m^{\prime}}, X\left(q_{1}, q_{2}\right)\right)$ exhibits the bicyclic sieving phenomenon if for all $\left(c, c^{\prime}\right) \in C_{m} \times C_{m^{\prime}}$, we have

$$
X\left(\omega(c), \omega^{\prime}\left(c^{\prime}\right)\right)=\left|\left\{x \in X \mid\left(c, c^{\prime}\right) x=x\right\}\right| .
$$

This condition is equivalent to the following congruence:

$$
X\left(q_{1}, q_{2}\right) \equiv \sum_{0 \leqslant j_{1}<m, 0 \leqslant j_{2}<m^{\prime}} b\left(j_{1}, j_{2}\right) q_{1}^{j_{1}} q_{2}^{j_{2}} \quad\left(\bmod q_{1}^{m}-1, q_{2}^{m^{\prime}}-1\right)
$$

where $b\left(j_{1}, j_{2}\right)$ is the number of orbits of $C_{m} \times C_{m^{\prime}}$ on X satisfying certain conditions (see [1, Proposition 3.1]).

Now, let us introduce the triple for the (bi)cyclic sieving phenomenon on $P_{\mathrm{cl}, \ell}^{+}$. First, we let $X:=P_{\mathrm{cl}, \ell}^{+}=\bigsqcup_{\Lambda \in \operatorname{DR}\left(P_{\mathrm{c}, \ell}^{+}\right)} P_{\mathrm{cl}, \ell}^{+}(\Lambda)$.

To define a (bi)cyclic group action, we note that the symmetric group $\mathfrak{S}_{[0, n]}$ over the set $\{0,1, \ldots, n\}$ acts on $P_{\mathrm{cl}, \ell}^{+}$by permuting indices of coefficients, that is,

$$
\sigma \cdot \sum_{0 \leqslant i \leqslant n} m_{i} \Lambda_{i}=\sum_{0 \leqslant i \leqslant n} m_{\sigma(i)} \Lambda_{i} \quad \text { for } \sigma \in \mathfrak{S}_{[0, n]} .
$$

We also note that if $\mathfrak{g} \neq D_{n}^{(1)}\left(n \equiv_{2} 0\right)$ then $P_{0} / Q_{0} \simeq C_{N}$, where C_{N} is a cyclic group of order N. For $\mathfrak{g} \neq D_{n}^{(1)}\left(n \equiv_{2} 0\right)$, we take an appropriate $\sigma \in \mathfrak{S}_{[0, n]}$ of order N. For instance, we let

$$
\sigma= \begin{cases}(0,1, \ldots, n) & \text { if } \mathfrak{g}=A_{n}^{(1)}, \\ (0, n, 1, n-1)(2,3)(4,5) \cdots(n-3, n-2) & \text { if } \mathfrak{g}=D_{n}^{(1)}\left(n \equiv_{2} 1\right) .\end{cases}
$$

Indeed $\mathrm{N}=n+1$ if $\mathfrak{g}=A_{n}^{(1)}$ and $\mathrm{N}=4$ if $\mathfrak{g}=D_{n}^{(1)}\left(n \equiv{ }_{2} 1\right)$. For other types, see [7, Table 4.1]. Now, we define a $C_{\mathrm{N}}=\left\langle\sigma_{\mathrm{N}}\right\rangle$-action on $P_{\mathrm{cl}, \ell}^{+}$by

$$
\begin{equation*}
\sigma_{\mathrm{N}} \cdot \sum_{0 \leqslant i \leqslant n} m_{i} \Lambda_{i}:=\sum_{0 \leqslant i \leqslant n} m_{\sigma(i)} \Lambda_{i} \text { for any } \sum_{0 \leqslant i \leqslant n} m_{i} \Lambda_{i} \in P_{\mathrm{cl}, \ell}^{+} . \tag{5.1}
\end{equation*}
$$

