On Combinatorial Models for Affine Crystals

Cristian Lenart* and Adam Schultze ${ }^{\dagger 1}$
${ }^{1}$ Dept. of Mathematics, State Univ. of New York at Albany, Albany, NY, 12222, USA

Abstract

We biject two combinatorial models for tensor products of (single-column) Kirillov-Reshetikhin crystals of any classical type $A-D$: the quantum alcove model and the tableau model. This allows for the translation of calculations in the former model (of the energy function, the combinatorial R-matrix, the key statistics relevant to Demazure crystals, etc.) to the latter, which is simpler.

Résumé. Nous établissons une bijection entre deux modèles combinatoires pour les produits tensoriels des cristaux de Kirillov-Reshetikhin (indexés par colonnes) de tout type classique $A-D$: le modèle des alcôves quantique et les tableaux. Cela nous permet de traduire des calculs du premier modèle (la fonction d'energie, la matrice R combinatoire, les clefs pour les cristaux de Demazure) en second, qui est plus simple.

Keywords: Kirillov-Reshetikhin crystal, Kashiwara-Nakashima column, alcove model.

1 Introduction

Kashiwara's crystals are colored directed graphs encoding the structure of certain bases, called crystal bases, for representations of quantum groups, as the quantum parameter goes to zero [2]. The first author and Postnikov realized the highest weight crystals of symmetrizable Kac-Moody algebras in terms of the so-called alcove model [9]. This is a combinatorial model whose objects (indexing the vertices of the crystal graph) are saturated chains in the Bruhat order of the corresponding Weyl group W. Later, the first author and Lubovsky introduced a more general model, called the quantum alcove model [6]; its objects are paths in the quantum Bruhat graph on W, denoted $\mathrm{QBG}(W)$. It was shown in [8] that the quantum alcove model uniformly describes (tensor products of) single-column Kirillov-Reshetikhin (KR) crystals for all the untwisted affine Lie algebras.

In classical types, there are (type-specific) models for KR crystals based on fillings of Young diagrams [2]. While they are simpler, they have less easily accessible information; so it is generally hard to use them in specific computations: of the energy function (which induces a grading on KR crystals), the combinatorial R-matrix (the unique affine crystal isomorphism interchanging tensor factors), the key statistics (relevant to Demazure

[^0]crystals), etc. On the other hand, these computations were carried out in the quantum alcove model in [8, 7], respectively. Thus, our goal is to translate them to the tableau models, via an explicit bijection between the two models.

Such bijections were given in types A, C in $[5,6]$, and here we construct them in types B, D. The map from the quantum alcove model to the tableau model is a "forgetful map," while the inverse map is highly nontrivial in types B, D. We construct it by successively applying four algorithms; the first three (called "split," "extend," "reorder") operate on column fillings, while the last one, which is a greedy-type algorithm, constructs the needed paths in $\operatorname{QBG}(W)$. The last two algorithms are based on a subtle pattern avoidance concept ("blocked off" configurations), stemming from the complexity of QBG (W) in types B, D. The "extend" algorithm addresses another complexity in these types, related to the splitting of the KR (affine) crystals when viewed as classical crystals.

2 Background

2.1 Root systems

Let \mathfrak{g} be a complex simple Lie algebra, and \mathfrak{h} a Cartan subalgebra. Let $\Phi \subset \mathfrak{h}^{*}$ be the corresponding irreducible root system, $\mathfrak{h}_{\mathbb{R}}^{*}$ the real span of the roots, and $\Phi^{+} \subset \Phi$ the set of positive roots. As usual, we denote $\rho:=\frac{1}{2}\left(\sum_{\alpha \in \Phi^{+}} \alpha\right)$. Let $\alpha_{i} \in \Phi^{+}$be the simple roots, for i in an indexing set I. We denote $\langle\cdot, \cdot\rangle$ the nondegenerate scalar product on $\mathfrak{h}_{\mathbb{R}}^{*}$ induced by the Killing form. Given a root α, we consider the corresponding coroot α^{\vee} and reflection s_{α}. The weight lattice Λ is generated by the fundamental weights ω_{i}, for $i \in I$, which form the dual basis to the simple coroots. Let Λ^{+}be the set of dominant weights.

