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Abstract. We consider a random walk on the complete monomial group Gn o Sn gener-
ated by the elements of the forms (e, . . . , e, g; id) and (e, . . . , e, g−1, e, . . . , e, g; (i, n)) for
g ∈ Gn, 1 ≤ i < n. We call this the warp-transpose top with random shuffle on Gn o Sn.
We find the spectrum of the transition probability matrix for this shuffle. We prove
that the mixing time for this shuffle is of order n log n + 1

2 n log(|Gn| − 1) and under
some condition on |Gn|, this shuffle exhibits the cutoff phenomenon.
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1 Introduction

Random walks on finite groups are well-studied topic in probability theory. Under cer-
tain natural conditions, a random walk converges to a unique stationary distribution.
Random walks on finite groups can be used in various situations to approximate, un-
derstand and sample from their stationary distribution. For more details about random
walks on finite groups, see [10, 1, 2]. The topic of interest in this case is the mixing
time i.e., the number of steps required to reach near the stationary distribution upto
a given tolerance. To study the convergence of random walks, it is helpful to know
the eigenvalues and eigenvectors of the transition matrix. In the eighties, the theory of
random walks on finite groups obtained its own independence, its own problems and
techniques. In an seminal work of Diaconis and Shahshahani [4], they introduced the use
of non-commutative Fourier analytic techniques. Before describing the random walk we
are going to consider, let us first recall the definition of the complete monomial group.

Let {Gn}n be a sequence of finite groups (Assume |Gn| > 1 for all n) and Sn be the
symmetric group. The complete monomial group is the wreath product of Gn with Sn,
is a group denoted by Gn = Gn o Sn and can be described as follows: The elements of
Gn are (n + 1)-tuples (g1, g2, . . . , gn; π) where gi ∈ Gn and π ∈ Sn. The multiplication
in Gn is given by (g1, . . . , gn; π)(h1, . . . , hn; η) = (g1hπ−1(1), . . . , gnhπ−1(n); πη). Therefore
(g1, . . . , gn; π)−1 = (g−1

π(1), . . . , g−1
π(n); π−1). Let e be the identity of Gn and id be the
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identity of Sn. For an element π ∈ Sn, let π := (e, . . . , e; π) ∈ Gn and for g ∈ Gn, let
g(i) := (e, . . . , e, g, e, . . . , e; id) ∈ Gn (g is in ith position). Let (e, . . . , e, g−1, e, . . . , e, g; (i, n))
be the element of Gn with g−1 in ith position and g in nth position, for g ∈ Gn, 1 ≤ i < n.
One can check that (g−1)(i)g(n)(i, n) is equal to (e, . . . , e, g−1, e, . . . , e, g; (i, n)) for g ∈
Gn, 1 ≤ i < n.

In this work we consider a random walk on the complete monomial group Gn driven
by a probability measure P, defined as follows:

P(x) =


1

n|Gn| if x = (e, . . . , e, g; id) for g ∈ Gn,
1

n|Gn| if x = (e, . . . , e, g−1, e, . . . , e, g; (i, n)) for g ∈ Gn, 1 ≤ i < n,

0 otherwise.

(1.1)

We call this the warp-transpose top with random shuffle because at most times the nth com-
ponent is multiplied by g and the ith component is multiplied by g−1 simultaneously,
g ∈ Gn, 1 ≤ i < n. We now state the main theorem of this paper.

Theorem 1.1. The mixing time for the warp-transpose top with random shuffle on Gn is of order
n log n + 1

2 n log(|Gn| − 1). Moreover if |Gn| = o(nδ) for all δ > 0, then this shuffle satisfies
the cutoff phenomenon.

