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A combinatorial Schur expansion of triangle-free
horizontal-strip LLT polynomials
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Abstract. In recent years, Alexandersson and others proved combinatorial formulas
for the Schur function expansion of the horizontal-strip LLT polynomial Gλ(x; q) in
some special cases. We associate a weighted graph Π to λ and we use it to express
a linear relation among LLT polynomials. We apply this relation to prove an explicit
combinatorial Schur-positive expansion of Gλ(x; q) whenever Π is triangle-free. We
also prove that the largest power of q in the LLT polynomial is the total edge weight of
our graph.
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1 Introduction

LLT polynomials are remarkable symmetric functions with many connections in alge-
braic combinatorics. Lascoux, Leclerc, and Thibon [9] originally defined LLT polyno-
mials in terms of ribbon tableaux in order to study Fock space representations of the
quantum affine algebra. Haglund, Haiman, Loehr, Remmel, and Ulyanov [7] rede-
fined them in terms of tuples of skew shapes in their study of diagonal coinvariants.
Haglund, Haiman, and Loehr [6] found a combinatorial formula for Macdonald polyno-
mials, which implies a positive expansion in terms of these LLT polynomials Gλ(x; q).
LLT polynomials are also closely connected to chromatic quasisymmetric functions and
to the Frobenius series of the space of diagonal harmonics. Grojnowski and Haiman [5]
proved that LLT polynomials, and therefore Macdonald polynomials, are Schur-positive
using Kazhdan–Lusztig theory, but it remains a major open problem to find an explicit
combinatorial Schur-positive expansion. We give a brief account of some recent results
in this direction.

In the unicellular case, meaning that every skew shape of λ consists of a single cell,
we can associate a unit interval graph to λ. Huh, Nam, and Yoo [8] found an explicit
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Schur-positive expansion whenever this graph is a melting lollipop, namely

Gλ(x; q) = ∑
T∈SYTn

qwta(T)sshape(T). (1.1)

Moreover, they proved that for arbitrary unit interval graphs, this formula gives the cor-
rect coefficient of sµ whenever the partition µ is a hook.

More generally, we focus on the horizontal-strip case, meaning that every skew shape
of λ is a row. Grojnowski and Haiman [5] showed that if the rows of λ are nested,
then Gλ(x; q) is a transformed modified Hall–Littlewood polynomial and so its Schur
expansion is given by the celebrated Lascoux–Schützenberger cocharge formula [10],
namely

Gλ(x; q) = H̃λ(x; q) = ∑
T∈SSYT(λ)

qcocharge(T)sshape(T). (1.2)

Alexandersson and Uhlin [3] found a generalization of cocharge to prove an analo-
gous formula when the rows of λ come from a skew shape σ/τ with no column having
more than two cells. They formulated it for vertical-strips but we can equivalently state
it as

Gλ(x; q) = ∑
T∈SSYT(α)

qcochargeτ(T)sshape(T). (1.3)

D’Adderio [4] used recurrences in terms of Schröder paths to prove that the shifted
vertical-strip LLT polynomial Gλ(x; q + 1) is a positive linear combination of elementary
symmetric functions. Alexandersson conjectured [1] and then proved with Sulzgruber
[2] the explicit combinatorial formula

Gλ(x; q + 1) = ∑
θ∈O(P)

qasc(θ)eλ(θ) (1.4)

in terms of acyclic orientations of a decorated unit interval graph associated to λ.

In this extended abstract, we define a weighted graph Π associated to λ. In Section 3,
we use our weighted graph to express linear recurrences of horizontal-strip LLT polyno-
mials. We further generalize cocharge and apply our recurrences in Section 4 to prove
the explicit combinatorial Schur-positive formula

Gλ(x; q) = ∑
T∈SSYT(α)

qcochargeΠ(T)sshape(T) (1.5)

whenever the weighted graph Π is triangle-free. We also prove that the largest power of
q in the LLT polynomial Gλ(x; q) is the total edge weight of Π.
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2 Background

