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Abstract. The linearization coefficient L(Ln1(x) . . . Lnk(x)) of classical Laguerre poly-
nomials Ln(x) is well known to be equal to the number of (n1, . . . , nk)-derangements,
which are permutations with a certain condition. Kasraoui, Zeng and Stanton found
a q-analog of this result using q-Laguerre polynomials with two parameters q and y.
Their formula expresses the linearization coefficient of q-Laguerre polynomials as the
generating function for (n1, . . . , nk)-derangements with two statistics counting weak
excedances and crossings. In this paper their result is proved by constructing a sign-
reversing involution on marked perfect matchings.
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1 Introduction

A family of polynomials Pn(x) are called orthogonal polynomials with respect to a linear
functional L if deg Pn(x) = n for n ≥ 0 and L(Pm(x)Pn(x)) = 0 if and only if m 6= n.
The nth moment µn of the orthogonal polynomials is defined by µn = L(xn). It is well
known that monic orthogonal polynomials Pn(x) satisfy a three-term recurrence of the
form

Pn+1(x) = (x− bn)Pn(x)− λnPn−1(x). (1.1)

Viennot [6] developed a combinatorial theory to study orthogonal polynomials. In
particular, he showed that orthogonal polynomials Pn(x) and the moments µn are ex-
pressed as weighted sums of certain lattice paths. There are several classical orthog-
onal polynomials whose moments have simple combinatorial meanings. For exam-
ple, the nth moment of the Hermite (respectively, Charlier and Laguerre) polynomials
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is the number of perfect matchings (respectively, set partitions and permutations) on
[n] := {1, 2, . . . , n}.

By definition of orthogonal polynomials, it is easily seen that

Pm(x)Pn(x) = ∑
`

c`m,nP`(x), c`m,n = L(P`(x)Pm(x)Pn(x))/L(P`(x)2).

Thus the coefficients c`m,n can be computed using the quantities L(Pn1(x) . . . Pnk(x)). We
call L(Pn1(x) . . . Pnk(x)) a linearization coefficient.

For the above mentioned classical orthogonal polynomials, the linearization coeffi-
cients also have nice combinatorial interpretations. If Pn(x) are the Hermite (respec-
tively, Charlier and Laguerre) polynomials, then L(Pn1(x) . . . Pnk(x)) is the number of
inhomogeneous perfect matchings (respectively, set partitions and permutations) on
[n1] t · · · t [nk], see [2, 7] and references therein. Here, [n1] t · · · t [nk] is the disjoint
union of [ni]’s and a perfect matching m (respectively, set partition π and permutation
σ) is inhomogenous if there are no edges (respectively, two elements in the same block
and two elements j and σ(j) ) that are contained in the same set [ni].

There are q-analogs of the above combinatorial formulas for linearization coefficients
of Hermite, Charlier and Laguerre polynomials due to Ismail, Stanton and Viennot [3],
Anshelevich [1] and Kasraoui, Stanton and Zeng [4], respectively. We refer the reader to
the survey [2] for more details on these linearization coefficients.

Suppose that Pn(x) are orthogonal polynomials whose moments L(xn) have a combi-
natorial model as in the case of Hermite, Charlier or Laguerre polynomials. Since Pn(x)
satisfy a simple recurrence (1.1), one may also give a combinatorial model for Pn(x) with
possibly negative signs involved. These combinatorial models for Pn(x) and L(xn) nat-
urally yield a combinatorial meaning to L(Pn1(x) . . . Pnk(x)), which may have negative
signs. Therefore, if there is a combinatorial formula for L(Pn1(x) . . . Pnk(x)) with only
positive terms, the most satisfying combinatorial proof of this formula would be finding
a sign-reversing involution on the combinatorial models for L(Pn1(x) . . . Pnk(x)) whose
fixed points give the positive terms in the formula.