For $\mathfrak{g}=D_{n}^{(1)}\left(n \equiv_{2} 0\right)$, we let

$$
\sigma^{(1)}=(0, n)(1, n-1) \in \mathfrak{S}_{[0, n]} \quad \text { and } \quad \sigma^{(2)}=(0,1)(2,3) \cdots(n-4, n-3)(n-1, n) \in \mathfrak{S}_{[0, n]}
$$

Note that $\sigma^{(1)}$ and $\sigma^{(2)}$ commute to each other in $\mathfrak{S}_{[0, n]}$, so $\left\langle\sigma^{(1)}, \sigma^{(2)}\right\rangle \simeq C_{2} \times C_{2}$. We define a $C_{2} \times C_{2}=\left\langle\sigma_{2}\right\rangle \times\left\langle\sigma_{2}\right\rangle$-action on $P_{\mathrm{cl}, \ell}^{+}$by (e denotes the identity of C_{2})

$$
\begin{equation*}
\left(\sigma_{2}, e\right) \cdot \sum_{0 \leqslant i \leqslant n} m_{i} \Lambda_{i}:=\sum_{0 \leqslant i \leqslant n} m_{\sigma^{(1)}(i)} \Lambda_{i} \quad \text { and } \quad\left(e, \sigma_{2}\right) \cdot \sum_{0 \leqslant i \leqslant n} m_{i} \Lambda_{i}:=\sum_{0 \leqslant i \leqslant n} m_{\sigma^{(2)}(i)} \Lambda_{i} \tag{5.2}
\end{equation*}
$$

Finally, to define $X(q)$ or $X\left(q_{1}, q_{2}\right)$, let us consider its generating function as follows: For $\mathfrak{g} \neq D_{n}^{(1)}\left(n \equiv_{2} 0\right)$, let $\widetilde{\boldsymbol{s}}=\left(s_{0}, s_{1}, s_{2}, \ldots, s_{n}\right)$. For $\ell \in \mathbb{Z}_{\geqslant 0}$, we define $X(q):=P_{\mathrm{cl}, \ell}^{+}(q)$ by

$$
\begin{equation*}
\sum_{\ell \geqslant 0} P_{\mathrm{cl}, \ell}^{+}(q) t^{\ell}:=\prod_{0 \leqslant i \leqslant n} \frac{1}{1-q^{s_{i} t^{a_{i}^{v}}}} \tag{5.3}
\end{equation*}
$$

where s is the root-sieving vector given in Convention 3.4. Then we have

$$
P_{\mathrm{cl}, \ell}^{+}(q)=\sum_{i \geqslant 0}\left|\left\{\Lambda \in P_{\mathrm{cl}, \ell}^{+} \mid \mathrm{ev}_{s}(\Lambda)=i\right\}\right| q^{i} \equiv \sum_{\Lambda \in \mathrm{DR}\left(P_{\mathrm{cl}, \ell}^{+}\right)}\left|P_{\mathrm{cl}, \ell}^{+}(\Lambda)\right| q^{\operatorname{ev}_{s}(\Lambda)}\left(\bmod q^{\mathrm{N}}-1\right)
$$

For $\mathfrak{g}=D_{n}^{(1)}(n \equiv 20)$, we let $\mathfrak{s}^{(1)}:=\frac{1}{2} \widetilde{\boldsymbol{s}}^{(1)}$ and $\mathfrak{s}^{(2)}:=\frac{1}{2} \widetilde{\boldsymbol{s}}^{(2)}$ and define $X\left(q_{1}, q_{2}\right):=$ $P_{\mathrm{cl}, \ell}^{+}\left(q_{1}, q_{2}\right)$ for $\ell \in \mathbb{Z}_{\geqslant 0}$ by

$$
\sum_{\ell \geqslant 0} P_{\mathrm{cl}, \ell}^{+}\left(q_{1}, q_{2}\right) t^{\ell}:=\prod_{0 \leqslant i \leqslant n} \frac{1}{1-q_{1}^{\mathfrak{s}_{i}^{(1)}} q_{2}^{\mathfrak{s}_{i}^{(2)}} t^{a_{i}^{\vee}}} .
$$

