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Abstract. If one attaches shifted copies of a skew tableau to the right of itself and
rectifies, at a certain point the copies no longer experience vertical slides, a phenomenon
called tableau stabilization. While tableau stabilization was originally developed to
construct the sufficiently large rectangular tableaux fixed by given powers of promotion,
the purpose of this extended abstract is to improve the original bound on tableau
stabilization to the number of rows of the skew tableau. In order to prove this bound,
we encode increasing subsequences as lattice paths and show that various operations
on these lattice paths weakly increase the maximum combined length of the increasing
subsequences.
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1 Introduction

Tableau stabilization was introduced in [1] in order to construct sufficiently large rectan-
gular tableaux fixed by given powers of promotion. Rhoades first counted the number of
rectangular tableaux fixed by the powers of promotion by exhibiting a remarkable cyclic
sieving phenomenon [6] for the action of promotion on rectangular tableaux [7]. Alexan-
dersson, OÄ§uz, and Linusson have recently found similar results for certain families of
semistandard Young tableaux, like stretched hooks, disjoint rectangles, and special cases
of small ribbons [4]. Moreover, Alexandersson, Pfannerer, Rubey, and Uhlin showed that
whenever the fake degree polynomial f λ/µ(q) associated to a skew shape λ/µ evaluates to
a nonnegative integer at roots of unity, then there is a CSP triple (SSYT(λ/µ), Cn, f λ/µ(q))
for some cyclic action Cn on SSYT(λ/µ), not necessarily promotion [2].

But while many of these CSPs count fixed points of promotion, they say nothing about
what the actual fixed points are. Purbhoo first found all rectangular tableaux of shape (ab)
fixed by a promotions for b ≥ a [5]. More recently, Ahlbach exhibited all sufficiently large
rectangular tableaux fixed by a given power of promotion by applying the rectification
operator to skew tableaux formed by attaching shifted copies of a skew tableaux to itself
[1]. This naturally gives rise to the notion of tableaux stabilization.
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Definition 1.1. For any skew standard tableau T with weakly decreasing row sizes from
top to bottom, let T(k) denote the result of attaching (k− 1) shifted copies of T to the
right of T so that the result is a skew standard tableau. Let n denote the size of T and k
be a positive integer. Let Rect denote Schützenberger’s rectification operator [10]. We say
T stabilizes at k if each element of [(k− 1)n + 1, kn] lies in the same row in Rect(S(k)) as it
does in S(k). Let stab(S) denote the minimum value at which S stabilizes.

Remark 1.2. Having weakly decreasing row sizes from top to bottom is required for
T(k) to be a skew standard tableau for all k ≥ 1. If this is not the case, T(k) need not be
standard. Consider Figure 1, where T(2) is not a skew tableau both because of its shape

T = 2

1 3
=⇒ T(2) = 2 5

1 3 4 6
,

Figure 1: The number of boxes in each row has to be weakly decreasing from top to
bottom, or else T(k) need not be standard.

and the third column not being increasing.

Example 1.3. In Figure 2, 9 does not lie in the same row in T(3) and Rect(T(3)), but
15, 16, . . . , 21 do, so stab(T) = 3.

T = 4 5 6

3 7

1 2

,

T(3) = 4 5 6 11 12 13 18 19 20

3 7 10 14 17 21

1 2 8 9 15 16

,

Rect(T(3)) = 1 2 3 4 5 6 11 12 13 18 19 20

7 9 10 14 17 21

8 15 16

.

Figure 2: Example of a skew tableau T, the tableau T(3) constructed from T, and its
rectification.
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Ahlbach proved that once a tableaux stabilizes at a value, it continues to stabilize for
higher values, [1, Lemma 3.9]. In the special case where the rows of T have the same size,
he derived a formula for the shape of Rect(T(k)) for k ≥ r− 1, [1, Theorem 1.6], and used
it to show that any tableaux with r rows of the same size stabilizes at r, [1, Theorem 1.4].
He conjectured that the same bound still holds when the rows have weakly decreasing
sizes but was only able to prove a bound of max(1, 2r− 2). The main purpose of this
paper is to prove this conjecture.

Theorem 1.4. For any skew standard tableaux T with r rows and weakly decreasing row
sizes from top to bottom,

stab(T) ≤ r.