1.1 Preliminaries

Given a finite group G, the group algebra C[G] be the set of all formal linear combina-
tions of the elements of G with complex coefficients. C[G] can be thought of as a vector
space over C with basis G. If we denote V = C[G] then the right regular representation
R : G −→ GL(V) is defined by g 7→ (∑h∈G Chh 7→ ∑h∈G Chhg) , where Ch ∈ C i.e., R(g)
is an invertible matrix over C of order |G| × |G|. We will assume basic definitions and
terminologies of finite group representations. We use some results from representation
theory of finite groups without recalling the proof. For details about finite group repre-
sentation see [8, 9, 11].

Let p and q be two probability measures on a finite group G. We define the convolu-
tion p ∗ q of p and q by (p ∗ q)(x) := ∑y∈G p(xy−1)q(y). The Fourier transform p̂ of p at
the right regular representation R is defined by the matrix ∑x∈G p(x)R(x). The matrix
p̂(R) can be thought of as the action of the group algebra element ∑g∈G p(g)g on C[G]

from the right. It can be easily seen that (̂p ∗ q)(R) = p̂(R)q̂(R).
A random walk on a finite group G driven by a probability measure p is a Markov chain

with state space G and transition probabilities Mp(x, y) = p(x−1y), x, y ∈ G. It can be
easily seen that the transition matrix Mp is the transpose of p̂(R) and the distribution
after kth transition will be p∗k (convolution of p with itself k times) i.e., the probability
of getting into state y starting at state x after k transitions is p∗k(x−1y). A random walk
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is said to be irreducible if it is possible for the chain to reach any state starting from
any state using only transitions of positive probabilities. One can easily check that the
random walk on G driven by p is irreducible if and only if the support of p generates
G. A probability distribution Π is said to be a stationary distribution of a random walk
with transition matrix M if ΠM = Π. Any irreducible random walk possesses a unique
stationary distribution. The stationary distribution for an irreducible random walk on G
driven by p, is the uniform distribution UG on G. From now on, the uniform distribution
on G will be denoted by UG. Given a random walk (discrete time, finite state space) the
period of a state x is defined to be the greatest common divisor of the set of all times
when it is possible for the chain to return to the starting state x. The period of all the
states of an irreducible random walk are the same (see [6, Lemma 1.6]). An irreducible
random walk is said to be aperiodic if the common period for all its states is 1.

Let µ and ν be two probability measures on Ω. The total variation distance between µ

and ν is defined by
||µ− ν||TV := sup

A⊂Ω
|µ(A)− ν(A)|.

We note that ||µ − ν||TV = 1
2 ∑x∈Ω |µ(x) − ν(x)| (see [6, Proposition 4.2]). If the irre-

ducible random walk on a finite group G driven by a probability measure p (defined on
G) is aperiodic, then the distribution after kth transition converges to UG in total variation
distance as k→ ∞.

Definition 1.2. Let {Gn}∞
0 be a sequence of finite groups and pn be a probability measure

on Gn for each n. Consider the sequence of irreducible and aperiodic random walks on
Gn driven by pn. We say that the total variation cutoff phenomenon holds for the family
{(Gn, pn)}∞

0 if there exists a sequence {τn}∞
0 of positive real numbers tending to infinity

such that the following hold:

1. For any ε ∈ (0, 1) and kn = b(1 + ε)τnc, lim
n→∞
||p∗kn

n −UGn ||TV = 0 and

2. For any ε ∈ (0, 1) and kn = b(1− ε)τnc, lim
n→∞
||p∗kn

n −UGn ||TV = 1.

Here bxc denotes the floor of x (the largest integer less than or equal to x). See [3] for
more details on cutoff phenomenon.

Proposition 1.3. The warp-transpose top with random shuffle on Gn is irreducible and aperiodic.

Proof. The support of P is Γ = {(g−1)(i)g(n)(i, n), g(n) | g ∈ Gn, 1 ≤ i < n} and it can
be easily seen that {g(k), (i, n) | g ∈ Gn, 1 ≤ k ≤ n, 1 ≤ i < n} is a generating set of
Gn. Thus (1.2) implies Γ generates Gn and hence the warp-transpose top with random
shuffle on Gn is irreducible.