For $t=1,2$, let $\mathrm{ev}_{\mathfrak{s}^{(t)}}: P_{\mathrm{cl}, \ell}^{+} \rightarrow \mathbb{Z}_{\geqslant 0}$ be a map defined by $\mathrm{ev}_{\mathfrak{s}^{(t)}}\left(\sum_{0 \leqslant i \leqslant n} m_{i} \Lambda_{i}\right)=\mathfrak{s}^{(t)} \bullet \mathbf{m}$. Then we have

$$
\begin{equation*}
P_{\mathrm{cl}, \ell}^{+}\left(q_{1}, q_{2}\right) \equiv \sum_{\Lambda \in \mathrm{DR}\left(P_{\mathrm{cl}, \ell}^{+}\right)}\left|P_{\mathrm{cl}, \ell}^{+}(\Lambda)\right| q_{1}^{\mathrm{ev}_{\mathfrak{s}}(1)}(\Lambda) q_{2}^{\mathrm{ev}_{\mathfrak{s}(2)}(\Lambda)}\left(\bmod q_{1}^{2}-1, q_{2}^{2}-1\right) \tag{5.4}
\end{equation*}
$$

Theorem 5.1. For $\mathfrak{g} \neq D_{n}^{(1)}\left(n \equiv \equiv_{2} 0\right)$, the triple $\left(P_{\mathrm{cl}, \ell^{\prime}}^{+}, C_{\mathrm{N}}, P_{\mathrm{cl}, \ell}^{+}(q)\right)$ exhibits the cyclic sieving phenomenon under the C_{N}-action given in (5.1).

For $\mathfrak{g}=A_{n}^{(1)}$, Theorem 5.1 follows from the classical result [8, Theorem 1.1 (a)] of cyclic sieving phenomena. For other types, it can be proved by using the action defined in (4.5). We here only deal with $D_{n}^{(1)}\left(n \equiv_{2} 1\right)$ type since the method of proof for each type is essentially same.

For $m \in \mathbb{Z}_{\geqslant 0}$ and $k \in \mathbb{Z}_{>0}$, we denote by m^{k} the sequence m, m, \ldots, m consisting of k m^{\prime} s. Moreover, we let $\eta:=\frac{n-3}{2}$ and

$$
P_{\mathrm{cl}, \ell}^{+}(q) \equiv \sum_{0 \leqslant i \leqslant 3} b_{i} q^{i} \quad\left(\bmod q^{4}-1\right)
$$

Lemma 5.2. Under the C_{4}-action on $P_{\mathrm{cl}, \ell}^{+}$given in (5.1) and the C_{4}-action on $\mathbf{M}_{\ell}\left(4,2 ;(1),\left(2^{\eta}\right)\right)$ given in (4.5), we have

$$
\left.P_{\mathrm{cl}, \ell}^{+}(q)\right|_{q=i}=\left|\left(P_{\mathrm{cl}, \ell}^{+}\right)^{C_{4}}\right|=\left|\mathbf{M}_{\ell}\left(4,2 ;(1),\left(2^{\eta}\right)\right)^{C_{4}}\right|=b_{0}-b_{2} \quad \text { and } \quad b_{1}=b_{3} .
$$

Lemma 5.3. Under the C_{4}-action on $P_{\mathrm{cl}, \ell}^{+}$given in (5.1) and the C_{2}-action on $\mathbf{M}_{\ell}\left(2,1 ;\left(1^{2}\right),\left(2^{2 \eta}\right)\right)$ given in (4.5), we have

$$
\left.P_{\mathrm{cl}, \ell}^{+}(q)\right|_{q=-1}=\left|\left(P_{\mathrm{cl}, \ell}^{+}\right)^{\sigma_{4}^{2}}\right|=\left|\mathbf{M}_{\ell}\left(2,1 ;\left(1^{2}\right),\left(2^{2 \eta}\right)\right)^{C_{2}}\right|=b_{0}-b_{1}+b_{2}-b_{3}
$$