Let W be the corresponding Weyl group, whose Coxeter generators are denoted, as usual, by $s_{i}:=s_{\alpha_{i}}$. The length function on W is denoted by $\ell(\cdot)$. The Bruhat order on W is defined by its covers $w \lessdot w s_{\alpha}$, for $\ell\left(w s_{\alpha}\right)=\ell(w)+1$, where $\alpha \in \Phi^{+}$.

Given $\alpha \in \Phi$ and $k \in \mathbb{Z}$, we denote by $s_{\alpha, k}$ the reflection in the affine hyperplane $H_{\alpha, k}:=\left\{\lambda \in \mathfrak{h}_{\mathbb{R}}^{*}:\left\langle\lambda, \alpha^{\vee}\right\rangle=k\right\}$. These reflections generate the affine Weyl group $W_{\text {aff }}$ for the dual root system Φ^{\vee}. The hyperplanes $H_{\alpha, k}$ divide the vector space $\mathfrak{h}_{\mathbb{R}}^{*}$ into open regions, called alcoves. The fundamental alcove is denoted by A_{\circ}.

The quantum Bruhat graph $\operatorname{QBG}(W)$ on W is defined by adding downward edges, denoted $w \triangleleft w s_{\alpha}$, to the covers of the Bruhat order, i.e., its (labeled) edges are:

$$
w \xrightarrow{\alpha} w s_{\alpha} \text { if } w \lessdot w s_{\alpha} \text { or } \ell\left(w s_{\alpha}\right)=\ell(w)-2\left\langle\rho, \alpha^{\vee}\right\rangle+1, \quad \text { where } \alpha \in \Phi^{+} .
$$

2.2 Kirillov-Reshetikhin (KR) crystals

Given a simple or an affine Lie algebra \mathfrak{g}, a \mathfrak{g}-crystal is a nonempty set B along with maps $e_{i}, f_{i}: B \rightarrow B \cup\{\mathbf{0}\}$ for $i \in I$ (where $\mathbf{0} \notin B$ and I indexes the simple roots corresponding to $\mathfrak{g})$, and $w t: B \rightarrow \Lambda$. We require that $b^{\prime}=f_{i}(b)$ if and only if $b=e_{i}\left(b^{\prime}\right)$. The maps e_{i} and f_{i} are called crystal operators, and are represented as arrows $b \rightarrow b^{\prime}=f_{i}(b)$; thus they endow B with the structure of a colored directed graph. Given two \mathfrak{g}-crystals B_{1} and B_{2}, their tensor product $B_{1} \otimes B_{2}$ is defined on the Cartesian product of the two sets of vertices by a specific rule [2]. The highest weight crystal $B(\lambda)$, for $\lambda \in \Lambda^{+}$, is a certain crystal with a unique element v_{λ} such that $e_{i}\left(v_{\lambda}\right)=\mathbf{0}$, for all $i \in I$, and $w t\left(v_{\lambda}\right)=\lambda$. It encodes the structure of the crystal basis of the irreducible representation with highest weight λ of the quantum group $U_{q}(\mathfrak{g})$ as q goes to 0 [2].

A Kirillov-Reshetikhin ($K R$) crystal is a finite crystal $B^{r, s}$ for an affine algebra, associated to a rectangle of height r and length s [2]. We now describe the KR crystals $B^{r, 1}$ for type $A_{n-1}^{(1)}$ (where $r \in\{1,2, \ldots, n-1\}$), as well as for types $B_{n}^{(1)}, C_{n}^{(1)}$, and $D_{n}^{(1)}$ (where $r \in\{1,2, \ldots, n\}$). As a classical crystal (i.e., with arrows f_{0} removed), in types A_{n-1} and C_{n}, we have that $B^{r, 1}$ is isomorphic to the corresponding highest weight crystal $B\left(\omega_{r}\right)$. By contrast, in types B_{n} and D_{n}, we have that $B^{r, 1}$ becomes isomorphic to the disjoint union $B\left(\omega_{r}\right) \sqcup B\left(\omega_{r-2}\right) \sqcup B\left(\omega_{r-4}\right) \sqcup \ldots$..

In classical types, the fundamental crystal $B\left(\omega_{k}\right)$ is realized in terms of KashiwaraNakashima (KN) columns of height k [2]. These are fillings of the column with entries $\{1<2<\ldots<n\}$ in type A_{n-1}, and entries $\{1<\ldots<n<0<\bar{n}<\ldots<\overline{1}\}$ in types B_{n}, C_{n}, and D_{n} (see the exceptions below), such that the following conditions hold.

