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Abstract. We study probabilistic and combinatorial aspects of natural volume-and-
trace weighted plane partitions and their continuous analogues. We prove asymptotic
limit laws for the largest parts of these ensembles in terms of new and known hard-
and soft-edge distributions of random matrix theory. As a corollary we obtain an
asymptotic transition between Gumbel and Tracy–Widom GUE fluctuations for the
largest part of such plane partitions, with the continuous Bessel kernel providing the
interpolation. We interpret our results in terms of two natural models of directed last
passage percolation (LPP): a discrete (max,+) infinite-geometry model with rapidly
decaying geometric weights, and a continuous (min, ·) model with power weights.

1 Introduction

Background. Muttalib–Borodin (MB for short) ensembles are probability measures on
n real points 0 < x1 < · · · < xn of the form

P(x1 ∈ dx1, . . . , xn ∈ dxn) = Z−1 ∏
1≤i<j≤n

(xj − xi)(xθ
j − xθ

i )
n

∏
i=1

e−V(xi) (1.1)

where θ > 0, V is a potential and Z is the normalization constant (partition function);
they were introduced by Muttalib [14] as generalizations (if θ 6= 1) of random matrix en-
sembles useful for studying disordered conductors. They are determinantal bi-orthogonal
ensembles with explicit correlation functions at least when V is nice. Borodin explic-
itly computed a few examples [3] and further studied their asymptotic behavior at the
“edge”, i.e. the behavior of x1 as n→ ∞.
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Main contribution. In this paper we provide a combined algebraic-combinatorial and
probabilistic perspective on such ensembles. We consider volume-and-trace dependent sim-
ple distributions on plane partitions which give rise to discrete MB ensembles1—see
Prop. 2.1, and we interpret their largest parts/edge as certain last passage times in an
infinite quadrant of rapidly decaying geometric random variables. The asymptotic be-
havior of these largest parts/LPP times has been previously encountered at the hard-
and soft-edge of random matrix ensembles—see Thm. 2.2 and Thm. 2.5. In the simplest
of such cases, for these last passage times and for the largest part of said plane parti-
tions, we see a transition between the Gumbel distribution and the Tracy–Widom GUE
distribution [18] via the hard-edge random-matrix Bessel kernel [19]—see Remarks 2.4
and 2.6. This result is similar to one of Johansson [9]. Furthermore, plane partitions give
rise to a natural q→ 1− limit (q the volume parameter) where the discrete MB ensembles
lead to a Jacobi-like continuous ensemble similar to Borodin’s [3]. The smallest point in
this ensemble has a natural (min, ·) LPP interpretation, and in studying its asymptotical
distribution we recover a slight extension of Borodin’s [3] probability distribution. See
Theorems 2.7 and 2.8. The latter has been shown by now to be universal for a wide range
of potentials, see [13] and references therein. One of our main tools, principally special-
ized Schur processes [16], has been used on other occasions [6, 4] to bridge algebraic
combinatorics and random matrix theory. Finally, let us note that Thm. 2.5 is new, while
a significantly expanded presentation of the other results will appear elsewhere [2].

Acknowledgements. The authors would like to thank G. Akemann, A. Borodin, P.
Ferrari, A. Kuijlaars, L. Molag, G. Schehr, E. Strahov, H. Walsh and two anonymous
reviewers for fruitful conversations regarding this article and helpful suggestions for
improving it.

2 Main results

2.1 MB plane partitions and last passage percolation

An (M, N)-based plane partition Λ is an array Λ = (Λi,j)1≤i≤M,1≤j≤N of non-negative
integers satisfying Λi,j+1 ≥ Λi,j and Λi+1,j ≥ Λi,j for all appropriate i, j. It can be viewed
in 3D as a pile of cubes atop an M× N floor of a room (rectangle) where we place Λi,j
cubes above integer lattice point (i, j) (starting from the “back corner” of the room). See
Fig. 1 (left) for an example. If M = N = ∞ we shall only speak of plane partitions,
without a pre-qualifier (with the assumption that almost all Λi,j = 0).

Let us fix positive integer parameters M ≤ N, possibly both equal to ∞. Fix also real
parameters 0 ≤ a, q ≤ 1 (not both 1) and η, θ ≥ 0. Denote (Q, Q̃) = (qη, qθ) for brevity.

