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Abstract. In this article, we propose an (s + d, d)-abacus for (s,s +4d,...,s + pd)-core
partitions and establish a bijection between (s,s +d,...,s + pd)-core partitions and
rational Motzkin paths of type (s + d, —d). This result not only gives a lattice path
interpretation of the (s,s +4d,...,s + pd)-core partitions but also counts them with a
closed formula. Also we enumerate (s,s +1,...,s + p)-core partitions with k corners
and self-conjugate (s,s +1,...,s + p)-core partitions.
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1 Introduction

A partition A = (A1, Ay, ..., Ap) of a positive integer 7 is a finite non-increasing sequence
of positive integer parts A; such that Ay + A, + - - - + Ay = n. The Young diagram of A is
a finite collection of n boxes arranged in left-justified rows, with the ith row having A;
boxes. For the Young diagram of A, the partition A" = (A}, A7, ...) is called the conjugate
of A, where A’ denotes the number of boxes in the jth column. For each box of the Young
diagram in coordinates (i, j), the hook length /(i, j) is the number of boxes weakly below
and strictly to the right of the box. For a partition A, the beta-set of A, denoted B(A), is
defined to be the set of first column hook lengths of A. For example, the conjugate of
A=(54,2,1)is M = (4,3,2,2,1) and the beta-set of A is B(A) = {8,6,3,1}.

For a positive integer ¢, a partition A is a t-core (partition) if it has no box of hook
length t. In the previous example, A is a t-core for t = 5,7, or t > 9. For distinct positive
integers tq,1,...,t,, we say that a partition A is a (t1,t2, ..., tp)-core if it is simultane-
ously a t-core, a tp-core, ..., and a t,-core. The study of core partitions arose from the
representation theory of the symmetric group S, (see [12] for details). Researches on
simultaneous core partitions are motivated by the following result of Anderson [2].
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Theorem 1.1 ([2], Theorem 1). For relatively prime positive integers s and t, the number of

(s, t)-core partitions is
1 [(s+t
s+t\ s )
1

In particular, the number of (s,s + 1)-core partitions is the sth Catalan number Cs = S+—1(2: ).

Since the work of Anderson, results on (s, f)-cores were published by many re-
searchers (see [3, 6, 8, 9, 10, 19, 23]). Also, some researchers concerned with simulta-
neous core partitions whose cores line up in arithmetic progression (see [1, 4, 7, 20, 21,

22]). Yang-Zhong-Zhou [22] showed that the number of (s,s + 1,s + 2)-core partitions
is equal to the sth Motzkin number M; = Z£Z§ J (5x)Ck, where Cy is the kth Catalan
number. Amdeberhan-Leven [1] and Wang [20] extended this result as follows.

Let an (s, p)-generalized Dyck path be a lattice path from (0,0) to (s,s) which stays
weakly above the line y = x and consists of vertical steps (0, p), horizontal steps (p,0),
and diagonal steps (i,i) fori=1,2,...,p — 1.

Theorem 1.2 ([1], Theorem 4.2). For positive integers s and p, the number of (s,s+1,...,s+

p)-core partitions is equal to the number C§”) of (s, p)-generalized Dyck paths, which satisfies
the following recurrence relation:

») _ v o) o)
G _I;Ck”pcs”k,

where Cs(p) =1fors <0.

Theorem 1.3 ([20], Theorem 1.6). ] For relatively prime positive integers s and d, the number
of (s,s +d,s + 2d)-core partitions is

1 L2 s+d
s+d kg(‘) <k,k—|—d,s—2k)'

Recently, Baek-Nam-Yu [4] obtained an alternative proof for Theorem 1.3 and found
a formula for the number of (s,s +d, s + 2d, s 4+ 3d)-core partitions.

Theorem 1.4 ([4], Theorem 5.7). For relatively prime positive integers s and d, the number of
(s,s +d,s+2d,s + 3d)-core partitions is

1 WZZJ s+d—k\ , (s+d-k-1 s+d—k
s+d = k k—1 s—2k )
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An idea of counting paths was used in [1, 2, 3, 6, 10, 11] and counting the lattice
points method was used in [4, 8, 9, 13, 20]. A poset structure is the main tool to get the
formulae for counting simultaneous core partitions in [19, 22, 23].

In this article, we define the “rational Motzkin path", which generalizes the idea of
the Motzkin path, and give a generalization of Theorems 1.2 to 1.4 by using rational
Motzkin paths of type (s + d, —d) with a specific restriction (see Definition 2.5). The
following is the main result of this article.