The proof of the same-size-rows case of Theorem 1.4 in [1] relied on a formula for the
shape of the stabilized tableau. Unfortunately, an analogous formula for the general case
would have to involve new terms not present in the previous shape formula, and we have
not found such a formula.

Yet, we generalize the lattice path argument in the proof of Lemma 4.2 in [1] to prove
Theorem 1.4. Our argument relies on Greene’s Theorem [3] characterizing the shape of
the insertion tableaux of words coming from the RSK-correspondence [9], in terms of
their increasing subsequences and a careful analysis of the increasing subsequences of
reading words of T(k) for skew standard tableaux T.

In section 2, we show that the family of increasing sequences can be encoded by a
family of lattice paths. In section 3, we go over various operations on a family of lattice
paths that weakly increase the maximum combined length of corresponding increasing
subsequences. In section 4, we prove the main result using the tools developed in the
previous sections.

2 Longest Increasing Subsequences

In this section we will go over Greene’s theorem and set up the language of the matrix
and lattice paths we will use. For a more detailed introduction and applications of longest
increasing sequences, we recommend the reader to [8]. Before we introduce the essential
tools, we will briefly explain why we need them.

2.1 Greene’s theorem

Definition 2.1. (Reading Word) The reading word of a tableau is the word obtained by
concatenating the rows from bottom to top. For a non-skew tableau T, let sh(T) denote
its shape.
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T = 1 4 6 8

3 5 9

2 7

=⇒ Rect(T) = 1 3 4 6 8

2 5 9

7

Figure 3: The reading word of T is 273591468. The tableau to the right is its rectification,
and sh(Rect(T)) = (5, 3, 1).

Theorem 2.2 (Greene’s Theorem, [3]). Let π be the reading word of a (skew) standard
Young tableau T and let `k(π) denote the maximum combined length of k disjoint
increasing subsequences of π. Then,

`k(π) = sh(Rect(T))1 + · · ·+ sh(Rect(T))k.

2.2 Lattice paths

Suppose T is a skew standard tableau with weakly decreasing row sizes from top to
bottom. Let n denote the size of T, and r the number of rows of T. For each positive
integer j, let T + (j− 1)n be obtained from T by shifting the entries up by (j− 1)n. We
define T(q) to be obtained by concatenating T, T + n, . . . , T + (q− 1)n together from left
to right. For each positive integer q, we create an r-by-q matrix M = M(q, T) from T:
each entry Mi,j is a word set as the (r− j + 1)-th row of T, with all entries shifted up by
(i− 1)n.

Remark 2.3. We will label coordinates Cartesian-style rather than matrix-style since that
is more natural for lattice paths.

Example 2.4. With T as in Figure 3, we have

M(3, T) =
1468 1468 1468
359 359 359
27 27 27

The orange and cyan colors indicate that the entries are shifted up by 9 and 18 respectively.
So 3 is actually 3 + 9 = 12 whereas 3 is actually 3 + 18 = 21. We have M1,1 = 27 and
M3,2 = 359.

Definition 2.5. For any sequences A, B, let A � B denote that A is a subsequence of B.
For a sequence A and a set I we use A |I to denote the restriction of A to I. For example,
if A = 7164532, then

A |{1,2,3,4}= 1432 � A.
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A lattice path within M is a sequence of entries of M that move adjacently right or up
at each step. Given a lattice path S, we use S|i,∗ to denote the subpath of S by restricting
ourselves to column i of M. Similarly we use S|∗,j to denote the subpath of S by restricting
ourselves to row j of M.

Definition 2.6. For possibly overlapping words A1, . . . , Ak, let

`(A1, . . . , Ak) = the maximum combined length of disjoint
increasing subsequences of A1, . . . , Ak respectively.

We say that a collection of disjoint increasing sequences S1 � A1, . . . , Sk � Ak exhibits
`(A1, . . . , Ak) if |S1|+ · · ·+ |Sk| = `(A1, . . . , Ak).

Lemma 2.7. Any increasing subsequence of the reading word of T(k) is a subsequence of
a lattice path within M.

Example 2.8. With T as in Figure 3, we have

Rect(T(3)) = 1 3 4 6 8 10 13 15 17 19 22 24 26

2 5 9 12 14 18 21 23 27

7 11 16 20 25

with shape λ = (13, 9, 5) and

M(3, T) =
1468 1468 1468
359 359 359
27 27 27

.