1Technically, these MB ensembles were first introduced in [6].
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Figure 1: Left: an (M = 5, N = 6)-based plane partition Λ with color-coded left, center
(red) and right cubes; the associated interlacing partitions are given at the bottom; the
lozenges form a determinantal point process, each slice is a discrete MB ensemble, and
slice 0 contains M points. Right top: the setting for the discrete geometric LPP we
consider, and two polymers π (orange) and v (blue) in (2.4); here M = N = ∞. Right
bottom: the setting for the continuous power LPP we consider below with M = N = 8.

We consider the following distribution on (M, N)-based plane partitions:

P(Λ) =
qη left vol

[
aq

η+θ
2

] central vol
qθ right vol

Z
=

Q left vol
[

a
√

QQ̃
] central vol

Q̃ right vol

Z
(2.1)

where we call: central volume (the word trace is more customary in the literature, and
it equals ∑i Λi,i) the total number of cubes on the central slice of Λ (marked in red
in Fig. 1 (left)); right volume the number of cubes strictly to the right of the central
slice (blue in fig. cit.); and left volume the number of cubes on the left (in green). Here
Z = ∏1≤i≤M ∏1≤j≤N(1− aQi− 1

2 Q̃j− 1
2 )−1 is the partition (generating) function of all such

plane partitions.
We call this probability distribution the discrete Muttalib–Borodin distribution on plane

partitions—see below. If a = 1 = η = θ, it reduces to the usual qvolume distribution; if
q = 0 it reduces to the acentral vol = atrace distribution (well-defined only for M, N < ∞).

Let us explain the naming for such distributions. Consider the standard identification
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of an M× N-based plane partition Λ with a sequence of ordinary interlacing partitions

Λ = (∅ = λ(−M) ≺ λ(−M+1) ≺ · · · ≺ λ(0) � · · · � λ(N−1) � ∅ = λ(N)) (2.2)

(obtained by reading the heights of the horizontal lozenges on each vertical slice of Fig. 1
(left)). We look at partition λ(0) and at its distribution. We choose this particular slice for
simplicity only, looking at any other would yield similar formulas. Consider the point
process l(0) with M points given by l(0)i = λ

(0)
i + M− i, 1 ≤ i ≤ M (the M lozenges on

the central slice of Λ up to shift). We then have the following proposition. Compare
with (1.1) and [6].

Proposition 2.1. Under the measure (2.1) for M ≤ N < ∞, the M-point ensemble (slice) l(0)

of Λ has the following discrete Muttalib–Borodin distribution:

P(l(0) = l) ∝ ∏
1≤i<j≤M

(Qlj −Qli)(Q̃lj − Q̃li) ∏
1≤i≤M

[
a
√

QQ̃
]li

(Q̃li+1; Q̃)N−M (2.3)

with (x; u)n = ∏0≤i<n(1− xui) the u-Pochhammer symbol.

Now we turn to introducing one of the last passage percolation models we consider.
In the M× N integer rectangle (quadrant) consisting of points (i, j)i,j≥1 with coordinates
as in Fig. 1 (top right) place at each point independent geometric random variables2

ω
geo
i,j ∼ Geom(aQi−1/2Q̃j−1/2). We look at the case M = N = ∞ but one could also

consider these finite—see Fig. 1 (top right).
Let us look at the following last-passage times:

Lgeo
1 = max

π
∑

(i,j)∈π

ω
geo
i,j , Lgeo

2 = max
v

∑
(i,j)∈v

ω
geo
i,j (2.4)

where π is any down-left path from (1, 1) to (M = ∞, N = ∞) (orange in Fig. 1) and v is
any down-right path from (M = ∞, 1) to (1, N = ∞) (blue in Fig. 1). By Borel–Cantelli,
only finitely many ω

geo
i,j ’s are non-zero and so Lgeo

i < ∞, i = 1, 2 almost surely. Our first
result is the following.