Indeed, the formulas for linearization coefficients of q-Hermite [3] and q-Charlier
polynomials [1] have been proved in this way by Ismail, Stanton and Viennot [3] and
Kim, Stanton and Zeng [5]. However, such a proof is missing in the case of q-Laguerre
polynomials. In this paper, we prove the formula for linearization coefficients of q-
Laguerre polynomials due to Kasraoui, Stanton and Zeng [4] by finding a sign-reversing
involution. We now describe their result below.

The q-Laguerre polynomials Ln(x; q, y) are defined by the three-term recurrence relation

Ln+1(x; q, y) = (x− y[n + 1]q − [n]q)Ln(x; q, y)− y[n]2qLn−1(x; q, y) (1.2)

with L0(x; q, y) = 1 and L1(x; q, y) = x− y. Here, we use the notation [n]q = 1+ q+ · · ·+
qn−1. From now on L denotes the linear functional with respect to which the q-Laguerre
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polynomials are orthogonal.
The set of permutations of [n] is denoted by Sn. For σ ∈ Sn, a weak excedance of σ is

an integer i ∈ [n] such that σ(i) ≥ i. A crossing of σ is a pair (i, j) of integers i, j ∈ [n]
such that i < j ≤ σ(i) < σ(j) or σ(i) < σ(j) < i < j. We denote by wex(σ) (respectively,
cross(σ)) the number of weak excedances (respectively, crossings) of σ.

Kasraoui, Stanton and Zeng [4] showed that the nth moment is given by

µn(q, y) = L(xn) = ∑
σ∈Sn

ywex(σ)qcross(σ). (1.3)

They also proved the following formula for the linearization coefficients of q-Laguerre
polynomials. Note that a permutation σ ∈ Sn1+···+nk is called an (n1, . . . , nk)-derangement
if there is no i such that

n1 + · · ·+ nr−1 + 1 ≤ i, σ(i) ≤ n1 + · · ·+ nr

for some 0 ≤ r ≤ k where n0 = 0. Denote D(n1, . . . , nk) by the set of (n1, . . . , nk)-
derangements.

Theorem 1.1. [4] The linearization coefficients of q-Laguerre polynomials are given by

L(Ln1(x; q, y) · · · Lnk(x; q, y)) = ∑
σ∈D(n1,...,nk)

ywex(σ)qcross(σ).

In [4] they proved Theorem 1.1 using a recurrence relation for L(Ln1(x; q, y) · · ·
Lnk(x; q, y)) and induction. The purpose of this paper is to give a proof of Theorem 1.1
by constructing a sign-reversing involution. Our fundamental combinatorial objects are
matchings instead of permutations.

2 q-Laguerre polynomials and their moments

In this section we give combinatorial interpretations for the q-Laguerre polynomials
Ln(x; q, y) and their moments µn(q, y) using matchings and perfect matchings. The re-
sults in this section generalize the combinatorial models for Laguerre polynomials and
their moments due to Viennot [6, Chapter 6]. We start with basic definitions.

Definition 2.1. Let Kn,n be the complete bipartite graph with 2n vertices, i.e., the graph
with vertex set {1, 2, . . . , n, 1, 2, . . . , n} and edge set {(i, j) : 1 ≤ i, j ≤ n}. A matching of
degree n is a subgraph π of Kn,n such that π contains every vertex of Kn,n and no two
distinct edges of π have common vertices. A matching π of degree n is called a perfect
matching if π has exactly n edges. Denote the set of all matchings (respectively, perfect
matchings) of degree n by Mn (respectively, PMn). For π ∈ Mn, we denote by E(π) the
set of edges in π and let e(π) = |E(π)|.
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We visualize a matching π of degree n by placing the upper vertices 1, 2, . . . , n in the
upper row and the lower vertices 1, 2, . . . , n in the lower row. If there is no possible con-
fusion, we will simply write j instead of j. For example, since every edge of a matching
is of the form (i, j), we will also write this edge as (i, j).

For π ∈ Mn, if (i, j) ∈ π, we denote π(i) = j and ei = (i, π(i)). An upper vertex i of
π is said to be unmatched if there is no edge of the form (i, j). Similarly, a lower vertex
j of π is unmatched if there is no edge of the form (i, j). Note that if π ∈ PMn, there
are no unmatched vertices and we can identify π with the permutation σ ∈ Sn given by
σ(i) = π(i) for all i ∈ [n]. We will often use this identification in this paper.