A longest increasing subsequence of M(3, T) is 2356814681468, which has size 13 and is
a subsequence of the lattice path in Figure 4. Note this agrees with Greene’s Theorem

Figure 4: The lattice path 27359146814681468 containing 2356814681468.

since λ1 = 13. Moreover, two disjoint increasing subsequences of M(3, T) with the
longest combined length are 146814681468 and 2359359359, have total size 22 and are
subsequences of the lattice paths in Figure 5. Again, this agrees with Greene’s Theorem
since λ1 + λ2 = 13 + 9 = 22.



6 Connor Ahlbach, Jacob David, Suho Oh, and Christopher Wu

Figure 5: The minimal lattice paths containing 146814681468 and 2359359359.

P

Q

Q

P

(a) Crossing paths.

P′

Q′

P′

Q′

(b) After switching.

Figure 6: The top-down switching process.

3 Lattice Path Tools

In this section, we will introduce some transformations on the family of lattice paths
so that the maximum combined length of increasing subsequences they contain weakly
increases.

The first tool, top-down switching, will allow us to modify the paths so that they
do not cross (intersections can happen, but they will be non-transversal), and thus can
be ordered in a top-down fashion. The second tool, left-shifting, will allow us to shift
portions of vertical segments of a path to the left as long as no new intersections appear.
The last two tools, rectangular and reverse rectangular flip, will allow us to split paths
with shared horizontal segments, while maintaining a top-down order.

3.1 Top-Down Switching

Consider two lattice paths P(blue) and Q(red) within the matrix M that cross in a way
that they switch from Q being on top to P being on top, as in the left figure of Figure 6.

Consider the result of switching the labels on the paths after P and Q diverge, giving
new paths P′ (blue) and Q′ (red) as shown in the right figure of Figure 6. After this
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top-down switch, we have a clear upper and lower path.
An example of top-down switching is given in going from rightmost figure of Figure 11

to leftmost figure of Figure 12. Each application of top-down switching eliminates a
transverse crossing from our set of paths. Thus, after applying top-down switching as
many times as possible in any order, there are no longer any transverse crossings in the
resulting family of paths. Then we can order the family of paths from top to bottom.
Hence, top-down switching lets us adjust the paths so they come in a top-down order
P1, . . . , Pk where Pi lies weakly above Pi+1 for all i.

3.2 Left-shifting

Definition 3.1. A left-shift of a lattice path is an operation where part of the column of a
path, following a horizontal segment of length at least two, is shifted one column to the
left and creates no new intersections, as in Figure 7.

Figure 7: Left-shifting applied to a lattice path

We are introducing left-shifting because it again weakly increases the maximum
combined length of increasing subsequences contained in the lattice paths.

An example of left-shifting is given in going from leftmost figure to the middle figure
in Figure 12. Beware that when we left-shift, we are not allowed to introduce a new
intersection: hence the furthest we can shift a particular path to the left is bounded by
paths above.

3.3 Rectangular flip and reverse rectangular flip.

A rectangular flip is given in Figure 8. Note that the red and blue paths in the left figure
have a common horizontal segment at the start. After using the rectangular flip there, the
blue path now is one height higher than its original position at the segment. An example
of rectangular flip used in a family of paths is illustrated in going from leftmost figure to
the middle figure in Figure 11.
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(a, i) (b, i)

(b, i + 1)

A

B

C

(a, i) (b, i)

(a, i + 1) (b, i + 1)

A

B

C

Figure 8: A rectangular flip on the blue path with respect to the red path

A reverse rectangular flip is given in Figure 9. Initially, the red and blue paths in
the left figure have a common horizontal segment at the end. After using the reverse
rectangular flip there, the blue path now is one height lower than its original position
at the segment. An example of a reverse rectangular flip used in a family of paths is
illustrated in going from middle figure to the rightmost figure in Figure 13.

(a, i)

(a, i− 1)

(b, i)C

B

A

(a, i)

(a, i− 1)

(b, i)

(b, i− 1)

C

B

A

Figure 9: A reverse rectangular flip on the blue path with respect to the red path

4 The main result

We have developed several tools regarding how the lattice paths encoding the longest
sequences behave and how families of paths can be adjusted while weakly increasing the
combined length they represent. In this section we provide an example of how we use
these tools to transform a family of paths while weakly increasing the combined length
of increasing sequences they encode, proving Theorem 1.4.