(g−1)(n)
(
(g−1)(i)g(n)(i, n)

)
g(n) = (i, n) for each 1 ≤ i < n and g ∈ Gn,

(k, n)g(n)(k, n) = g(k) for each 1 ≤ k ≤ n and for all g ∈ Gn.
(1.2)
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Moreover given any π ∈ Gn, the set of all times when it is possible for the chain to
return to the starting state π contains the integer 1 (as support of P contains the identity
element of Gn). Therefore the period of the state π is 1 and hence from irreducibility all
the states of this chain have period 1. Thus this chain is aperiodic.

Proposition 1.3 says that the warp-transpose top with random shuffle on Gn converges
to the uniform distribution UGn as the number of transitions goes to infinity. In Section 2
we will find the spectrum of P̂(R). We will prove the theorem which gives an upper
bound of ||P∗k −UGn ||TV in Section 3. In Section 4, lower bound of ||P∗k −UGn ||TV will
be discussed and Theorem 1.1 will be proved. Throughout this article [n] denotes the set
{1, . . . , n} for any positive integer n.

2 Spectrum of the transition matrix

In this section we find the eigenvalues of the transition matrix P̂(R), the Fourier trans-
form of P at the right regular representation R of Gn. To find the eigenvalues of P̂(R) we
will use the representation theory of the wreath product Gn of a finite group Gn with the
symmetric group Sn. First we briefly discuss the representation theory of Gn, following
the notation from [7].

Definition 2.1. Let Y denote the set of all Young diagrams (there is a unique Young
diagram with zero boxes) and Yn denote the set of all Young diagrams with n-boxes.
For a finite set X, we define Y(X) = {µ : µ is a map from X to Y}. For µ ∈ Y(X), define
||µ|| = ∑x∈X |µ(x)|, where |µ(x)| is the number of boxes of the Young diagram µ(x) and
define Yn(X) = {µ ∈ Y(X) : ||µ|| = n}.

Let Ĝn denote the (finite) set of equivalence classes of finite dimensional complex
irreducible representations of Gn. Given σ ∈ Ĝn, we denote by Wσ the correspond-
ing irreducible Gn-module. Here by irreducible Gn-module we mean the space for the
corresponding irreducible representation of Gn. Elements of Y(Ĝn) are called Young
Gn-diagrams and elements of Yn(Ĝn) are called Young Gn-diagrams with n boxes. Given
µ ∈ Y(Ĝn) and σ ∈ Ĝn, we denote by µ ↓σ the set of all Young Gn-diagrams obtained
from µ by removing one of the inner corners in the Young diagram µ(σ). Let µ ∈ Y . A
Young tableau of shape µ is obtained by taking the Young diagram µ and filling its |µ|
boxes (bijectively) with the numbers 1, 2, . . . , |µ|. A Young tableau is said to be standard
if the numbers in the boxes strictly increase along each row and each column of the
Young diagram of µ. The set of all standard Young tableaux of shape µ is denoted by
tab(µ). Let µ ∈ Y(Ĝn). A Young Gn-tableau of shape µ is obtained by taking the Young
Gn-diagram µ and filling its ||µ|| boxes (bijectively) with the numbers 1, 2, . . . , ||µ||. A
Young Gn-tableau is said to be standard if the numbers in the boxes strictly increase
along each row and each column of all Young diagrams occurring in µ. Let tabGn(n, µ),
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where µ ∈ Yn(Ĝn), denote the set of all standard Young Gn-tableaux of shape µ and let
tabGn(n) = ∪µ∈Yn(Ĝn)

tabGn(n, µ). Let T ∈ tabGn(n) and i ∈ [n]. If i appear in the Young

diagram µ(σ), where µ is the shape of T and σ ∈ Ĝn, we write rT(i) = σ. The content
of a box in row p and column q of a Young diagram is the integer q− p. Let bT(i) be
the box in µ(σ), with the number i resides. Also c(bT(i)) denotes the content of the box
bT(i). The (generalized) Young–Jucys–Murphy elements X1, X2, . . . , Xn of C[Gn] are given
by X1 = 0 and

Xi =
i−1

∑
k=1

∑
g∈Gn

(g−1)(k)g(i)(k, i) =
i−1

∑
k=1

∑
g∈Gn

(g−1)(k)(k, i)g(k), for all 2 ≤ i ≤ n.