Theorem 1.5. Let s and d be relatively prime positive integers. For a given integer p > 2, the
number of (s,s +d, ..., s + pd)-core partitions is equal to the number of rational Motzkin paths
of type (s +d, —d) without UF'U steps fori =0,1,...,p —3if p > 3, that is

1 (s+d\ BB 1 fk4d\ k=1\[s+d—t(p—2)—1
s+d( d )+ L Zk+d(k—£>( ¢ )( 2k +d—1 )

k=1 (=0
where r = min(k — 1, [(s —2k)/(p —2)]).

As a corollary, by setting d = 1, we obtain a closed formula for the number of (s,s +
1,...,5+4 p)-core partitions. Also, we give a bijection between the set of (s, p)-generalized
Dyck paths and that of Motzkin paths of length s with a restriction. Furthermore, we
count the number of (s,s+1,...,s+ p)-core partitions with k corners. At the end of this
article, we enumerate self-conjugate (s,s +1,...,s + p)-core partitions.

2 Counting (s,s +d,...,s + pd)-core partitions

2.1 The (s +d,d)-abacus diagram

James-Kerber [12] introduced the abacus diagram which has played important roles in
the theory of core partitions (see [3, 8, 14, 16, 17]). The s-abacus diagram is a diagram with
infinitely many rows labeled by nonnegative integers such that the smallest index is at
the bottom, and s columns labeled by 0,1,...,s — 1, whose position in (i, ) is labeled
by si 4 j, wherei > 0 and j = 0,1,...,s — 1. The s-abacus of a partition A is obtained
from the s-abacus diagram by placing a bead on each position which the number at this
position belongs to B(A). Positions without beads are called spacers. It is well-known
that A is an s-core if and only if the s-abacus of A has no spacer below a bead in any
column. Equivalently, one can have the following.

Lemma 2.1 ([12], Lemma 2.7.13). For a partition A, A is an s-core if and only if x € B(A)
implies x — s € B(A) whenever x —s > 0.

We now introduce the (s + d,d)-abacus diagram, which generalizes the definition of
the s-abacus diagram and the two-way abacus diagram suggested by Anderson [2].
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Definition 2.2. Let s and d be relatively prime positive integers. The (s + d,d)-abacus
diagram is a diagram with infinitely many rows labeled by integers and s +d + 1 columns
labeled by 0,1, ...,s + d, whose position in (i, ) is labeled by (s + d)i + dj, where i € Z
and j = 0,1,...,s +d. For a partition A, the (s + d,d)-abacus of A is obtained from the
(s +d,d)-abacus diagram by placing a bead on each position which the number at this
position belongs to (). Again, a position without a bead is called a spacer.

Example 2.3. If A = (6,4,3,1,1,1,1), then Ais a (5,8,11,...)-core partition and its beta-
setis B(A) = {12,9,7,4,3,2,1}. Figure 1 shows the Young diagram with the hook lengths
and the (8, 3)-abacus of A.

12[7]6]4]2]1 :
9[4]3]1 24 27 30 33 36 39 42 45 48  i=3
ATEE 16 19 22 25 28 31 34 37 40  i=2
§ 11 14 17 20 23 26 29 32  i=1
4 0 ® 6 @ @ 15 18 21 24  i=0
3 8 520 @ @ 10 13 16 i=-1
-16-13-10 -7 -4 -1 @ 5 8 i=-2
2 ~24-21-18-15-12 -9 —6 -3 0 i=-3
n :

Figure 1: The Young diagram of the partition (6,4,3,1,1,1,1) with the hook lengths
and its (8,3)-abacus

This modified abacus diagram is useful when we consider (s,s +d,...,s + pd)-core
partitions with p > 2. For a given (s,s +4,...,s + pd)-core partition A, if we consider
the (s + d,d)-abacus of A, then a bead on the position in (i,j) implies that positions in
(i—1,j—p+1),(i—-1,j—p+2),...,(i—1,j+1) are also beads whenever these positions
are labeled by positive integers as in Figure 1. We now have the following lemma.