Theorem 2.2. Let M = N = ∞. We have Lgeo
1 = Lgeo

2 = Λ1,1 in distribution, where Λ1,1 is the
corner (largest) part of a Muttalib–Borodin-distributed plane partition Λ as in (2.1). Moreover,
in the following q, a→ 1− limit:

q = e−ε, a = e−αε, ε→ 0 + (α ≥ 0 fixed) (2.5)

we have, for any L ∈ {Lgeo
1 , Lgeo

2 , Λ1,1}, that

lim
ε→0+

P

(
εL +

log(εη)

η
+

log(εθ)

θ
< s
)
= det(1− K̃he)L2(s,∞) (2.6)

2X is a geometric random variable X ∼ Geom(u) if P(X = k) = (1− u)uk, k ∈N.
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where the RHS is a Fredholm determinant of the operator K̃he(x, y) = e−
x
2−

y
2 Khe(e−x, e−y) and

Khe(x, y) =
1
√

xy

∫
δ+iR

dζ

2πi

∫
−δ+iR

dω

2πi
Fhe(ζ)

Fhe(ω)

xζ

yω

1
ζ −ω

, Fhe(ζ) =
Γ( α

2η −
ζ
η + 1

2)

Γ( α
2θ +

ζ
θ +

1
2)

. (2.7)

Remark 2.3. Let us make a definition and a few remarks on the above:

• The asymptotic distribution above, and most below, are Fredholm determinants. To
define them, recall first that an operator K with kernel K(x, y) acts on L2(X) (X
is an open interval all of our cases), e.g. on functions f ∈ L2(X), via “matrix
multiplication” (K f )(x) =

∫
X K(x, y) f (y)dy. If such an operator is trace-class—see

e.g. [17], the Fredholm determinant of 1 − K (1 the identity operator) on L2(X) is
defined by

det(1− K)L2(X) = 1 + ∑
m≥1

(−1)m

m!

∫
X
· · ·

∫
X

det
1≤i,j≤m

[K(xi, xj)]dx1 · · · dxm (2.8)

where we put m integrals in the m-th summand.

• Writing ε = 1/R for the limit result, L has order O(R log R) and O(R) fluctuations
asymptotically. Contrast this with the R1/3 limits of Johansson [8] and compare
with similar (exponential) results of [9, Thm. 1.1a].3

• The distributional equality Lgeo
1 = Lgeo

2 is not immediately obvious. Even if η = θ =
1 (anti-diagonals i + j = k + 1 are equi-distributed Geom(aqk) random variables),
L1 is a maximum over random variables all of which are ∑k≥1 Geom(aqk) (the
distribution for this sum is furthermore explicit); L2 does not enjoy this property.

• Khe has the following hypergeometric-like form:

Khe(x, y) =
∞

∑
i,j=0

(−1)i+jx
α−1

2 +η(i+1
2 )y

α−1
2 +θ(j+1

2 )/[α + η(i + 1
2) + θ(j + 1

2)]

i!j!Γ
(

α
θ + (i + 1

2)
η
θ + 1

2

)
Γ
(

α
η + 1

2 + (j + 1
2)

θ
η

) . (2.9)

Remark 2.4. Consider (again) the equi-distributed-by-diagonal case η = θ = 1 (i.e. anti-
diagonal i + j = k + 1 has k iid Geom(aqk) random variables on it). We have

K̃he(x, y) = e−
x
2−

y
2 Kα,Bessel(e−x, e−y)

=
∫

−δ+iR

dω

2πi

∫
δ+iR

dζ

2πi
Γ( α

2 + 1
2 − ζ)

Γ( α
2 + 1

2 + ζ)

Γ( α
2 + 1

2 + ω)

Γ( α
2 + 1

2 −ω)

e−xζ

e−yω

1
ζ −ω

(2.10)

3To be precise, in the case η = θ = 1 considered in [9], the limit q → 1 is taken first to arrive at
exponential weights in a finite M × N geometry, and this is followed by the limit M, N → ∞. In the
present we take M, N → ∞ first (the model is still well-defined due to Borel–Cantelli), followed by q→ 1.
Thus in a precise sense we have shown the two limits (ours when η = θ = 1 and Johansson’s from [9])
commute.
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(0 < δ < 1
2 ) with Kα,Bessel the random matrix hard-edge continuous Bessel kernel [19]

Kα,Bessel(x, y) =
∫ 1

0
Jα(2
√

ux)Jα(2
√

uy)du =
Jα(
√

x)
√

yJ′α(
√

y)−
√

xJ′α(
√

x)Jα(
√

y)
2(x− y)

(2.11)
with the J’s Bessel functions. Let us write Fα(s) = det(1− K̃he)L2(s,∞). We then have,
from Johansson [9], the following Gumbel to Tracy–Widom interpolation property:

• limα→0 Fα(s) = F0(s) = e−e−s
with the latter the Gumbel distribution;

• limα→∞ Fα(−2 log(2(α − 1)) + (α − 1)−2/3s) = FTW(s) with the latter the Tracy–
Widom GUE distribution [18].