We now define Gelfand–Tsetlin subspaces and the Gelfand–Tsetlin decomposition.

Definition 2.2. Let λ ∈ Ĝn and consider the irreducible Gn-module (the space for the
representation of Gn) Vλ. Since the branching is simple [7, Section 3], the decomposition
into irreducible Gn−1-modules is given by

Vλ = ⊕
µ

Vµ,

where the sum is over all µ ∈ Ĝn−1, with µ ↗ λ (i.e there is an edge from µ to λ in the
branching multi-graph), is canonical. Iterating this decomposition of Vλ into irreducible
G1-submodules, i.e.,

Vλ = ⊕
T

VT, (2.1)

where the sum is over all possible chains T = λ1 ↗ λ2 ↗ · · · ↗ λn with λi ∈ Ĝi and
λn = λ. We call (2.1) the Gelfand–Tsetlin decomposition of Vλ and each VT in (2.1) a
Gelfand–Tsetlin subspace of Vλ. We note that if 0 6= vT ∈ VT, then C[Gi]vT = Vλi from
the definition of VT. Unlike Gi = Gi o Si, here Gi denotes the subgroup of Gn given as
follows

Gi = {(g1, . . . , gn, π) ∈ Gn : π(j) = j for i + 1 ≤ j ≤ n}, 1 ≤ i ≤ n.

The Young–Jucys–Murphy elements act by scalars on the Gelfand–Tsetlin subspaces.

From Lemma 6.2 and Theorem 6.4 of [7], we may parametrize the irreducible repre-
sentations of Gn by elements of Yn(Ĝn).

Theorem 2.3 ([7, Theorem 6.5]). Let µ ∈ Yn(Ĝn). Then we may index the Gelfand–Tsetlin
subspaces of Vµ by standard Young Gn-tableaux of shape µ and write the Gelfand–Tsetlin decom-
position as

Vµ = ⊕
T∈tabGn (n,µ)

VT,
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where each VT is closed under the action of Gn
n and as a Gn

n-module, is isomorphic to the irreducible
Gn

n-module
WrT(1) ⊗WrT(2) ⊗ · · · ⊗WrT(n).

For i = 1, . . . , n; the eigenvalues of Xi on VT are given by |Gn|
dim(WrT(i))

c(bT(i)).

Theorem 2.4 ([7, Theorem 6.7]). Let µ ∈ Yn(Ĝn). Write the elements of Ĝn as {σ1, . . . , σt}
and set µ(i) = µ(σi), mi = |µ(i)|, di = dim(Wσi) for each 1 ≤ i ≤ t. Then

dim(Vµ) =

(
n

m1, . . . , mt

)
f µ(1) · · · f µ(t)

dm1
1 · · · d

mt
t .

Here f µ(i)
denotes the number of standard Young tableau of shape µ(i), for each 1 ≤ i ≤ t.

Without loss of generality, from now on we will assume σ1 = 1 (the trivial rep-
resentation of Gn) and µ

(
∈ Yn(Ĝn)

)
as the tuple (µ(1), . . . , µ(t)). We note that for

T ∈ tabGn(n, µ) the dimension of VT is dm1
1 · · · d

mt
t , notations follow the same meaning as

of Theorem 2.4.

Lemma 2.5. Let G be a finite group and σ ∈ Ĝ. If Wσ (respectively χσ) denotes the irreducible
G-module (respectively character) and dρ is the dimension of Wσ, then the action of the group
algebra element ∑g∈G g on Wσ is given by the following scalar matrix

∑
g∈G

g =
|G|
dσ
〈χσ, χ1〉Idσ

.