Lemma 2.4. For a given p > 2 and the (s 4+ d,d)-abacus of an (s,s +d, ...,s + pd)-core A, we
define a function f : {0,1,...,s+d} — Z as follows: For a column number j, f(j) is defined
to be the smallest row number i satisfying that the position in (i, ) is a spacer being labeled by a
nonnegative integer. Then f satisfies that

(a) f(0) =0and f(s+d) = —d,
(b) f(j—1) is exactly one of the values f(j) —1, f(j), and f(j)+ 1, for 1 <j<s+d,

(©) f(j—1) = f(j) — Limplies that f(j —p+1), f(j—p+2),....f(i—2) = f(j — 1), for
p—1<j<s+d.
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As depicted in Figure 1, for the (8,3)-abacus of A = (6,4,3,1,1,1,1), we have f(0) =

0, F(1) = 1, (2) = 0, f(3) = 1, f(4) = 1, f(5) = 0, (6) = 1, f(7) = —2, and
f(8) = —3. We see that f agrees with Lemma 2.4.

2.2 Rational Motzkin paths of type (s, 1)

A Motzkin path of length s is a lattice path from (0,0) to (s,0) which stays weakly above
the x-axis and consists of up steps (1,1), down steps (1, —1), and flat steps (1,0). We
introduce a path which generalizes the idea of the Motzkin path.

Definition 2.5. Let free rational Motzkin path of type (s,t) be a lattice path from (0,0) to
(s,t) which consists of up steps U = (1,1), down steps D = (1,—1), and flat steps
F = (1,0). A rational Motzkin path of type (s, t) is a free rational Motzkin path which stays
weakly above the line y = tx/s.

Figure 2 shows all rational Motzkin paths of type (5,—2). We note that if P =
PP, - -- Py is a rational Motzkin path of type (s +1,—1), then Ps;; must be a down
step and the subpath P = P, P; - - - Ps is a Motzkin path of length s.

y yT yT yT ]/T yT
Bl el el e Tl e

Figure 2: All rational Motzkin paths of type (5, —2)

Proposition 2.6. Let s and d be relatively prime positive integers. For p > 2, there is a bijection
between the set of (s,s +d, ..., s+ pd)-core partitions and that of rational Motzkin paths of type
(s +d, —d) without UF'U steps fori =0,1,...,p —3if p > 3.

Example 2.7. If A = (9,5,3,2,2,1,1,1,1), then A is a (5,8,11,14)-core partition and
B(A) ={17,12,9,7,6,4,3,2,1}. Figure 3 shows the corresponding path

P=UFUDDDDD

of A, a rational Motzkin path of type (8, —3) without UU steps.

To count the number of rational Motzkin paths of type (s + d, —d), we use the cyclic
shifting of paths (see [5, 15]). For a path P = PP, - - - P;, the cyclic shift o(P) of P is
o(P) = PyP3---PsPy. lteratively, ¢/(P) = Py, q---PsPy---P, fori = 1,...,5s — 1 and
c%(P) = P.

Lemma 2.8. For relatively prime positive integers s and d, let P = PyPy---Psyq be a free
rational Motzkin path of type (s +d, —d). Then there exists a unique cyclic shift o/ (P) of P such
that o/ (P) is a rational Motzkin path of type (s +d, —d) for j =0,1,2,...,s +d — 1.
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24 27 30 33 36 39 42 45 48 Y
16 19 22 31 34 37 40

8 23 26 29 32

® ® © @ 24 y
-8 -5 2 D @ 16
~16 -13 —10 —7 —4
—24 —21 —18 —15 —12

Figure 3: The corresponding rational Motzkin path of the partition (9,5,3,2,2,1,1,1,1)

Now we can enumerate the rational Motzkin paths of type (s +d, —d).

Proposition 2.9. Let s and d be relatively prime positive integers. For a given integer 0 < k <
|s/2], the number of rational Motzkin paths of type (s + d, —d) having k up steps is

1 s+d
s+d \kk+d,s—2k/)"

Consequently, the number of rational Motzkin paths of type (s +d, —d) is

1 L2 s+d
s+d k;o (k,k-i—d,s—Zk)'

By Propositions 2.6 and 2.9, we give an alternating proof of Theorem 1.3 using path
enumeration. Also, we can use the cyclic shifting for rational Motzkin paths of type
(s +d, —d) without UF'U steps for i = 0,1,...,p — 3. For a free rational Motzkin path
P of type (s +d, —d), we say that P is without cyclic UF'U steps if there is no UF'U steps
for any cyclic shift of P.

Proposition 2.10. Let s and d be relatively prime positive integers. For integers p > 3 and
1 <k < |s/2], the number of rational Motzkin paths of type (s +d, —d) having k up steps and
no UF'U steps foralli =0,1,...,p —3is

Fas () ()TN
where r = min(k — 1, [(s —2k)/(p —2)]).