Neither the Gumbel nor Tracy–Widom distributions appearing above are surprising.
Indeed the first is the asymptotic distribution of the largest part of a qvolume-distributed
plane partition [20, Thm. 1] (our case with a = 1). To see Tracy–Widom GUE fluctu-
ations directly, consider the result below. What is remarkable nonetheless is the inter-
polation/transition property of the continuous Bessel kernel in “exponential” variables
between Gumbel (“universal” asymptotic maximum of iid random variables) and Tracy–
Widom GUE (asymptotic maximum of correlated systems like eigenvalues of Hermitian
random matrices).

Theorem 2.5. Let M = N = ∞, and let 0 < a < 1 be fixed. In the following q = e−ε → 1−
as ε→ 0+ limit and for any L ∈ {Lgeo

1 , Lgeo
2 , Λ1,1} as in Thm. 2.2, we have:

lim
ε→0+

P

(
L− c1ε−1

c2ε−1/3 < s
)
= FTW(s) (2.12)

where c1, c2 ∈ R+ are explicit4 and with FTW the Tracy–Widom GUE distribution.

Remark 2.6. Let us summarize the three asymptotic regimes when η = θ = 1. As
q→ 1−, L as in Theorems 2.2 and 2.5 has:

• Gumbel fluctuations, if a = 1;

• Tracy–Widom fluctuations (on a different scale), if 0 < a < 1 fixed;

• transitional (exponential) hard-edge Bessel fluctuations, if a→ 1 critically.

We expect a similar statement to hold in the generic (η, θ) case.

4 Let b =
√

a, zc =
b(θ−η)+

√
4ηθ+b2(θ−η)2

2θ , vc = −η−1 log(1 − bzc) − θ−1 log(1 − b/zc) and S(z, v) =

η−1Li2(bz)− θ−1Li2(b/z)− v log(z). We have c1 = vc and c2 =
(
2−1(z∂z)3S|z=zc ,v=vc

)1/3. Here Li2 is the
dilogarithm function https://fr.wikipedia.org/wiki/Dilogarithme.

https://fr.wikipedia.org/wiki/Dilogarithme
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2.2 Continuous MB ensembles and (min, ·) last passage percolation

In this section we use continuous parameters α, η, θ ≥ 0 (not all zero) and integer param-
eters M ≤ N < ∞ (same as above, except now we keep them finite at the beginning).

On the lattice (i, j)1≤i≤M,1≤j≤N place, at (i, j), independent power random variables5

ω
pow
i,j ∼ Pow(α + η(i− 1

2) + θ(j− 1
2)). Let

Lpow
1 = min

π
∏

(i,j)∈π

ω
pow
i,j , Lpow

2 = min
v

∏
(i,j)∈v

ω
pow
i,j (2.13)

where π is any down-left path from (1, 1) to (M, N) (orange in Fig. 1 (bottom right)) and
v is any down-right path from (M, 1) to (1, N) (blue in fig. cit.).

We have the following finite M, N result. Note again the first equality in distribution
is not immediately obvious. Part of it was anticipated, up to change of variables, in [6].

Theorem 2.7. We have Lpow
1 = Lpow

2 = x1 in distribution, with x1 the smallest (hard-edge6)
point in the following Muttalib–Borodin distribution on M-point ensembles ~x = (0 < x1 <
· · · < xM < 1):

P(~x ∈ d~x) ∝ ∏
1≤i<j≤M

(xη
j − xη

i )(xθ
j − xθ

i ) ∏
1≤i≤M

xα+
η+θ

2 −1
i (1− xθ

i )
N−M. (2.14)

If η = θ = 1, the above is an example of the joint distribution of the eigenvalues of a
Jacobi random matrix ensemble.

Finally, our next result is asymptotic. We take M, N → ∞, and we can even do this
independently.