Here Idσ
is the identity matrix of order dσ × dσ.

Proof. It is clear that ∑g∈G g is in the centre of C[G]. Therefore by Schur’s lemma ([11,
Proposition 4]), we have ∑g∈G g = cIdσ

for some c ∈ C. The value of c can be obtained
by equating the traces of ∑g∈G g and cIdσ

.

Theorem 2.6. For each µ = (µ(1), . . . , µ(t)) ∈ Yn(Ĝn), let P̂(R)
∣∣
Vµ denotes the restriction of

P̂(R) to the irreducible Gn-module Vµ. Then the eigenvalues of P̂(R)
∣∣
Vµ are given by,

1
n dim(WrT(n))

(
c(bT(n)) + 〈χrT(n), χ1〉

)
, with multiplicity dim(VT) = dm1

1 · · · d
mt
t

for each T ∈ tabGn(n, µ).

Proof. We first find the eigenvalues of Xn + ∑g∈Gn(e, . . . , e, g; id). Let Idim(VT) denote the
identity matrix of order dim(VT)× dim(VT). Then from Theorem 2.3 we have

Vµ = ⊕
T∈tabGn (n,µ)

VT and Xn
∣∣
VT

=
|Gn|

dim(WrT(n))
c(bT(n))Idim(VT). (2.2)
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Again from Theorem 2.3 and Lemma 2.5 we have

∑
g∈Gn

(e, . . . , e, g; id)
∣∣
VT

=
|Gn|

dim(WrT(n))
〈χrT(n), χ1〉Idim(VT). (2.3)

Also P̂(R) =
1

n|Gn| ∑
g∈Gn

(
R ((e, . . . , e, g; id)) +

n−1

∑
i=1

R
(
(e, . . . , e, g−1, e, . . . , e, g; (i, n))

))
.

Therefore n|Gn|P̂(R) is nothing but the action of Xn + ∑g∈Gn(e, . . . , e, g; id) on C[Gn]

from right. Since dim(VT) = dm1
1 · · · d

mt
t , the theorem follows from (2.2) and (2.3).

Remark 2.7. In the regular representation of a finite group, each irreducible representa-
tion occurs with multiplicity equal to its dimension [11, Section 2.4]. Therefore, Theo-
rems 2.4 and 2.6 provide the eigenvalues of P̂(R).

3 Upper bound for total variation distance

In this section, we will prove the theorem giving an upper bound of the total variation
distance ||P∗k −UGn ||TV using the upper bound lemma [1, Lemma 4.2]. Before proving
the main result of this section, first we prove some lemmas which will be useful. For any
positive integer `, we write λ ` ` to denote λ is a partition of `.

Lemma 3.1. Let ` be a positive integer and s be any non-negative real number. For λ ` `, if λ1
denotes the largest part of λ, then

∑
λ``

( f λ)2
(

λ1 − s
`

)2k
< e−

2ks
` e`

2e−
2k
` .

Proof. For any partition ζ of ` − λ1 with largest part ζ1 ≤ λ1, we have f λ ≤ ( `
λ1
) f ζ .

Therefore ∑λ``( f λ)2
(

λ1−s
`

)2k
is less than or equal to

`

∑
λ1=1

∑
ζ`(`−λ1)

ζ1≤λ1

(
`

λ1

)2

( f ζ)2
(

λ1 − s
`

)2k
≤

`

∑
λ1=1

(
`

λ1

)2(λ1 − s
`

)2k

∑
ζ`(`−λ1)

( f ζ)2

=
`−1

∑
u=0

(
`

u

)2 (
1− u + s

`

)2k
u!. (3.1)

Equality in (3.1) is obtained by writing u = `− λ1. Using 1− x ≤ e−x for all x ≥ 0 and
(`u) ≤

`u

u! , the expression in the right hand side of (3.1) is less than or equal to

`−1

∑
u=0

`2u

u!
e−

2k
` (u+s) < e−

2ks
`

∞

∑
u=0

1
u!