Proof of Theorem 5.1 for $\mathfrak{g}=D_{n}^{(1)}\left(n \equiv_{2} 1\right)$. Let ζ_{4} be a 4 th primitive root of unity. We will see that

$$
\left|\left(P_{\mathrm{cl}, \ell}^{+}\right)^{\sigma_{4}^{j}}\right|=P_{\mathrm{cl}, \ell}^{+}\left(\zeta_{4}^{j}\right) \quad \text { for } j=0,1,2,3
$$

When $j=0$, since $\left|\left(P_{\mathrm{cl}, \ell}^{+}\right)\right|=P_{\mathrm{cl}, \ell}^{+}(1)$, it is trivial. For the case $j \in\{1,3\}$, note that $\left(P_{\mathrm{cl}, \ell}^{+}\right)^{C_{4}}=\left(P_{\mathrm{cl}, \ell}^{+}\right)^{\sigma_{4}^{j}}$ and $P_{\mathrm{cl}, \ell}^{+}\left(\zeta_{4}^{j}\right)=b_{0}+b_{1} \zeta_{4}^{j}-b_{2}-b_{3} \zeta_{4}^{j}$. Thus, by Lemma 5.2, we have

$$
\left|\left(P_{\mathrm{cl}, \ell}^{+}\right)^{C_{4}}\right|=\left|\mathbf{M}_{\ell}\left(4,2 ;(1),\left(2^{\eta}\right)\right)^{C_{4}}\right|=b_{0}-b_{2}=P_{\mathrm{cl}, \ell}^{+}\left(\zeta_{4}^{j}\right) .
$$

For the case $j=2$, note that $P_{\mathrm{cl}, \ell}^{+}(-1)=b_{0}-b_{1}+b_{2}-b_{3}$. Thus, by Lemma 5.3, we have

$$
\left|\left(P_{\mathrm{cl}, \ell}^{+}\right)^{\sigma_{4}^{2}}\right|=\left|\mathbf{M}_{\ell}\left(2,1 ;\left(1^{2}\right),\left(2^{2 \eta}\right)\right)^{C_{2}}\right|=b_{0}-b_{1}+b_{2}-b_{3}=P_{\mathrm{cl}, \ell}^{+}(-1)
$$

For $\mathfrak{g}=D_{n}^{(1)}\left(n \equiv \equiv_{2} 0\right)$, we obtain the bicyclic sieving phenomenon in a similar way as above.
Theorem 5.4. For $\mathfrak{g}=D_{n}^{(1)}\left(n \equiv{ }_{2} 0\right)$, the triple $\left(P_{\mathrm{cl}, \ell}^{+}, C_{2} \times C_{2}, P_{\mathrm{cl}, \ell}^{+}\left(q_{1}, q_{2}\right)\right)$ exhibits the bicyclic sieving phenomenon, under the $C_{2} \times C_{2}$-action given in (5.2).

6 Formulae on the number of maximal dominant weights

Using the (bi)cyclic sieving phenomenon, we derive closed formulae for $\left|\max ^{+}(\Lambda)\right|$ in terms of binomial coefficients. In particular, for affine Kac-Moody algebras of classical type, we show that our closed formulae for $\left|\max ^{+}(\Lambda)\right|$ can be written as a sum of binomial coefficients. For instance, when $\Lambda \in \operatorname{DR}\left(P_{\mathrm{cl}, \ell}^{+}\right)$, we have