Let π ∈ PMn. An edge e = (i, π(i)) of π is called a weak excedance if i ≤ π(i). A
pair (e, e′) of edges e = (i, π(i)) and e′ = (j, π(j)) is said to be overlapping if i < j ≤
π(i) < π(j) or π(i) < π(j) < i < j. Let wex(π) and ov(π) denote the number of weak
excedances and overlapping pairs of π.

By the identification of PMn and Sn we can rewrite (1.3) as follows:

µn(q, y) = L(xn) = ∑
π∈PMn

ywex(π)qov(π). (2.1)

For the remainder of this section we will find a combinatorial model for Ln(x; q, y)
in Theorem 2.4 and give yet another expression for µn(q, y) in (2.3). To do this, we
define some statistics for matchings. Given a matching π ∈ Mn, let P = (B1, . . . , Bl)
be the unique ordered set partition of the upper vertices of π satisfying the following
conditions:

• Each block Br consists of consecutive elements. In other words, Br is of the form
Br = {i, i + 1, . . . , j}.

• For each i ∈ [n], i is the largest element in some block Br if and only if i is an
unmatched vertex or i = n.

We define the upper block index bindexU
π (i) of a vertex i to be the integer r such that

i ∈ Br. Note that bindexU
π (i) is equal to one more than the number of unmatched

vertices appearing before i in the upper row. The lower block index bindexL
π(i) is defined

similarly by considering the ordered set partition of the lower vertices of π.

Definition 2.2. For a matching π ∈ Mn, the block difference bdiffπ(e) of an edge e =
(i, π(i)) is the difference between bindexL

π(π(i)) and bindexU
π (i), that is,

bdiffπ(e) = bindexL
π(π(i))− bindexU

π (i).

An edge e ∈ E(π) is called a block weak excedance if bdiffπ(e) ≥ 0. Denote the number of
block weak excedances in π by bwex(π). The block weight bwt(π) of π ∈ Mn is defined
by

bwt(π) = ∑
bdiffπ(e)≥0

bdiffπ(e) + ∑
bdiffπ(e)<0

(− bdiffπ(e)− 1).



On linearization coefficients of q-Laguerre polynomials 5

A crossing of π is a pair (e, e′) of edges e = (i, π(i)) and e′ = (j, π(j)) in π such that i < j
and π(i) > π(j). The number of crossings of π is denoted by cr(π).

We note that the notion of crossing for a matching π ∈ Mn is different from that for a
permutation σ ∈ Sn. If π ∈ PMn corresponds to σ ∈ Sn using the identification, we have
cross(σ) = ov(π) but cross(σ) 6= cr(π). A crossing of π ∈ Mn can be understood as a
pair of edges that intersect in the visualization of π.

Example 2.3. Let π be the matching given by π(1) = 4, π(2) = 6, π(3) = 2, π(5) = 1
and π(7) = 3. Then the ordered set partition for the upper row is ({1, 2, 3, 4}, {5, 6}, {7})
and the ordered set partition for the lower row is ({1, 2, 3, 4, 5}, {6, 7}). Let e = (7, 3).
The block indices of its two endpoints are bindexU

π (7) = 3 and bindexL
π(3) = 1, so we

have bdiffπ(e) = −2. The number of block weak excedances in π is bwex(π) = 3, the
block weight of π is bwt(π) = 0, and the number of crossings of π is cr(π) = 7.

1 2 3

1 2

Figure 1: A matching π with its blocks. The block numbers are shown.

We are now ready to express the q-Laguerre polynomials combinatorially.

Theorem 2.4. For n ≥ 0, we have

Ln(x; q, y) = ∑
π∈Mn

(−1)e(π)ybwex(π)qbwt(π)+cr(π)xn−e(π). (2.2)

Example 2.5. There are 7 matchings of degree 2 as shown in Figure 2.

x2 −xy −xyq −x −xy y2 y2q

Figure 2: The matchings of degree 2 and their corresponding terms.