1. The entries are strictly increasing from the top to bottom with the exception that:
(a) the letter 0 only appears in type B_{n} and can be repeated;
(b) the letters n and \bar{n} in type D_{n} are incomparable, and thus can alternate.
2. If both letters i and \bar{i} appear in the column, while i is in the a-th box from the top and $\bar{\imath}$ is in the b-th box from the bottom, then $a+b \leq i$.

2.3 The quantum alcove model

Fix a dominant weight λ in a finite root system. The quantum alcove model depends on the choice of a sequence of positive roots $\Gamma:=\left(\beta_{1}, \ldots, \beta_{m}\right)$, called a λ-chain [9]. This encodes a shortest sequence of pairwise adjacent alcoves connecting the fundamental alcove A_{\circ} to $A_{\circ}-\lambda$; on another hand, the latter sequence corresponds to a reduced decomposition of the unique affine Weyl group element sending A_{\circ} to $A_{\circ}-\lambda$. Any choice of such a reduced decomposition (or, equivalenly, of a mentioned alcove path) is allowed. Let $r_{i}:=s_{\beta_{i}}$.

Definition 2.1 ([5]). A subset $J=\left\{j_{1}<j_{2}<\ldots<j_{s}\right\} \subseteq[m]:=\{1, \ldots, m\}$ (possibly empty) is an admissible subset (of folding positions) if we have the following path in $\operatorname{QBG}(W)$:

$$
1 \xrightarrow{\beta_{j_{1}}} r_{j_{1}} \xrightarrow{\beta_{j_{2}}} r_{j_{1}} r_{j_{2}} \xrightarrow{\beta_{j_{3}}} \ldots \xrightarrow{\beta_{j_{s}}} r_{j_{1}} r_{j_{2}} \ldots r_{j_{s}} .
$$

Let $\mathcal{A}(\lambda)=\mathcal{A}(\Gamma)$ be the collection of all admissible subsets (cf. Example 3.4).
Theorem $2.2([6,7,8])$. Let $p:=\left(p_{1}, \ldots, p_{r}\right)$ be a composition and $\lambda:=\omega_{p_{1}}+\ldots+\omega_{p_{r}}$. The set $\mathcal{A}(\lambda)$, properly endowed with the structure of an affine crystal, is a combinatorial model for the tensor product of $K R$ crystals $B^{p}:=B^{p_{1}, 1} \otimes \ldots \otimes B^{p_{r, 1}}$.

3 The bijection between the two models in types A_{n-1}, C_{n}

3.1 The quantum alcove model and filling map in type A_{n-1}

We start with the basic facts about the root system for type A_{n-1}. We identify the space $\mathfrak{h}_{\mathbb{R}}^{*}$ with the quotient $V:=\mathbb{R}^{n} / \mathbb{R}(1, \ldots, 1)$, where $\mathbb{R}(1, \ldots, 1)$ denotes the subspace spanned by $(1, \ldots, 1)$. Let $\varepsilon_{1}, \ldots, \varepsilon_{n} \in V$ be the images of the coordinate vectors in \mathbb{R}^{n}. The root system is $\Phi=\left\{\alpha_{i j}:=\varepsilon_{i}-\varepsilon_{j}: i \neq j, 1 \leq i, j \leq n\right\}$. The simple roots are $\alpha_{i}=\alpha_{i, i+1}$, for $i=1, \ldots, n-1$. The weight lattice is $\Lambda=\mathbb{Z}^{n} / \mathbb{Z}(1, \ldots, 1)$. The fundamental weights are $\omega_{i}=\varepsilon_{1}+\varepsilon_{2}+\ldots+\varepsilon_{i}$, for $i=1, \ldots, n-1$. A dominant weight $\lambda=\lambda_{1} \varepsilon_{1}+\ldots+\lambda_{n-1} \varepsilon_{n-1}$ is identified with the partition $\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n-1} \geq \lambda_{n}=\right.$ $0)$ having at most $n-1$ parts. Note that $\rho=(n-1, n-2, \ldots, 0)$. Considering the Young diagram of the dominant weight λ as a concatenation of columns, whose heights are $\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots$, corresponds to expressing λ as $\omega_{\lambda_{1}^{\prime}}+\omega_{\lambda_{2}^{\prime}}+\ldots\left(\lambda^{\prime}\right.$ is the conjugate of $\left.\lambda\right)$.