Theorem 2.8. With L ∈ {Lpow
1 , Lpow

2 , x1} as in Thm. 2.7 and Khe(x, y) as in (2.7) we have:

lim
M,N→∞

P

(
L

M
1
η N

1
θ

> r

)
= det(1− Khe)L2(0,r). (2.15)

The terminology “hard edge” now becomes clear. We are looking at L close to 0,
the hard-edge of the support [0, 1] for the ensemble in (2.14). When η = θ = 1, Khe is
the hard-edge Bessel kernel [19] (scaling of the Laguerre or Jacobi ensembles around 0).
When η = 1, Khe is Borodin’s [3] generalization of the Bessel kernel, appearing in the
scaling of various Muttalib–Borodin ensembles—see e.g. [13] and references therein.

5Y is a power random variable Y ∼ Pow(β) if P(Y ∈ dx) = βxβ−1, x ∈ [0, 1], for β > 0.
6The name hard-edge stands for the fact that 0 is a “hard edge” of the support of the distribution; no

number can go below 0.
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3 Sketches of proofs

Proof of Prop. 2.1. Muttalib–Borodin-distributed plane partitions Λ, under the identifica-
tion (2.2), are Schur processes [16]. In our case this means the measure (2.1) can be
written as

P(Λ) = Z−1
M−1

∏
i=0

sλ(−i)/λ(−i−1)(
√

aQi+1/2)
N−1

∏
i=0

sλ(i)/λ(i+1)(
√

aQ̃i+1/2) (3.1)

with the partition (generating) function Z = ∏M
i=1 ∏N

j=1(1 − aQi−1/2Q̃j−1/2)−1; with
(Q, Q̃) = (qη, qθ) as before; and with sλ/µ the skew Schur polynomials (functions) [12,
Ch. I.5]. These latter, evaluated in one variable, contribute the right amount to the mea-
sure: sλ/µ(x) = x|λ|−|µ|1µ≺λ by observing left vol = ∑−1

i=−M |λ(i)|, central vol = |λ(0)|
and right vol = ∑N

i=1 |λ(i)|.
As such, the marginal distribution of λ(0) is a Schur measure [15, 16]. We obtain,

after some simplification:

P(λ(0) = λ) = Z−1a|λ|Q|λ|/2Q̃|λ|/2sλ(1, Q, . . . , QM−1)sλ(1, Q̃, . . . , Q̃N−1) (3.2)

with Z as before and with sλ the regular Schur polynomials (sλ = sλ/∅). To finish, let us
first notice that `(λ) ≤ M from the interlacing constraints (2.2). Moreover, specializing
Schur polynomials in a geometric progression (the principal specialization) is explicit [12,

Ch. I.3]: sλ(1, u, . . . , un−1) = ∏1≤i<j≤n
uλi+M−i−uλj+M−j

uM−i−uM−j . Recalling li = λi + M− i and so
li = M− i for i > M, we see the length N Vandermonde-like product in one of the terms
above can be rewritten as one of length M plus additional univariate factors as stated.
Note we gauge away constants independent of the li’s.

Proof of Thm. 2.2. There are two parts of the statement. For the finite part, consider the
array of numbers (ω

geo
i,j )1≤i≤M,1≤j≤N as considered but first with M ≤ N both finite.

We can transform this array, bijectively, into a plane partition Λ via both row insertion
Robinson–Schensted–Knuth (RSK) [10] and column insertion RSK (Burge) [5] algorithms.
In both cases if we start with distribution ω

geo
i,j ∼ Geom(aQi− 1

2 Q̃j− 1
2 ), we end up with Λ

distributed as in (2.1)—see [1] and references therein. Now the Greene–Krattenthaler [7,
11] theorem states that Lgeo

1 = Λ1,1 (for row RSK) and Lgeo
2 = Λ1,1 (for column RSK). This

implies that Lgeo
1 = Lgeo

2 = Λ1,1 in distribution, for M, N finite. For M = N = ∞ we just
observe that almost surely only finitely many ω

geo
i,j will be non-zero by Borel–Cantelli7

and the results just described go through.

7Its application is justified by the fact the partition function ∏i,j≥1(1− aQi−1/2Q̃j−1/2)−1 is finite, and
this is true as Q, Q̃ < 1.
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For the second part, the previous proof implies that in distribution Lgeo
1 = Lgeo

2 =
Λ1,1 = λ1 where the last quantity is the first part of a random partition distributed as

P(λ) = Z−1a|λ|Q|λ|/2Q̃|λ|/2sλ(1, Q, Q2, . . . )sλ(1, Q̃, Q̃2, . . . ) (3.3)