(
`2e−

2k
`

)u
= e−

2ks
` e`

2e−
2k
` .
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Corollary 3.2. Following the notations of Lemma 3.1, we have

∑
λ``

λ 6=(`)

( f λ)2
(

λ1 − s
`

)2k
< e−

2ks
` e`

2e−
2k
` −

(
`− s
`

)2k
.

Lemma 3.3. Following the notations from Theorems 2.3 and 2.4 we have

∑
T∈tabGn (n,µ)

(
c(bT(n)) + 〈χrT(n), χ1〉

n dim(WrT(n))

)2k

<

(
n

m1, . . . , mt

)
f µ(1) · · · f µ(t)

t

∑
j=1

(
µ
(j)
1 − 1 + 〈χσj , χ1〉

ndj

)2k

.

Here µ
(i)
1 denotes the largest part of the partition µ(i) for each 1 ≤ i ≤ t.

Proof. The set tabGn(n, µ) is a disjoint union of the sets T1, . . . , Tt, where

Ti = {(T1, . . . , Tt) ∈ tabGn(n, µ) | bT(n) is in Ti}

for each 1 ≤ i ≤ t. Therefore

∑
T∈tabGn (n,µ)

(
c(bT(n)) + 〈χrT(n), χ1〉

n dim(WrT(n))

)2k

=
t

∑
i=1

∑
T∈Ti

(
c(bT(n)) + 〈χσi , χ1〉

ndi

)2k

=
t

∑
i=1

(
1
di

)2k ( n− 1
m1, . . . , mi − 1, . . . , mt

)
f µ(1) · · · f µ(t)

f µ(i) ∑
Ti∈tab(µ(i))

(
c(bT(mi)) + 〈χσi , χ1〉

n

)2k

<
t

∑
i=1

(
1
di

)2k ( n
m1, . . . , mt

)
f µ(1) · · · f µ(t)

f µ(i) ∑
Ti∈tab(µ(i))

(
µ
(i)
1 − 1 + 〈χσi , χ1〉

n

)2k

. (3.2)

The result follows from ∑
Ti∈tab(µ(i))

(
µ
(i)
1 − 1 + 〈χσi , χ1〉

n

)2k

= f µ(i)

(
µ
(i)
1 − 1 + 〈χσi , χ1〉

n

)2k

and (3.2).

Proposition 3.4. For the warp-transpose top with random shuffle on Gn driven by P, we have

4 ||P∗k −UGn ||
2
TV <

(
en2e−

2k
n − 1

)
+ e

(
en2(|Gn|−1)e−

2k
n − 1

)
+(t− 1)

(
e−

2k
n en2e−

2k
n +

e
n2

(
en2(|Gn|−1)e−

2k
n − 1

))
,

for all k ≥ n log n.
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Proof. Using the upper bound lemma [1, Lemma 4.2], we have

4 ||P∗k −UGn ||
2
TV ≤ ∑

µ∈Yn(Ĝn): µ(1) 6=(n)

dim(Vµ) trace
((

P̂(R)
∣∣
Vµ

)2k
)

. (3.3)

Here we recall that Ĝn = {σ1, . . . , σt} and σ1 = 1, the trivial representation of Gn. Given
µ ∈ Yn(Ĝn), throughout this proof we write µ = (µ(1), . . . , µ(t)), where µ(i) ` mi and
∑t

i=1 mi = n. First we partition the set Yn(Ĝn) into two disjoint subsets A1,A2 as follows:

A1 = ∪
1≤i≤t

Bi, where Bi = {µ ∈ Yn(Ĝn) | mi = n, mk = 0 for all k ∈ [t] \ {i}}

A2 = {µ ∈ Yn(Ĝn) |
t

∑
k=1

mk = n, 0 ≤ mk ≤ n− 1}.