A partition σ is a finite sequence of nonincreasing positive integers σ = σ1 · · · σ`. By
convention, we set σi = 0 if i > `. A skew diagram λ is a subset of Z×Z of the form

λ = σ/τ = {(i, j) : i ≥ 1, τi + 1 ≤ j ≤ σi} (2.1)

for some partitions σ and τ with σi ≥ τi for every i. When τ is empty, we write σ instead
of σ/∅. The elements of λ are called cells and the content of a cell u = (i, j) ∈ λ is the
integer c(u) = j− i. We will focus heavily on rows, which are skew diagrams of the form

R = a/b = {(1, j) : b + 1 ≤ j ≤ a} (2.2)

for some a ≥ b ≥ 0. We denote by `(R) = b and r(R) = a− 1 the smallest and largest
contents of cells in R respectively. A semistandard Young tableau (SSYT) of shape λ is a
function T : λ→ {1, 2, 3, . . .} that satisfies

Ti,j ≤ Ti,j+1 and Ti,j < Ti+1,j, (2.3)

where we write Ti,j to mean T((i, j)). The weight of T is the sequence w(T) = (w1, w2, . . .),
where wi = |T−1(i)| is the number of times the integer i appears. We denote by SSYTλ

the set of SSYT of shape λ and by SSYT(α) the set of SSYT of weight α. We define the
skew Schur function of shape λ = σ/τ to be

sλ = ∑
T∈SSYTλ

xT, (2.4)

where xT is the monomial xw1
1 xw2

2 · · · . When τ is empty, we call sλ a Schur function.

A multiskew partition is a finite sequence of skew diagrams λ = (λ(1), . . . , λ(n)). If
each λ(i) is a row, then we call λ a horizontal-strip. We denote by

SSYTλ = {T = (T(1), . . . , T(n)) : T(i) ∈ SSYTλ(i)} (2.5)

the set of semistandard multiskew tableaux of shape λ. Cells u ∈ λ(i) and v ∈ λ(j) with
i < j attack each other if c(u) = c(v) or c(u) = c(v) + 1. The skew shapes λ(i) and λ(j)

attack each other if some cells u ∈ λ(i) and v ∈ λ(j) attack each other. Entries T(i)(u) and
T(j)(v) with i < j form an inversion if either

• c(u) = c(v) and T(i)(u) > T(j)(v), or

• c(u) = c(v) + 1 and T(j)(v) > T(i)(u).

We denote by inv(T) the number of inversions of T . Now we define the LLT polynomial

Gλ(x; q) = ∑
T∈SSYTλ

qinv(T)xT . (2.6)
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Example 2.1. Let λ = (4/0, 5/2, 2/0). When λ is a horizontal-strip we draw it so that
cells of the same content are aligned vertically as on the left. We have written the content
in each cell using our convention that content increases from left to right. We have also
drawn two tableaux T , U ∈ SSYTλ with dotted red lines indicating the inversions.

λ =

0

0

1

1

2

2

3

3 4 T =

3

2

3

2

3

1

3

1 1 U =

1

2

1

3

2

3

4

3 4

The tableau T contributes q5x3
1x2

2x4
3 to (2.6) and the tableau U contributes q3x2

1x2
2x3

3x2
4. We

can expand the LLT polynomial Gλ(x; q) in the basis of Schur functions as

Gλ(x; q) = q5s432 + q5s441 + q5s522 + (q5 + q4)s531 + 2q4s54 + 2q4s621 (2.7)

+ (q4 + 2q3)s63 + q3s711 + (2q3 + q2)s72 + (q2 + q)s81 + s9.

We observe that G(4/0,5/2,2/0)(x; q) is Schur-positive, meaning that it is an N[q]-linear
combination of Schur functions. In fact, this property holds in general.

Theorem 2.2 ([5, Corollary 6.9]). The LLT polynomial Gλ(x; q) is Schur-positive.

The special case where λ is a horizontal-strip was proven in [7, Theorem 3.1.3] using
some results introduced in [11]. Both this special case and Theorem 2.2 were proven
using Kazhdan–Lusztig theory. It is a major open problem to find an explicit combi-
natorial Schur-positive expansion of LLT polynomials. We conclude this section with a
discussion of a successful solution in a special case.