Proof. Let Mp(s+d, —d;k, p) be the set of free rational Motzkin paths of type (s +d, —d)
consisting of k U’s, k +d D’s, and s — 2k F’s which starts with a down step and has no
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cyclic UFiU steps for all i = 0,1,...,p — 3. From Lemma 2.8, there are k 4 d cyclic
shifts of a rational Motzkin path, which starts with a down step so that the number of
rational Motzkin paths of type (s + d, —d) with k up steps and without UFU steps for
alli=0,1,...,p—3is
1
k+d
For a path P € Mp(s +d,—d;k, p), let P denote the subpath obtained from P by
deleting all flat steps. Then, P = Q1Q5 - - - Qpk14 is a path consisting of k U’s and k + d
D’s which starts with a down step. Now, we partition Mp(s +d, —d; k, p) into k sets
according to the number of UU steps of P. For 0 < ¢ < k — 1, let M5 (s +d, —d; k, p) be
the set of P € Mp(s +d,—d;k, p) for which P has ¢ UU steps so that

|Mp(s+d,—d;k,p)|.

k—1
(Mp(s+d,—d;k,p)| = Y [Mb(s+d,—d;k,p)|.
/=0

Hence, it is enough to show that

kd\ (k—=1\ (s+d—(p—2)—1
¢ o _
Mbls +d,~d:k p) (k—€>< ¢ )( 2k+d—1 )

We note that if a path P belongs to M%(s +d,—d;k,p), then P =005 Qokiq is a
path of the form
DUt D22 .. DUk D141

where a; and b; are integers satisfying a;,b; > 1fori =1,2,...,k— ¢, ay_411 > 0,
ap+ay+ -+ ap_p=k+d and by +by+ -+ by =k.

Since P can be written as
Q1F1QF2 - .. Q2k+dFC2k+d,

where ¢;’s are nonnegative integers satisfying c; +cx 4+ - - - + kg = s —2kand ¢; > p —2
if Qi = Qiy1 = U, one can see that | M4 (s +d, —d;k,p)| is equal to the number of
solution tuples ((a;), (b;), (¢c;)). It is easy to see that the number of solutions (a;) and (b;)
are (ifg) and ( 511) = (kzl), respectively. If (a;) and (b;) are given, then they determine
¢ indices i such that ¢; > p — 2. Hence, the number of solutions (¢;) is equal to the
number of nonnegative integer solutions to y1 +y2 + - - - + Yogrqg = s — 2k — {(p — 2), that

is (S+d2_lﬁgj)_1), for ¢ satisfying that s +d — ¢(p —2) — 1 > 2k +d — 1. This completes
the proof. O

Remark 2.11. The number of rational Motzkin paths of type (s + d, —d) without up step
and UF'U steps foralli = 0,1,...,p — 3 is equal to the number of rational Motzkin paths
of type (s +d, —d) without up step, that is (*1%)/(s +d) by Proposition 2.9. It follows
from Propositions 2.6 and 2.10 that we have proven Theorem 1.5.
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3 The (s,s+1,...,5s+ p)-core partitions revisited

From Theorem 1.5, we obtain a closed formula for the number of (s,s+1,...,s+ p)-core
partitions.

Corollary 3.1. For positive integers s and p > 2, the number of (s,s +1,...,s + p)-core
partitions is equal to the number of Motzkin paths of length s without UF'U steps for i =
0,1,...,p—=3ifp >3, that is

[s/2] r
14y ZN(k,E—I—l)(S_EgZ_Z)),

k=1 (=0
where N(k,{ +1) = %(ZL)(’;) = ki—l(ﬁﬁ)(kzl) is the Narayana number which counts the
number of Dyck paths of order k having ¢ + 1 peaks and r = min(k — 1, [(s —2k)/(p —2)]).

From Theorem 1.2 and Corollary 3.1, we see that the (s, p)-generalized Dyck paths
and the Motzkin paths of length s without UF'U steps fori = 0,1,...,p — 3 if p > 3 are
equinumerous. We now provide a bijection between sets of these paths.

3.1 A bijection between generalized Dyck paths and restricted Motzkin
paths
For a given p > 2, let P be a Motzkin path of length s without UF'U steps for i =

0,1,...,p—3if p > 3. Then each U step of P is followed by either F/D for some j > 0 or
XU for some k > p — 2. Hence, we can decompose P into the following p + 1 units:

U, := UFP~2
Dp =D (which is not following UF! for all i = 0,1,...,p—3)
Fi:=F (which is not following UF foralli=0,1,..., p—3)

F :=UF~2D fori=2,3,...,p—1.