It can be easily seen that Bi’s are disjoint. Therefore by using Theorem 2.6 and Re-
mark 2.7, the inequality (3.3) become

4 ||P∗k−UGn ||
2
TV ≤ ∑

µ∈B1
µ(1) 6=(n)

dim(Vµ) ∑
T∈tabGn (n,µ)

(
c(bT(n)) + 1

nd1

)2k

dn
1

+
t

∑
i=2

∑
µ∈Bi

dim(Vµ) ∑
T∈tabGn (n,µ)

(
c(bT(n))

ndi

)2k

dn
i (3.4)

+ ∑
µ∈A2

dim(Vµ) ∑
T∈tabGn (n,µ)

(
c(bT(n)) + 〈χrT(n), χ1〉

n dim(WrT(n))

)2k

dm1
1 · · · d

mt
t .

Given a partition ξ of any positive integer, now on the largest part of ξ will be denoted
by ξ1. The first two terms in the right hand side of inequality (3.4) is equal to

∑
λ`n

λ1 6=n

f λdn
1 ∑

T∈tab(λ)

(
c(bT(n)) + 1

nd1

)2k

dn
1 +

t

∑
i=2

∑
λ`n

f λdn
i ∑

T∈tab(λ)

(
c(bT(n))

ndi

)2k

dn
i

≤ 1
d2k−2n

1
∑
λ`n

λ1 6=n

f λ ∑
T∈tab(λ)

(
λ1

n

)2k
+

t

∑
i=2

1
d2k−2n

i
∑
λ`n

f λ ∑
T∈tab(λ)

(
λ1 − 1

n

)2k

≤ ∑
λ`n

λ1 6=n

( f λ)2
(

λ1

n

)2k
+

t

∑
i=2

∑
λ`n

( f λ)2
(

λ1 − 1
n

)2k

<

(
en2e−

2k
n − 1

)
+ (t− 1)e−

2k
n en2e−

2k
n . (3.5)
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The inequality in (3.5) follows from Lemma 3.1 and Corollary 3.2. Using Lemma 3.3, the
third term in the right hand side of (3.4) is less than

∑
µ∈A2

(
n

m1, . . . , mt

)2

( f µ(1)
)2 · · · ( f µ(t)

)2d2m1
1 . . . d2mt

t

t

∑
j=1

(
µ
(j)
1 − 1 + 〈χσi , χ1〉

ndj

)2k

. (3.6)

We now deal with (3.6) by considering two separate cases namely j = 1 and 1 < j ≤ t.
The partial sum corresponding to j = 1 in (3.6) equal to

n−1

∑
m1=0

∑
(m2,...,mt)

∑ mk=n−m1

0≤mk≤n−1

∑
µ(i)`mi
1≤i≤t

(
n

m1

)2( n−m1

m2, . . . , mt

)2

( f µ(1)
)2 · · · ( f µ(t)

)2d2m1
1 . . . d2mt

t

(
µ
(1)
1

nd1

)2k

<
n−1

∑
m1=0

∑
(m2,...,mt)

∑ mk=n−m1
mk≥0

∑
µ(i)`mi
1≤i≤t

(
n

m1

)2( n−m1

m2, . . . , mt

)2

( f µ(1)
)2 · · · ( f µ(t)

)2d2m1
1 . . . d2mt

t

(
µ
(1)
1

nd1

)2k

=
n−1

∑
m1=0

(d2
2 + · · ·+ d2

t )
n−m1

(
n

m1

)2

(n−m1)!
(

1
d1

)2k−2m1 (m1

n

)2k
∑

µ(1)`m1

( f µ(1)
)2

(
µ
(1)
1

m1

)2k

<
n−1

∑
m1=0

(d2
2 + · · ·+ d2

t )
n−m1

(
n

m1

)2

(n−m1)!
(

1
d1

)2k−2m1 (m1

n

)2k
em2

1e
− 2k

m1 . (3.7)

The inequality in (3.7) follows from Lemma 3.1. As k ≥ n log n, we have k ≥ m1 log m1
and k ≥ n. Thus using 1− x ≤ e−x for all x ≥ 0 and writing n−m1 by u, the expression
in (3.7) is less than or equal to

e
n

∑
u=1

(
d2

2 + · · ·+ d2
t

d2
1

)u (
1
d1

)2k−2n (n
u

)2

u!
(

1− u
n

)2k

≤ e
n

∑
u=1

1
u!