Theorem 2.3 ([5, Theorem 7.15]). Let λ = (R1, . . . , Rn) be a horizontal-strip such that
`(R1) ≤ · · · ≤ `(Rn) and r(R1) ≥ · · · ≥ r(Rn) and let λi = |Ri|. Then the LLT poly-
nomial Gλ(x; q) is a transformed modified Hall–Littlewood polynomial, whose Schur
expansion is known [10] to be

Gλ(x; q) = H̃λ(x; q) = ∑
T∈SSYT(λ)

qcocharge(T)sshape(T), (2.8)

where cocharge is a combinatorial statistic on tableaux.

We will not fully define cocharge here but we will state some of its properties.

1. If T is a single row, then cocharge(T) = 0.
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2. If every entry of T is either i or j for some i < j, so that

T = j · · · j
i · · · i i · · · i j · · · j

,

then cocharge(T) is the number of entries on the second row of T.

3. If T ∈ SSYTλ and the i-th row of T is filled with all i’s for every i, then

cocharge(T) = ∑
i
(i− 1)λi.

This integer is often denoted n(λ).

4. If T ∈ SSYTλ, then 0 ≤ cocharge(T) ≤ n(λ) with equality only in the cases of (1)
and (3).

The central problem of this work is to generalize cocharge in order to prove an anal-
ogous combinatorial formula for the Schur expansion of any horizontal-strip LLT poly-
nomial. Our main result, Theorem 4.6, is such a combinatorial formula in the case where
no three rows of λ pairwise attack each other. Our strategy is to define a weighted graph
Π(λ) associated to λ and to use it to express linear recurrences of LLT polynomials.

3 A weighted graph description of horizontal-strip LLT
polynomials

We begin by defining our weighted graph Π(λ).

Definition 3.1. Let R and R′ be rows. We define the integer

M(R, R′) =

{
|R ∩ R′| if `(R) ≤ `(R′),
|R ∩ R′+| if `(R) > `(R′),

(3.1)

where R′+ = {(1, j + 1) : (1, j) ∈ R′}. Note that 0 ≤ M(R, R′) ≤ min{|R|, |R′|}.

Definition 3.2. Let λ = (R1, . . . , Rn) be a horizontal-strip. Consider the cells of λ that
are the rightmost cells in their row and label these cells 1, . . . , n in content reading order,
meaning in order of increasing content and from bottom to top along constant content
lines. We define the weighted graph Π(λ) with vertices v1, . . . , vn as follows. The weight
of a vertex vi, denoted |vi|, is the size of the row Ri′ whose rightmost cell is labelled i.
The vertices vi and vj with i < j are joined by an edge if the corresponding rows Ri′

and Rj′ attack each other and the weight of the edge (vi, vj), denoted Mi,j, is given by
M(Ri′ , Rj′). Note that the indexing of the vertices of Π(λ) may differ from the indexing
of the rows of λ.
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Example 3.3. Let λ = (R1, R2, R3) = (4/0, 5/2, 2/0) as in Example 2.1. We have drawn
λ with the rightmost cells in each row labelled in content reading order, and we have
drawn Π(λ) below right. We have M(R1, R2) = 2, M(R1, R3) = 2, and M(R2, R3) = 1.

λ =

1

2

3

R1

R2

R3

Π(λ) =

4

v2

3

v3

2

v1

2

2 1

The following Theorem interprets the integer M(R, R′) as the maximum number of
inversions that any T ∈ SSYTλ can have between cells in R and R′.

Theorem 3.4. Let λ = (λ(1), . . . , λ(n)) be a multiskew partition. Define the integer

M(λ) = ∑
1≤i<j≤n

∑
R a row of λ(i)

R′ a row of λ(j)

M(R, R′). (3.2)

Then every T ∈ SSYTλ has inv(T) ≤ M(λ). Moreover, this maximum is attained.