Then by Theorem 2.4, we have

L2(x; q, y) = x2 − (yq + 2y + 1)x + y2 + y2q.



6 Byung-Hak Hwang, Jang Soo Kim, Jaeseong Oh, and Sang-Hoon Yu

Now we modify the combinatorial expression (2.1) for the moment µn(q, y) so that
the new expression is more suitable for our approach. For π ∈ PMn, the weight wt(π) of
π is defined by

wt(π) = ∑
π(i)≥i

(π(i)− i) + ∑
π(i)<i

(i− π(i)− 1).

In fact, this definition is obtained from the definition of the block weight by replacing
block differences bdiffπ(e) by π(i) − i. The following lemma gives a relation between
ov(π), wt(π) and cr(π).

Lemma 2.6. For π ∈ PMn, ov(π) = wt(π)− cr(π).

By Lemma 2.6 we can rewrite the moment µn(q, y) using wt(π) and cr(π) instead of
ov(π):

µn(q, y) = ∑
π∈PMn

ywex(π)qwt(π)−cr(π). (2.3)

In the next section we will use Theorem 2.4 and (2.3) to give a combinatorial meaning to
the linearization coefficients of q-Laguerre polynomials.

3 Linearization coefficients and a sign-reversing involu-
tion

3.1 A combinatorial interpretation of linearization coefficients

In this section we give a combinatorial interpretation of the linearization coefficient
C(n1, . . . , nk) := L(Ln1 · · · Lnk) of the q-Laguerre polynomials Ln = Ln(x; q, y). First
we recall the expression of Ln in terms of matchings in Theorem 2.4:

Ln = ∑
π∈Mn

(−1)e(π)ybwex(π)qbwt(π)+cr(π)xn−e(π). (3.1)

To give a description of the product Ln1 · · · Lnk , we embed Mn1 × · · · ×Mnk in MN,
where N = ∑k

i=1 ni, by horizontally concatenating the k matchings π1, . . . , πk for each
(π1, . . . , πk) ∈ Mn1 × · · · ×Mnk . Let Mn1,...,nk ⊂ MN denote the embedded image of
Mn1 × · · · ×Mnk .

Let π ∈ MN. We say that an edge (i, π(i)) of π is homogeneous with respect to
(n1, . . . , nk) if

n1 + · · ·+ nr−1 + 1 ≤ i, π(i) ≤ n1 + · · ·+ nr

for some 0 ≤ r ≤ k, where n0 = 0, and inhomogeneous otherwise. For simplicity, we
omit the expression ‘with respect to (n1, . . . , nk)’ when there is no confusion. Note that
Mn1,...,nk is the set of matchings in MN such that every edge is homogeneous. We will
write EH(π) for the set of homogeneous edges of π.
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Note that if π ∈ Mn1,...,nk is the concatenation of π1, . . . , πk, then each statistic in (3.1)
satisfies the relation stat(π) = ∑k

i=1 stat(πi). Thus the product Ln1 · · · Lnk is written as

Ln1 · · · Lnk = ∑
π∈Mn1,...,nk

(−1)e(π)ybwex(π)qbwt(π)+cr(π)xN−e(π). (3.2)

Applying L to (3.2), we have

L (Ln1 · · · Lnk) = ∑
π∈Mn1,...,nk

(−1)e(π)ybwex(π)qbwt(π)+cr(π)L
(

xN−e(π)
)

.

Here we recall the formula of the nth moment in (2.3):

µn(q, y) = L(xn) = ∑
π∈PMn

ywex(π)qwt(π)−cr(π).

Note that N− e(π), the power of x in (3.2), represents the number of unmatched vertices
in the upper (or lower) row, or equivalently, the number of edges we need to add to
make it a perfect matching. Thus, applying the functional L to xN−e(π) is interpreted as
summing up all possible ways to complete π into a perfect matching, by adding edges
on the unmatched vertices, allowing inhomogeneous edges.

x3y3q2

L

(y3q0)y3q2

+

(y2q0)y3q2

+

...
...