(
n2

(
|Gn|
d2

1
− 1

)
e−

2k
n

)u

< e

e

(
n2
(
|Gn |
d2

1
−1
)

e−
2k
n

)
− 1

 . (3.8)

By carrying out similar process as of j = 1, the partial sum corresponding to 1 < j ≤ t
in (3.6) turns out to be

e
n2

e

(
n2

(
|Gn |
d2

j
−1

)
e−

2k
n

)
− 1

 . (3.9)

Using 1
dj
≤ 1 for all 1 ≤ j ≤ t, the proposition follows from (3.4), (3.5), (3.8) and (3.9).
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Theorem 3.5. Recall that, |Ĝn| denotes the number of irreducible representations of Gn. For the
random walk on Gn driven by P, we have the following:

1. Let |Ĝn| > e+ 1 and c > 1
2 . Then for k ≥ n log n+ 1

2 n log(|Gn| − 1) + cn log(|Ĝn| − 1),
we have

||P∗k −UGn ||TV <

√
e + 1

2
e−c + o(1).

For |Ĝn| = 2, 3 take k ≥ n log n + 1
2 n log(|Gn| − 1) + cn.

2. For any ε ∈ (0, 1), if |Ĝn| = O(n2) then kn = b(1 + ε)
(

n log n + 1
2 n log(|Gn| − 1)

)
c

implies
lim

n→∞
||P∗kn −UGn ||TV = 0.

Proof. This follows from Proposition 3.4 and straightforward calculations.

4 Lower bound for total variation distance

In this section, our focus will be on a lower bound of the total variation distance ||P∗k −
UGn ||TV. We will give the outline without details. The details will appear in a later pub-
lication [5]. Also we prove Theorem 1.1 in this section. To start, we define an auxiliary
representation ρ of Gn and a random variable X on Gn.

Let V = C[Gn × [n]] be the complex vector space of all formal linear combinations of
elements of Gn × [n] and GL(V) be the set of all invertible linear maps from V to itself.
We now define the representation ρ : Gn −→ GL(V) on the basis elements of V by

ρ(g1, . . . , gn; π) ((h, i)) =
(

gπ(i)h, π(i)
)

.

The random variable X counts the number of fixed points of the action of ρ, i.e. X is the
character of ρ. Let Ek(X) be the expectation and Vk(X) the variance of X with respect to
the probability measure P∗k on Gn. EU(X) denotes the expectation of X with respect to
the uniform distribution on Gn. It can be seen that EU(X) = 1.

Theorem 4.1. If |Gn| = o(nδ) for every δ > 0, then lim
n→∞
||P∗kn − UGn ||TV = 1 for any

ε ∈ (0, 1) and kn = b(1− ε)
(

n log n + 1
2 n log(|Gn| − 1)

)
c.

Proof. Using Chebychev’s and Markov’s inequality first we obtain,

||P∗k −UGn ||TV ≥ 1− 4Vk(X)

(Ek(X))2 −
2

Ek(X)
. (4.1)

The theorem now follows by putting the values of Ek(X) and Vk(X) in (4.1).
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Proof of Theorem 1.1. The first part of Theorem 3.5 implies that the mixing time for this
shuffle is of order n log n + 1

2 n log(|Gn| − 1) and the second part of Theorem 3.5 and
Theorem 4.1 prove that the warp-transpose top with random shuffle on Gn satisfies the
cutoff phenomenon.
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