Remark 3.5. Theorem 3.4 tells us that M(λ) is the largest power of q in the LLT polyno-
mial Gλ(x; q). In particular, if Gλ(x; q) = Gµ(x; q), then M(λ) = M(µ).

We now introduce the language of LLT-equivalence to describe some local linear rela-
tions of LLT polynomials. If λ = (λ(1), . . . , λ(n)) and µ = (µ(1), . . . , µ(n′)) are multiskew
partitions, we denote by λ · µ the concatenation (λ(1), . . . , λ(n), µ(1), . . . , µ(n′)).

Definition 3.6. Multiskew partitions λ and µ are LLT-equivalent, denoted λ ∼= µ, if for
every multiskew partition ν we have the equality of LLT polynomials

Gλ·ν(x; q) = Gµ·ν(x; q). (3.3)

More generally, we say finite Q(q)-combinations of multiskew partitions ∑i ai(q)λi and
∑j bj(q)µj are LLT-equivalent, denoted ∑i ai(q)λi

∼= ∑j bj(q)µj, if for every ν we have

∑
i

ai(q)Gλi·ν(x; q) = ∑
j

bj(q)Gµj·ν(x; q). (3.4)

By finding bijections of tableaux, we prove the following LLT-equivalence relations.
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Lemma 3.7. Let R and R′ be rows such that `(R′) = r(R) + 1. We have the LLT-
equivalence

q(R, R′) + (R ∪ R′) ∼= q(R ∪ R′) + (R′, R). (3.5)

Definition 3.8. We say that two rows R and R′ commute if M(R, R′) = M(R′, R). We
write R↔ R′ if R and R′ commute and R = R′ otherwise.

Lemma 3.9. Let R and R′ be rows such that R↔ R′. We have the LLT-equivalence

(R, R′) ∼= (R′, R). (3.6)

Remark 3.10. Lemma 3.9 tells us that if λ = (R1, . . . , Rn) and Ri ↔ Ri+1, then we can
switch rows Ri and Ri+1 so that Gλ(x; q) = Gµ(x; q), where µ = (R1, . . . , Ri+1, Ri, . . . , Rn).
Also note that Theorem 3.4 implies that if (R, R′) ∼= (R′, R), then R↔ R′.

By repeatedly applying Lemma 3.7 and Lemma 3.9, we are able to prove the following
recurrence relation, which is the key tool in our main Theorem.

Lemma 3.11. Let R and R′ be rows such that `(R′) < `(R) and R = R′. We have the
LLT-equivalence

(R, R′) ∼= q(R′, R) + (1− q)(R ∪ R′, R ∩ R′). (3.7)

We conclude this section by describing the triangle-free weighted graphs Π(λ) that
can arise from a horizontal-strip λ.

Definition 3.12. A graph G is a caterpillar if it is a tree and its vertices can be partitioned
V = P t L so that the induced subgraph G[P] is a path and every v ∈ L has degree one.

Proposition 3.13. Let λ be a horizontal-strip such that Π = Π(λ) is triangle-free.

1. If i < j < k and vi is adjacent to vk, then Mj,k = |vj|.

2. Every vertex vi is adjacent to at most one vertex vj for which i < j.

3. Every connected component of Π is a caterpillar C = (P t L, E) and if vj ∈ L is
adjacent to vk, then Mj,k = |vj|.

4. If vi is adjacent to the vertices {vjt}r
t=1, then

|vi|+ 1 ≥
r

∑
t=1

Mi,jt . (3.8)
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Example 3.14. For the horizontal-strip λ below left, we have drawn the caterpillar Π(λ)
below right. We have P = {v1, v4, v6} and note that 8 + 1 ≥ 3 + 2 + 2 + 2 and 4 + 1 ≥
2 + 3.

6

v1

8

v4

4

v6

2

v2

2

v3

3

v5

3 2

2 2
3

7 8

9 10

13 14 15

11 12 13 14

4 5 6 7 8 9 10 11

0 1 2 3 4 5

4 The combinatorial formula

In this section we generalize cocharge in order to give a combinatorial formula for the
LLT polynomial Gλ(x; q) whenever the weighted graph Π(λ) is triangle-free.