...

+

(y2q0)y3q2

Figure 3: An example of applying L to a term x3y3q2 in the product L2L3L2. There are
3!=6 terms in L(x3) corresponding to all possible completions of the original match-
ing.

Example 3.1. Figure 3 describes an example of the application of L. The matching on the
left side represents a term x3y3q2 in L2L3L2, which is the product of three terms −xyq,
xyq and −xy in L2, L3 and L2, respectively. Applying L gives an equation(

∑
π∈PM3

ywex(π)qwt(π)−cr(π)

)
y3q2,
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where each summand corresponds to a way to add edges to remaining vertices, repre-
sented in dashed lines.

In order to describe the expansion of L(Ln1 · · · Lnk), we introduce a perfect matching
model containing the information of which edges are newly added by applying L. Let
PM∗n1,...,nk

be the set of pairs m = (π, S) such that

• π ∈ MN is a perfect matching of degree N = ∑k
i=1 ni,

• S is a subset of edges in π, which contains all inhomogeneous edges of π, i.e.,
E(π) \ EH(π) ⊆ S.

We call an element m = (π, S) of PM∗n1,...,nk
a marked perfect matching. An edge e of π is

said to be marked if e ∈ S. In other words, S is the set of marked edges. With marks
on edges, we can distinguish new edges added by applying L from the original edges
from Ln1 · · · Lnk . The condition E(π) \ EH(π) ⊆ S is needed since inhomogeneous edges
cannot be presented in the original matching coming from Ln1 · · · Lnk .

Now we give a bijective correspondence between the terms in the expansion of
L(Ln1 · · · Lnk) and PM∗n1,...,nk

. To do this, we extend our former definitions of statistics on
Mn and PMn to marked perfect matchings. In detail, we consider the decomposition of
m into unmarked and marked portions. For m = (π, S) ∈ PM∗n1,...,nk

, define π \ S and
π|S as follows:

• π \ S (unmarked portion of m) is the matching in Mn1,...,nk with n1 + · · · + nk − |S|
edges obtained from π by deleting the |S| marked edges but leaving their incident
vertices not deleted.

• π|S (marked portion of m) is the perfect matching in PM|S| obtained from π by
deleting all unmarked edges and their adjacent vertices.

Definition 3.2. For m = (π, S) ∈ PM∗n1,...,nk
, define statistics e(m), bwex(m), cr(m) and

wt(m) as follows:

e(m) = e(π \ S), bwex(m) = bwex(π \ S) + wex(π|S),
cr(m) = cr(π \ S)− cr(π|S), wt(m) = bwt(π \ S) + wt(π|S).

Example 3.3. Figure 4 shows a marked perfect matching m in PM∗2,3,2 and block indices
of its vertices. The block difference of each edge is indicated above its upper endpoint.
The statistics bwex(m) = 5 and wt(m) = 2 can be computed directly by the notion of
block difference in m, or summing the statistics defined on each π \ S and π|S. For the
other statistics of m, we have e(m) = 4 and cr(m) = 0.
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1 0 0 1 −1 0 −1
1 2 3

1 2 3

bwex(m) = 5 wt(m) = 2
cr(m) = 0

1 0 −1 0
1 2 3

1 2 3

bwex(π \ S) = 3 bwt(π \ S) = 1
cr(π \ S) = 1

0 1 −1

wex(π|S) = 2 wt(π|S) = 1
cr(π|S) = 1

m π \ S π|S

Figure 4: An example of a marked perfect matching m in PM∗2,3,2 and its unmarked
and marked portions.