(both specializations are now infinite geometric series as M = N = ∞) with Z =

∏∞
i=1 ∏∞

j=1(1− aQi−1/2Q̃j−1/2)−1. This is again a Schur measure, and it is determinan-
tal [15]. Namely, the point process {λi − i + 1

2 |i ≥ 1} is a determinantal point process:
i.e. if m ≥ 1 and k1, . . . , km ∈ Z + 1

2 we have:

P({k1, . . . , km} ∈ {λi − i + 1
2 |i ≥ 1}) = det

1≤i,j≤m
Kd(ki, k j) (3.4)

where the discrete (`2 operator) kernel Kd equals (for δ > 0 very small)

Kd(k, `) =
∮

|w|=1−δ

dw
2πiw

∮
|z|=1+δ

dz
2πiz

Fd(z)
Fd(w)

w`

zk

√
zw

z− w
, Fd(z) =

(
√

aQ̃1/2/z; Q̃)N

(
√

aQ1/2z; Q)M
(3.5)

with M = N = ∞ (we nonetheless record the formula for arbitrary M, N for use later).
The combinatorial meaning of the integral is coefficient extraction: Kd(k, `) is the coeffi-
cient of zk/w` in the generating series above. The condition |z| > |w| makes the formula
true analytically as well.

Inclusion-exclusion yields that the distribution of L ∈ {Lgeo
1 , Lgeo

2 , Λ1,1, λ1} is the dis-
crete Fredholm determinant of Kd: P(L ≤ l) = det(1− Kd)`2{l+1/2,l+3/2,... }.

To finish the proof, we still have to show det(1− Kd) → det(1− K̃he) in the limit
l = s

ε −
log(εη)

εη − log(εθ)
εθ as ε → 0+. The first step is to show that ε−1Kd(k, `) → K̃he(x, y)

for (k, `) = (x,y)
ε −

log(εη)
εη − log(εθ)

εθ ; the second to show convergence of Fredholm determi-
nants. Both steps require some analytic justification of interchanging of limits, integrals,
and sums (the defining series for a Fredholm determinant). Modulo these details which
we omit for brevity, to show ε−1Kd(k, `)→ K̃he(x, y) one simply uses the limiting relation

log(uc; u)∞ = −π2

6
r−1 +

(
1
2
− c
)

log r +
1
2

log(2π)− log Γ(c) + O(r) (3.6)

where u = e−r ∈ {Q, Q̃}, r → 0+, c /∈ −N, together with a change of variables (z, w) =
(eεζ , eεω) in (3.5). The contours transform appropriately and the double integral (3.5)
becomes (2.7) in the limit ε→ 0+.

Proof of Thm. 2.7. The proof is a q → 1− limit of the argument above. Let us take M ≤
N < ∞ and α ≥ 0 fixed. In the limit

q = e−ε, a = e−αε, λi = −ε−1 log xi, ε→ 0+ (3.7)
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the process Λ from (2.2) converges, in the sense of finite dimensional distributions, to a
continuous process X of corresponding interlacing vectors with elements in (0, 1) almost
surely. Importantly, the slice λ(0) = λ of Λ converges to an ensemble we call ~x of M
points 0 < x1 < · · · < xM < 1 with distribution given by the q→ 1− limit of (2.3); this is
the stated distribution from (2.14). We see this using simple limits like: Qli → xη

i , Q̃li →
xθ

i , ali → xα
i and finally (Q̃li+1; Q̃)N−M → (1− xθ)N−M.

That Lpow
1 = Lpow

2 = x1 in distribution comes from the fact that, with the setup from
the beginning of the proof of Thm. 2.2 (keeping M, N finite), we have Lgeo

1 = Lgeo
2 = λ1.

Moreover the corresponding geometric random variables converge to power random
variables: exp(−εω

geo
i,j )→ ω

pow
i,j . Then

max ∑ ω
geo
i,j ≈ max

(
−∑ ε−1 log ω

pow
i,j

)
= −ε−1 log min

(
∏ ω

pow
i,j

)
(3.8)

(with sums/products being over the appropriate sets of directed paths) showing that
exp(−εLgeo

i ) → Lpow
i , i = 1, 2. Together with the fact that exp(−ελ1) → x1 and the

discrete finite M, N Greene–Krattenthaler Theorem [7, 11], this finishes the proof.