Definition 4.1. Let µ be a partition and let T ∈ SSYTµ be a tableau of shape µ with
smallest entry i. We define the integer

f (T) = max{t : 0 ≤ t ≤ µ1 − µ2, t ≤ wi(T), T2,j′ > T1,j′+t for all 1 ≤ j′ ≤ µ2}, (4.1)

where wi(T) is the number of i’s in T.

Remark 4.2. Informally, f (T) is the maximum number of i’s that we can remove from T
so that no entry moves down when we rectify the resulting skew tableau. Alternatively,
f (T) is the maximum number of cells that we can shift the bottom row of T to the left and
still have the columns strictly increasing from bottom to top, as long as f (T) ≤ wi(T).

Definition 4.3. Let T be an SSYT and let i < j be integers. We denote by T|i,j the
rectification of the skew tableau obtained by restricting T to the entries x with i ≤ x ≤ j,
and we define the integer

cochargei,j(T) = wi(T)− f (T|i,j). (4.2)

Example 4.4. For the tableaux S and T below left, we have drawn the tableaux S|2,4 and
T|2,4 below right. We have f (S|2,4) = 3 and cocharge2,4(S) = 5− 3 = 2, and we have
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f (T|2,4) = 3 because we must have t ≤ w2(T|2,4), so cocharge2,4(T) = 3− 3 = 0.

S = 3 4
2 2 3 4 5 5
1 1 1 2 2 2 3 4

S|2,4 = 4
3 3 4
2 2 2 2 2 3 4

T = 4 5
2 2 4 4 5 5
1 1 1 2 3 3 3 3

T|2,4 =
4 4 4
2 2 2 3 3 3 3

Example 4.5. In the case where j = i + 1, cochargei,i+1(T) is the number of entries in the
second row of T|i,i+1, which agrees with cocharge(T|i,i+1).

We now state our main Theorem.

Theorem 4.6. Let λ be a horizontal-strip such that the weighted graph Π = Π(λ) is
triangle-free and let αi = |vi|. Then the LLT polynomial of λ is

Gλ(x; q) = ∑
T∈SSYT(α)

qcochargeΠ(T)sshape(T), (4.3)

where cochargeΠ(T) = ∑i<j min{Mi,j, cochargei,j(T)}.

Example 4.7. Let λ = (6/5, 9/6, 7/2, 4/0) be the horizontal-strip below left with the
rightmost cells in each row labelled in content reading order, so that Π(λ) is the cater-
pillar below right.

4

v1

5

v3

3

v4

1

v2

3 2

1

2

4

3

1

To calculate the coefficient of s733, we consider the three tableaux of weight α = 4153
and shape 733 as follows. The values of cochargeΠ are calculated below.

T = 4 4 4
3 3 3
1 1 1 1 2 3 3

T1 = 4 4 4
2 3 3
1 1 1 1 3 3 3

T2 = 3 4 4
2 3 3
1 1 1 1 3 3 4

2 + 1 + 2 = 5 3 + 0 + 2 = 5 3 + 1 + 2 = 6
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Therefore, the coefficient of s733 is (q6 + 2q5).

Corollary 4.8. Let λ be a horizontal-strip whose weighted graph Π(λ) is the path below.

α1 α2 · · · · · · · · · αn

v1 v2 vn
M1 M2 Mn−1

.

Then the LLT polynomial of λ is

Gλ(x; q) = ∑
T∈SSYT(α)

qcochargeΠ(T)sshape(T), (4.4)

where cochargeΠ(T) = ∑n−1
i=1 min{Mi, number of entries in the second row of T|i,i+1}.