Under this construction, the linearization coefficient C(n1, . . . , nk) is expressed in
terms of marked perfect matchings by

C(n1, . . . , nk) = ∑
m∈PM∗n1,...,nk

(−1)e(m)ybwex(m)qwt(m)+cr(m). (3.3)

There are many cancellations in this summation. Our goal is to cancel all negative terms
by finding a sign-reversing involution on PM∗n1,...,nk

.
Recall that D(n1, . . . , nk) ⊂ SN is the set of (n1, . . . , nk)-derangements. The set

D(n1, . . . , nk) can be naturally identified with the set of marked perfect matchings whose
edges are all inhomogeneous (necessarily marked). To be more precise, let σ ∈ D(n1,
. . . , nk). Then we will identify σ with the marked perfect matching m = (π, E(π)) ∈
PM∗n1,...,nk

, where π ∈ PMN is given by π(i) = σ(i) for all i ∈ [N]. Under this identifi-
cation one can easily check that wex(σ) = wex(π) = bwex(m) and cross(σ) = ov(π) =
wt(π)− cr(π) = wt(m) + cr(m). By abuse of notation from now on we will write

D(n1, . . . , nk) = {(π, S) ∈ PM∗n1,...,nk
: EH(π) = ∅}.

Using the above discussion we can rewrite Theorem 1.1 as follows.

Theorem 3.4. We have

C(n1, . . . , nk) = ∑
m∈D(n1,...,nk)

ybwex(m)qwt(m)+cr(m).

3.2 Construction of a sign-reversing involution

In order to prove Theorem 3.4, we give a sign-reversing involution Φ on PM∗n1,...,nk
that

preserves the statistics bwex and wt+cr. Indeed, Φ will be a map that marks or unmarks
a single homogeneous edge, or does not change anything. First we introduce some facts
and definitions that we need to describe the map Φ.
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For m = (π, S) ∈ PM∗n1,...,nk
, let us observe a change in the block difference of an edge

ej while marking or unmarking a homogeneous edge ei. If we mark ei that was unmarked
before, the upper (respectively, lower) index bindexU

m(j) (respectively, bindexL
m(π(j)))

increases by 1 if and only if j > i (respectively, π(j) > π(i)). Therefore the block
difference bdiffm(ej) = bindexL

m(π(j))− bindexU
m(j) changes if and only if ej crosses ei.

More precisely, if m = (π, S) with ei 6∈ S turns into m′ = (π, S ∪ {ei}), then we have

bdiffm′(ej) =


bdiffm(ej) if ej = ei, or ej and ei do not cross each other,
bdiffm(ej) + 1 if j < i and π(j) > π(i),
bdiffm(ej)− 1 if j > i and π(j) < π(i).

(3.4)

Conversely, if we unmark a marked edge ei ∈ EH(π) so that m = (π, S) turns into
m′ = (π, S \ {ei}), then we have

bdiffm′(ej) =


bdiffm(ej) if ej = ei, or ej and ei do not cross each other,
bdiffm(ej)− 1 if j < i and π(j) > π(i),
bdiffm(ej) + 1 if j > i and π(j) < π(i).

(3.5)

From now on, let us adopt an expression ej crosses ei from the left, or equivalently ei crosses
ej from the right for the relation j < i and π(j) > π(i). With this observation, we define
the convertibility of a homogeneous edge, which is a key ingredient of the map Φ.

Definition 3.5. Let m = (π, S) ∈ PM∗n1,...,nk
. An edge e ∈ EH(π) is said to be convertible

(in m) if it satisfies the following conditions.

For every edge e′ that crosses e, either

• e′ crosses e from the left and bdiffm(e′) ≥ 0, or

• e′ crosses e from the right and bdiffm(e′) ≤ −1,

where the inequalities are strict if e is marked, i.e. e ∈ S

Note that if an edge e ∈ EH(π) is convertible, then the status of other edges being
block weak excedances does not change under the map m = (π, S) 7→ m′ = (π, S4{e}),
where X4Y denotes the symmetric difference (X ∪ Y) \ (X ∩ Y). In particular, marking
or unmarking a convertible edge preserves the statistic bwex. Note also that an edge e is
convertible in m = (π, S) if and only if it is convertible in m′ = (π, S4{e}).
Remark 3.6. Suppose that e′ = (i, π(i)) is an inhomogeneous edge of m = (π, S) ∈
Mn1,...,nk . Then n1 + · · ·+ nr−1 + 1 ≤ i ≤ n1 + · · ·+ nr and n1 + · · ·+ ns−1 + 1 ≤ π(i) ≤
n1 + · · · + ns for some r 6= s. It is easy to check that the block difference bdiffm(e′)
is nonzero, and its sign is determined by r and s. Thus, marking or unmarking a ho-
mogeneous edge e ∈ EH(m) does not change the status of whether e′ is a block weak
excedance or not. Therefore, when we are concerned with the change of the statistic
bwex, it is sufficient to consider the changes of block differences of homogeneous edges
when we toggle e.
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We are now ready to define the involution Φ.