$$
\begin{align*}
& \left|\max _{A_{n}^{(1)}}^{+}(\Lambda)\right|=\sum_{d \mid(n+1, \ell, i)} \frac{d}{(n+1)+\ell} \sum_{d^{\prime} \left\lvert\,\left(\frac{n+1}{d}, \frac{\ell}{d}\right)\right.} \mu\left(d^{\prime}\right)\binom{((n+1)+\ell) / d d^{\prime}}{\ell / d d^{\prime}} \tag{6.1}\\
& \left|\max _{B_{n}^{(1)}}^{+}(\Lambda)\right|=\frac{1}{2}\left(P_{\mathrm{cl}, \ell}^{+}(1)+(-1)^{\delta_{i n}} P_{\mathrm{cl}, \ell}^{+}(-1)\right)=\binom{n+\left\lfloor\frac{\ell-\delta_{i n}}{2}\right\rfloor}{ n}+\binom{n+\left\lfloor\frac{\ell-1-\delta_{i n}}{2}\right\rfloor}{ n}
\end{align*}
$$

Here μ denotes the classical Möbius function (see [7, Table 2.2, Table 6.2] for more details).

From our closed formulae, we find recursive formulae for $\left|\max ^{+}(\Lambda)\right|$ which can be described as triangular arrays. For instance, let us consider the case $\mathfrak{g}=A_{2 n}^{(2)}$. Define $T_{0}^{A_{\text {even }}^{(2)}}: \mathbb{Z}_{\geqslant 0} \times \mathbb{Z}_{\geqslant 0} \rightarrow \mathbb{Z}_{\geqslant 0}$ by $T_{0}^{A_{\text {even }}^{(2)}}(n, i)=1(n \geqslant 0, i=0,1), T_{0}^{A_{\text {even }}^{(2)}}(0, \ell)=1(\ell \geqslant 2)$ and

$$
\begin{equation*}
T_{0}^{A_{\mathrm{even}}^{(2)}}(n, \ell)=T_{0}^{A_{\text {even }}^{(2)}}(n, \ell-2)+T_{0}^{A_{\text {even }}^{(2)}}(n-1, \ell) \tag{6.2}
\end{equation*}
$$

Then for all $n \in \mathbb{Z}_{\geqslant 2}$, $\ell \in \mathbb{Z}_{\geqslant 0}$, we have $T_{0}^{A_{\text {even }}^{(2)}}(n, \ell)=\left|\max _{A_{2 n}^{(2)}}^{+}\left(\ell \Lambda_{0}\right)\right|=\binom{n+\left\lfloor\frac{\ell}{2}\right\rfloor}{ n}$. In particular, as a triangular array, $T_{0}^{A_{\text {even }}^{(2)}}$ can be described as follows:

It is interesting to note that this array coincides with Pascal's triangle with duplicated diagonals, i.e., $T_{0}^{A_{\text {even }}^{(2)}}(n, 2 \ell)=T_{0}^{A_{\text {even }}^{(2)}}(n, 2 \ell+1)=\binom{n+\ell}{\ell}$ for $n, \ell \geqslant 0$, which appears in [11, A065941] in a totally different context from ours. The recursive condition (6.2) says if we add the (1) and the (2) then we get (3).

For another example, let us consider the case $\mathfrak{g}=B_{n}^{(1)}$. Define $T_{0}^{B^{(1)}}: \mathbb{Z}_{\geqslant 0} \times \mathbb{Z}_{\geqslant 0} \rightarrow$ $\mathbb{Z}_{\geqslant 0}$ by $T_{0}^{B^{(1)}}(n, 0)=1(n \geqslant 1), T_{0}^{B^{(1)}}(n, 1)=2(n \geqslant 1), T_{0}^{B^{(1)}}(0, \ell)=2(\ell \geqslant 0)$ and

$$
T_{0}^{B^{(1)}}(n, \ell)=T_{0}^{B^{(1)}}(n, \ell-2)+T_{0}^{B^{(1)}}(n-1, \ell)(n \geqslant 1, \ell \geqslant 2) .
$$

Then for all $n \in \mathbb{Z}_{\geqslant 3}$, $\ell \in \mathbb{Z}_{\geqslant 0}$, we have $T_{0}^{B^{(1)}}(n, \ell)=\left|\max _{B_{n}^{(1)}}^{+}\left(\ell \Lambda_{0}\right)\right|$. In particular, as a triangular array, $T_{0}^{B^{(1)}}$ can be described as follows:

This array is the triangular array obtained by removing the left boundary from the triangular array in [11, A129714] whose row sums are the Fibonacci numbers.