We now construct a simple bijection ¢ between (s, p)-generalized Dyck paths and
Motzkin paths of length s without UF'U steps for i = 0,1,...,p — 3 if p > 3, for fixed
p > 2 as follows.

For a given Motzkin path P of length s without UF'U steps for i = 0,1,...,p — 3 if
p > 3, we define ¢(P) to be the path obtained from P by replacing each unit A with A
for A € {Uy,Dy, Fi|i =1,2,...,p— 1}, where U, = (0,p), D, = (p,0), F; = (i,i) for
i=12,...,p—1

We note that if P is decomposed into k U,’s, k Dy’s, and ¢; F’s fori = 1,2,...,p —1,
then ¢(P) is a path from (0,0) to (s,s) since

p—1 p—1
k(p—1)+k+ ) ici=s=kp+ ) _ ic.
i=1 i=1
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Moreover, P never goes below the x-axis if and only if ¢(P) never goes below the line
y = x. Hence, ¢(P) is an (s, p)-generalized Dyck path, and therefore ¢ is a bijection
between (s, p)-generalized Dyck paths and Motzkin paths of length s without UF'U
stepsfori =0,1,...,p—=3if p > 3.

Example 3.2. Let p = 4 and P = UFFUFFFUDDUFDUFFDD so that P is a Motzkin
path of length 18 without UU and UFU steps. Hence, P can be written as

and therefore Q = ¢(P) = UyUyF F,D4F3UyD4Dy which is an (18,4)-generalized Dyck
path. See Figure 4.

y P
— N
X
y Q.
/
X

Figure 4: A Motzkin path and the corresponding generalized Dyck path

3.2 The (s,s+1,...,s+ p)-core partitions with k corners

For a partition A, the number of distinct parts in A is equal to the number of corners in
the Young diagram of A. Many researchers were interested in corners of a partition, and
Huang-Wang [11] found formulae for the number of some simultaneous core partitions
with specified number of corners.

Theorem 3.3 ([11], Theorems 3.1 and 3.8). For positive integers s and k, the number of
(s,s + 1)-core partitions with k corners is the Narayana number N(s,k+1) = 1(,3,)(}), and
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the number of (s, s+ 1,s + 2)-core partitions with k corners is (, )Cy, where Cy is the kth Catalan
number.

Huang-Wang also suggested an open problem for enumerating (s,s +1,...,s + p)-
cores with k corners, and we give an answer to this problem.

Theorem 3.4. For positive integers s, p > 2, and 1 < k < |s/2]|, the number of (s,s +
1,...,s+ p)-core partitions with k corners is

Zr; N(k,€+1)<s_€gi_2)),

(=0
where r = min(k — 1, [(s —2k)/(p —2)]).

3.3 Self-conjugate (s,s+1,...,s + p)-core partitions

A partition whose conjugate is equal to itself is called self-conjugate. From now on, we
focus on self-conjugate partitions. Ford—-Mai-Sze [10] found the number of self-conjugate
(s, t)-core partitions.

Theorem 3.5 ([10], Theorem 1). For relatively prime integers s and t, the number of self-
conjugate (s, t)-core partitions is
(L%J + L%J)
3/

In particular, the number of self-conjugate (s,s + 1)-core partitions is equal to the number of
symmetric Dyck paths of order s, that is (LS P | ).

Motivated by Theorem 3.5, in a previous work [7], the authors showed that the num-
ber of self-conjugate (s,s + 1,s + 2)-core partitions is equal to the number of symmetric
Motzkin paths of length s, and then gave a conjecture for the number of self-conjugate
(s,s+1,...,5+ p)-cores. Recently, this was proved by Yan-Yu-Zhou.

Theorem 3.6 ([21], Theorems 2.14, 2.19, and 2.22). For positive integers s and p, the number
of self-conjugate (s,s +1,...,s + p)-core partitions is equal to the number of symmetric (s, p)-
generalized Dyck paths.

Now, we give a closed formula for the number of self-conjugate (s,s +1,...,s + p)-
core partitions. Here, we give a useful lemma from the OEIS.

Lemma 3.7 ([18], Sequence A088855). For nonnegative integers k and ¢ such that £ < k, the
number of symmetric Dyck paths of order k having ¢ UU steps is

(304
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Theorem 3.8. For positive integers s, p > 2, the number of self-conjugate (s,s +1,...,s+ p)-

core partitions is

k=1 ¢=0 2
where r = min(k — 1, [(s —2k)/(p —2)]).
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