Proof of Thm. 2.8. The ensemble ~x from Theorem 2.7 is determinantal with kernel Kc, as
a limit ε→ 0+ of the ensemble ql with (recall) li = λi + M− i, 1 ≤ i ≤ M. The kernel Kc
comes from ε−1Kd(k, `)→ Kc(x, y) with Kd as in (3.5), with M ≤ N finite, with a = e−αε,
(k, `) = −ε−1(log x, log y), and with changing the variables (z, w) = (eεζ , eεω) inside the
integral to have a finite limit. We have

Kc(x, y) =
1
√

xy

∫
−δ+iR

dω

2πi

∫
δ+iR

dζ

2πi
Fc(ζ)

Fc(ω)

xζ

yω

1
ζ −ω

, Fc(ζ) =
( α

2θ +
ζ
θ +

1
2)N

( α
2η −

ζ
η + 1

2)M
(3.9)

where (a)n = ∏1≤i<n(a + i) = Γ(a + n)/Γ(a) is the Pochhammer symbol. Finally
M−1/η N−1/θKc(xM−1/η N−1/θ, yM−1/η N−1/θ) → Khe(x, y) as M, N → ∞ from Stirling’s
approximation of the Gamma function; the contours remain unchanged in the limit;
and further estimates show Fredholm determinants converge to Fredholm determinants
proving the result.

Proof of Thm. 2.5. The argument is similar to the asymptotic part of the proof of Thm. 2.2,
but the details get more complicated. Let us write R = ε−1 → ∞. The bulk of the argu-
ment is showing that, with M = N = ∞ and as R → ∞ we have R1/3Kd(k, `) → A(x, y)
with Kd as in (3.5) and for (k, `) = c1R + (x, y)c2R1/3. Here A is the Airy kernel [18]
given by

A(x, y) =
∫
−δ+iR

dω

2πi

∫
δ+iR

dζ

2πi
exp(−xζ + ζ3/3)

exp(−yω + ω3/3)
1

ζ −ω
(3.10)

and we recall FTW(s) = det(1 − A)L2(s,∞). Some extra estimates then are needed to
show the gap probability P(L ≤ l) = det(1− Kd)`2{l+1/2,... } → det(1− A)L2(s,∞) when
l = c1R + sc2R1/3 and R→ ∞. The constants c1, c2 are given in footnote 4.
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We begin by taking 0 < b =
√

a < 1 fixed. We note the asymptotic estimate
(gu; u)∞ ≈ −r−1Li2(g) if g is away from 0 and 1 and u = e−r, r → 0+ (Li2 the dilog-
arithm). In our case u ∈ {Q, Q̃} and we can then estimate Fd(z)/Fd(w) in (3.5). It
follows that Kd(k, `) ≈

∮ ∮
eR[S(z)−S(w)] dzdw

z−w where S(z) = η−1Li2(bz) − θ−1Li2(b/z) −
(k/R) log z (for S(w), k 7→ `). Let both k, ` ≈ vR and moreover take v = vc =

−η−1 log(1− bzc)− θ−1 log(1− b/zc), zc =
b(θ−η)+

√
4ηθ+b2(θ−η)2

2θ . First note c1 = vc by
definition. Moreover, in this case, S′ = S′′ = 0 at z = zc (′ = d

dz ) and the asymptotic con-
tribution of

∮ ∮
eR[S(z)−S(w)] dzdw

z−w comes from the third derivative S′′′. We Taylor-expand
S(z) around z = zc(1 + ζR−1/3/c2) and k = vcR + xc2R1/3 in powers of R−1/3, and
likewise for S(w) with (ω, `, y) replacing (ζ, k, x). The first few terms (for z) are

S(zc) +
S(3)(zc)

6
ζ3

c3
2
− xζ + O(R−1/3) = S(zc) +

ζ3

3
− xζ + O(R−1/3) (3.11)

having chosen c2 so that we have the simpler expansion on the right. Note also that
the contours become the vertical lines given in the definition of the Airy kernel above.
Modulo some extra estimates omitted here we have:

R1/3Kd(k, `) ≈ R1/3
∮ ∮ eR[S(z)−S(w)]

z− w
dzdw
(2πi)2 ≈

1
(2πi)2

∫
Cζ

∫
Cω

e
ζ3
3 −xζ

e
ω3
3 −yω

dζdω

ζ −ω
(3.12)

(with (Cζ , Cω) = (δ,−δ) + iR, δ > 0) showing R1/3Kd(k, `)→ A(x, y) as desired.
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