We note that $T_{0}^{B^{(1)}}(n, \ell)$ can be obtained from $T_{0}^{A_{\text {even }}^{(2)}}$ as follows:

$$
T_{0}^{B^{(1)}}(n, \ell)=T_{0}^{A_{\text {even }}^{(2)}}(n, \ell)+T_{0}^{A_{\text {even }}^{(2)}}(n, \ell-1) \quad \text { for } n, \ell \geqslant 1
$$

For instance, if we add 4,10 in $T_{0}^{A_{\text {even }}^{(2)}}$ then we get 14 in $T_{0}^{B^{(1)}}(n, \ell)$.
Remark 6.1. Interestingly, all triangular arrays for classical affine type except for untwisted affine C-type can be constructed by boundary conditions and the triangular array of twisted affine even A-type. The triangular arrays for affine C-type ([11, A034851]) can be constructed by boundary conditions and Pascal triangle [7, Appendix A].

On the other hand, we obtain an interesting duality between level and rank from our closed and recursive formulae. For instance, in case where $\mathfrak{g}=A_{n}^{(1)}$, the closed formula in (6.1) implies that for $n \geqslant 1$ and $\ell>1$, if $(n+1, \ell, i)=(\ell, n+1, j)$ for some $0 \leqslant i, j \leqslant \min (n, \ell)$, then

$$
\begin{equation*}
\left|\max _{A_{n}^{(1)}}^{+}\left((\ell-1) \Lambda_{0}+\Lambda_{i}\right)\right|=\left|\max _{A_{\ell-1}^{(1)}}^{+}\left(n \Lambda_{0}+\Lambda_{j}\right)\right| \tag{6.3}
\end{equation*}
$$

i.e., exchanging $n+1$ with ℓ preserves the number of dominant maximal weights.

Let us deal with the relation between our duality and Frenkel's duality in [3]. For a residue i modulo n, let $\Lambda_{i}^{(n)}$ denote the i th fundamental weight of $A_{n}^{(1)}$. For $\Lambda=$ $\sum_{i=0}^{n} m_{i} \Lambda_{i}^{(n)} \in P_{\mathrm{cl}, \ell^{\prime}}^{+}$let Λ^{\prime} be the dominant integral weight of $A_{\ell-1}^{(1)}$ defined by

$$
\Lambda^{\prime}=\sum_{i=0}^{n} \Lambda_{m_{i}+m_{i+1}+\cdots+m_{n}}^{(\ell-1)} \in P_{\mathrm{cl}, n+1}^{+}
$$

With this setting, Frenkel found the following beautiful duality between the q-specialized characters of $V(\Lambda)$ and $V\left(\Lambda^{\prime}\right)$:

$$
\operatorname{dim}_{q}(V(\Lambda)) \prod_{k=0}^{\infty} \frac{1}{1-q^{(n+1) k}}=\operatorname{dim}_{q}\left(V\left(\Lambda^{\prime}\right)\right) \prod_{k=0}^{\infty} \frac{1}{1-q^{\ell k}}
$$

Here $\operatorname{dim}_{q}(V)$ denotes the q-specialized character of V (see [3, Theorem 2.3] or [12, Section 4.4]). Based on (6.3), we have

$$
\left|\max _{A_{n}^{(1)}}^{+}(\Lambda)\right|=\left|\max _{A_{\ell-1}^{(1)}}^{+}\left(\Lambda^{\prime}\right)\right|
$$