Example 4.9. Let λ be a horizontal-strip with exactly two rows, so that Π(λ) is

a b

vi vj

M

for some a ≥ b ≥ M, where (i, j) is either (1, 2) or (2, 1), so α = (a, b) or α = (b, a)
respectively. In either case, for each 0 ≤ k ≤ b, there is a unique tableau Tk with content
α and shape (a + b− k)k. Therefore, by Corollary 4.8, the LLT polynomial is

Gλ(x; q) =
b

∑
k=0

qmin{M,k}s(a+b−k)k = s(a+b) + · · ·+ qMs(a+b−M)M + · · ·+ qMsab. (4.5)

Note that in this example, the formula (4.3) does not depend on the labelling of Π.

The full proof of Theorem 4.6 appears in an upcoming paper. For now, we will illus-
trate the idea of the proof in the case of Example 4.7.

We will use induction on M(λ). By applying Lemma 3.11 to rows R3 and R4, we can
write

Gλ(x; q) = qGλ′(x; q) + (1− q)Gλ′′(x; q), (4.6)

where the weighted graphs Π = Π(λ), Π′ = Π(λ′), and Π′′ = Π(λ′′) are given below.

4

v1

5

v3

1

v2

3

v4
3

1

2
4

v1

5

v3

1

v2

3

v4
2

1

2
2

v1

7

v3

1

v2

3

v4
2

1

2
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By our induction hypothesis, our task is now to prove that

∑
T∈SSYT(4153)

qcochargeΠ(T)sshape(T) = q ∑
T∈SSYT(4153)

qcochargeΠ′ (T)sshape(T) (4.7)

+ (1− q) ∑
S∈SSYT(2173)

qcochargeΠ′′ (S)sshape(S).

Let us consider the coefficient of s733. The first sum on the right hand side corre-
sponds to the three tableaux from Example 4.7 below.

T = 4 4 4
3 3 3
1 1 1 1 2 3 3

T1 = 4 4 4
2 3 3
1 1 1 1 3 3 3

T2 = 3 4 4
2 3 3
1 1 1 1 3 3 4

2 + 1 + 2 = 5 2 + 0 + 2 = 4 2 + 1 + 2 = 5

The factor of q tells us to increase these values by one, and this corresponds to increasing
M1,3 from 2 to 3. Indeed, for the tableaux T1 and T2, because cocharge1,3(Ti) = 3, the
contribution to cochargeΠ(Ti) is now min{3, 3} = 3 instead of min{2, 3} = 2. However,
the tableau T has cocharge1,3(T) = 2, so in this case we do not want to increase the
cocharge by one. The second sum allows us to make this correction. It corresponds to
the tableau below.

S = 4 4 4
3 3 3
1 1 2 3 3 3 3

2 + 1 + 2 = 5

The factor of (1− q) tells us to change the term q6s733 corresponding to T back into the
term q5s733. In general, this second sum precisely corrects for those tableaux for which
we do not want to increase the cocharge by one when we change M1,3. To be more
precise, (4.7) will follow from a bijection

ϕ : SSYT(2173)→ {T ∈ SSYT(4153) : cocharge1,3(T) ≤ 2} (4.8)

such that cochargeΠ′′(S) = cochargeΠ′(ϕ(S)).

Theorem 4.6 expresses the LLT polynomial Gλ(x; q) in terms of the weighted graph
Π(λ) but not in terms of λ itself. In other words, if Π(λ) and Π(µ) are equal and
triangle-free, then Gλ(x; q) = Gµ(x; q). We conjecture that the formula (4.3) does not
depend on the labelling of the vertices of Π(λ), provided that whenever i < j < k and
vi is adjacent to vk, then Mj,k = |vj|. By Proposition 3.13, Part 5, this is equivalent to the
following statement.
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Conjecture 4.10. Let λ and µ be horizontal-strips. If the weighted graphs Π(λ) and
Π(µ) are isomorphic and triangle-free, then the LLT polynomials Gλ(x; q) and Gµ(x; q)
are equal.

We further conjecture that in general a horizontal-strip LLT polynomial Gλ(x; q) is
determined by its unlabelled weighted graph.

Conjecture 4.11. Let λ and µ be horizontal-strips. If the weighted graphs Π(λ) and
Π(µ) are isomorphic, then the LLT polynomials Gλ(x; q) and Gµ(x; q) are equal.
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