Lemma 4.1. There exists a length-maximizing family of k lattice paths P1, . . . , Pk where
for each i, the path Pi starts at the point (1, k + 1− i) in the matrix.

Hence we may assume that each path Pi starts at the point (1, k− i + 1). Beware that
this does not imply that each Pi has the horizontal segment (1, k− i + 1)− (2, k− i + 1).
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1
k

2
3

(k− 1)
k

r− k r− 1 q
r

1

(r− k + 1)
(r− k + 2)
(r− k + 3)

(r− 1)

Figure 10: The lower boundary paths for k paths: L1, . . . , Lk (from top to bottom). The
numbers on the left (and right) indicate the row indices and the numbers on the top
and bottom indicate the column indices.

Figure 10 shows L1, . . . , Lk. These paths appear in [1, Lemma 4.2] as well. If all rows
of T have the same size, this family of paths is a length-maximizing family [1, Lemma
4.2]. If the rows or T have different sizes, this may no longer be the case, and we have to
allow our family of paths to be weakly above these in respective top to bottom order.

Lemma 4.2. There exists a length-maximizing family of paths P1, . . . , Pk such that Pi is
weakly above Li for all i, and each Pi contains the horizontal segment (r− k + i− 1, r−
i + 1)− (q, r− i + 1).

Figures 11 through 13 illustrates the the whole transformation process using the tools
we have developed so far. From using the horizontal segments of the family we produced
and Green’s theorem, 1.4 follows:

The main idea of our proof was to narrow our search for a length-maximizing family
of lattice paths to those satisfying a certain property - namely lying above the bounding
paths and ending in the same horizontal segments at the bounding paths. Is there is
an efficient way to construct a particular family of length-maximizing paths given the
tableau?

Open Problem 4.3. Given a skew tableau T, is there a simple method to find a length-
maximizing family of k-paths in M(q, T) for each k and q?

We have found an upper bound on the stabilization index of a tableau. It seems a
far-fetched goal at this moment to obtain this index without using Greene’s theorem or
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Figure 11: Running example: Start with a family of paths. Apply rectangular flip(s) to
get a family satisfying Lemma 4.1. After this we may ignore the vertical segments in
the first column to get a family satisfying the conditions of Lemma 4.1.

Figure 12: Running example: Apply top-down switching to get a family of paths that
do not cross. Next apply left-shift on P1 to get a path that stays weakly above the
bounding path L1, drawn in black dotted lines. Do the same for P2 afterwards.

Figure 13: Running example: Apply left-shift on P3. Lastly, apply reverse rectangular
flip(s) to get a family satisfying Lemma 4.2.
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S = 2

3

1

, Q = 3

2

1

,

Rect(S(3)) = 1 2 5 8

3 6 9

4 7

, Rect(Q(3)) = 1 2 3 6 9

4 5 8

7

,

Figure 14: Tableaux S = T132 and Q = T123. We can see that the stabilization index of
132 is 2 whereas the stabilization index of 123 is 3.

constructing the rectification. A reasonable subclass of tableaux to restrict attention to
would be tableaux constructed from permutations as in Figure 14. Given a permutation w,
we can construct the skew tableau Tw which has one entry per row and w as its reading
word. Then we can define stab(w) as stab(Tw), which give us a permutation statistic!

In Chapter 8 of [1], Ahlbach introduced the stabilization index as a permutation
statistic. He showed that stab(w) is bounded strictly below by the ascent statistic, [1,
Lemma 8.4], showed that stab(w) depends only the recording tableau Q(w), [1, Lemma
8.3], characterized the permutations with stab 1, [1, Lemma 8.5], and characterized the
permutations with stab 2, [1, Theorem 8.7]. But there are still many open questions! A
full characterization of stab(w) in terms of Q(w) would be ideal.

Open Problem 4.4 ([1]). For a permutation w, is there a way to find stab(w) directly from
the permutation or its recording tableau (that is, without constructing the rectification or
using Greene’s theorem)? What is the relationship between stab(w) and Q(w)?
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