Definition 3.7. (The involution Φ) For m = (π, S) ∈ PM∗n1,...,nk
, we define Φ(m) as fol-

lows.

Case 0 If m has no homogeneous edges, then define Φ(m) = m. In other words, Φ is
the identity map on D(n1, . . . , nk).

Case 1 Suppose m has homogeneous edges and bdiffm(e) ≥ 0 for all e ∈ EH(π). De-
fine Φ(m) = (π, S4{ei}), where i is the integer satisfying π(i) = min{π(j) : ej ∈
EH(π)}. In other words, we mark or unmark the homogeneous edge whose lower
endpoint is the leftmost one among the homogeneous edges.

Case 2 Suppose m has homogeneous edges and bdiffm(e) < 0 for some e ∈ EH(π).
Let i = min

{
j : ej ∈ EH(π), bdiffm(ej) < 0

}
. Depending on the convertibility of the

edge ei, we consider two subcases.

Subcase 2-(a) If ei is convertible, then define Φ(m) = (π, S4{ei}).
Subcase 2-(b) If ei is not convertible, then define Φ(m) = (π, S4{ei′}), where

i′ = max
{

j < i : ej ∈ EH(π), bdiffm(ej) = 0, ej crosses ei

}
.

Example 3.8. The applications of the map Φ in Cases 1, 2-(a) and 2-(b) are illustrated
in Figure 5. Marked edges are represented in dashed lines, and inhomogeneous edges
are colored in gray. The block differences of homogeneous edges are indicated by the
numbers above their upper endpoints. The edge chosen by Φ is the thick (dashed) edge.

1 2 3

1 2 3

1 0 0

Φ

1 2 3 4

1 2 3 4

2 0 0

1 2 3 4

1 2 3 4

0 0 1 2 −1

Φ

1 2 3

1 2 3

0 0 0 1 −1

1 2 3 4 5

1 2 3 4

1 1 0 −1 −1

Φ

1 2 3 4 5 6

1 2 3 4 5

1 2 0 −2 −1

Figure 5

Note that except for Case 0, Φ toggles only one edge’s marking status. Hence Φ is
sign-reversing. Moreover, it turns out that the map Φ satisfies the followings:

• Φ is well-defined, i.e.,
{

j < i : ej ∈ EH(π), bdiffm(ej) = 0, ej crosses ei
}
6= ∅.

• Φ is an involution, i.e., Φ2 = Id.



12 Byung-Hak Hwang, Jang Soo Kim, Jaeseong Oh, and Sang-Hoon Yu

• Φ preserves the block weak excedances, and the sum of the weight and the number
of crossings, i.e.,

bwex(m) = bwex(Φ(m)), wt(m) + cr(m) = wt(Φ(m)) + cr(Φ(m)).

In other words, Φ is a sign-reversing and weight-preserving involution on PM∗n1,...,nk
with

fixed point set D(n1, . . . , nk).

Proof of Theorem 3.4. Recall from (3.3) that we have

C(n1, . . . , nk) = ∑
m∈PM∗n1,...,nk

(−1)e(m)ybwex(m)qwt(m)+cr(m).

Applying the involution Φ on PM∗n1,...,nk
, the terms corresponding to the matchings m /∈

D(n1, . . . , nk) are cancelled out and we have

C(n1, . . . , nk) = ∑
m∈D(n1,...,nk)

(−1)e(m)ybwex(m)qwt(m)+cr(m).

If m = (π, S) ∈ D(n1, . . . , nk), then S = E(π) and therefore e(m) = 0. Thus we obtain
the desired formula.
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