In case where $\mathfrak{g}=B_{n}^{(1)}$, the closed formula in (6.1) implies the following symmetries:
(1) For $n \geqslant 3, \ell \geqslant 7$ and $\ell \equiv 21$, we have

$$
\left|\max _{B_{n}^{(1)}}^{+}\left(\ell \Lambda_{0}\right)\right|=\left|\max _{B_{(\ell-1) / 2}^{(1)}}^{+}\left((2 n+1) \Lambda_{0}\right)\right|
$$

i.e., exchanging n with $(\ell-1) / 2$ preserves the number of dominant maximal weights.
(2) For $n \geqslant 3, \ell \geqslant 8$ and $\ell \equiv_{2} 0$, we have

$$
\left|\max _{B_{n}^{(1)}}^{+}\left((\ell-1) \Lambda_{0}+\Lambda_{n}\right)\right|=\left|\max _{B_{\ell / 2-1}^{(1)}}^{+}\left((2 n+1) \Lambda_{0}+\Lambda_{\ell / 2-1}\right)\right|
$$

i.e., exchanging n with $\ell / 2-1$ preserves the number of dominant maximal weights.

References

[1] H. Barcelo, V. Reiner, and D. Stanton. "Bimahonian distributions". J. Lond. Math. Soc. (2) 77.3 (2008), pp. 627-646. Link.
[2] O. Barshevsky, M. Fayers, and M.Schaps. "A non-recursive criterion for weights of a highestweight module for an affine Lie algebra". Israel J. Math. 197.1 (2013), pp. 237-261. Link.
[3] I. Frenkel. "Representations of affine Lie algebras, Hecke modular forms and Korteweg-de Vries type equations". Lie algebras and related topics (New Brunswick, N.J., 1981). Vol. 933. Lecture Notes in Math. Springer, Berlin-New York, 1982, pp. 71-110. Link.
[4] J. Humphreys. Introduction to Lie algebras and representation theory. Vol. 9. Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1978.
[5] R. Jayne and K. Misra. "On multiplicities of maximal weights of $\hat{s l}(n)$-modules". Algebr. Represent. Theory 17.4 (2014), pp. 1303-1321. Link.
[6] V. Kac. Infinite-dimensional Lie algebras. 3rd ed. Cambridge University Press, Cambridge, 1990.
[7] Y.-H. Kim, S. j. Oh, and Y.-T. Oh. "Cyclic sieving phenomenon on dominant maximal weights over affine Kac-Moody algebras". 2019. arXiv:1909.07010.
[8] V. Reiner, D. Stanton, and D. White. "The cyclic sieving phenomenon". J. Combin. Theory Ser. A 108.1 (2004), pp. 17-50. Link.
[9] B. Sagan. "Congruence properties of q-analogs". Adv. Math. 95.1 (1992), pp. 127-143. Link.
[10] B. Sagan. "The cyclic sieving phenomenon: a survey". London Math. Soc. Lecture Note Ser. 392 (2011), pp. 183-233. Link.
[11] N. J. A. Sloane. "The online encyclopedia of integer sequences". Link.
[12] P. Tingley. "Three combinatorial models for $\hat{\mathrm{s}}_{n}$ crystals, with applications to cylindric plane partitions". Int. Math. Res. Not. IMRN 2 (2008), Art. ID rnm143, 40. Link.
[13] S. Tsuchioka and M. Watanabe. "Pattern avoidance seen in multiplicities of maximal weights of affine Lie algebra representations". Proc. Amer. Math. Soc. 146.1 (2018), pp. 15-28. Link.

[^0]: *yhkim14@sogang.ac.kr. Supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (NRF-2018R1D1A1B07051048).
 \dagger^{\dagger} sejin092@gmail.com. Supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2019R1A2C4069647).
 ${ }^{\ddagger}$ ytoh@sogang.ac.kr. Supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (NRF-2018R1D1A1B07051048).