The Weyl group W is the symmetric group S_{n}, which acts on V by permuting the coordinates $\varepsilon_{1}, \ldots \varepsilon_{n}$. Permutations $w \in S_{n}$ are written in one-line notation $w=$ $w(1) \ldots w(n)$. For simplicity, we use the same notation (i, j), with $1 \leq i<j \leq n$, for the positive root $\alpha_{i j}$ and the reflection $s_{\alpha_{i j}}$, which is the transposition $t_{i j}$ of i and j.

We now consider the specialization of the quantum alcove model to type A_{n-1}. For any $k=1, \ldots, n-1$, we have the following ω_{k}-chain, denoted by $\Gamma(k)$ [5]:

$$
\begin{array}{llll}
(k, k+1), & (k, k+2), & \ldots, & (k, n), \\
& \ldots \\
(2, k+1), & (2, k+2), & \ldots, & (2, n) \\
(1, k+1), & (1, k+2), & \ldots, & (1, n)) .
\end{array}
$$

We construct a λ-chain $\Gamma=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)$ as the concatenation $\Gamma:=\Gamma_{1} \ldots \Gamma_{\lambda_{1}}$, where $\Gamma_{i}:=\Gamma\left(\lambda_{i}^{\prime}\right)$. Let $J=\left\{j_{1}<\ldots<j_{s}\right\}$ be a set of folding positions in Γ, not necessarily admissible, and let T be the corresponding list of roots of Γ; we will use J and T interchangeably. The factorization of Γ induces a factorization on T as $T=T_{1} T_{2} \ldots T_{\lambda_{1}}$.

We denote by $T_{1} \ldots T_{i}$ the permutation obtained by multiplying the transpositions in T_{1}, \ldots, T_{i} considered from left to right. For $w \in W$, written $w=w_{1} w_{2} \ldots w_{n}$, let $w[i, j]=$ $w_{i} \ldots w_{j}$. To each J we can associate a filling of a Young diagram λ, as follows.

Definition 3.1. Let $\pi_{i}=\pi_{i}(T):=T_{1} \ldots T_{i}$. We define the filling map, which produces a filling of the Young diagram λ, by fill_ $A(J)=$ fill_ $A(T):=C_{1} \ldots C_{\lambda_{1}}$, where $C_{i}:=\pi_{i}\left[1, \lambda_{i}^{\prime}\right]$. We define the sorted filling map "sfill_A" to be the composition "sort o fill_A," where "sort" reorders increasingly each column of a filling.

Definition 3.2. Define a circular order \prec_{i} on $[n]:=\{1, \ldots, n\}$ starting at i, by

$$
i \prec_{i} i+1 \prec_{i} \ldots \prec_{i} n \prec_{i} 1 \prec_{i} \ldots \prec_{i} i-1 .
$$

It is convenient to think of this order in terms of the numbers $1, \ldots, n$ arranged on a circle clockwise. We make the convention that, whenever we write $a \prec b \prec c \prec \ldots$, we refer to the circular order $\prec=\prec_{a}$. Below is a criterion for $\mathrm{QBG}(W)$ in type A_{n-1}.

Proposition 3.3 ([5]). For $1 \leq i<j \leq n$, we have an edge $w \xrightarrow{(i, j)} w \cdot(i, j)$ in $\mathrm{QBG}(W)$ if and only if there is no k such that $i<k<j$ and $w(i) \prec w(k) \prec w(j)$.

Example 3.4. Consider the dominant weight $\lambda=3 \varepsilon_{1}+2 \varepsilon_{2}=\omega_{1}+2 \omega_{2}$ in the root system A_{2}, which corresponds to the Young diagram $\begin{array}{r}\square \\ \hline\end{array}$

$$
\Gamma=\Gamma_{1} \Gamma_{2} \Gamma_{3}=\Gamma(2) \Gamma(2) \Gamma(1)=\{\underline{(2,3)}, \underline{(1,3)} \underline{(2,3)},(1,3) \mid \underline{(1,2)},(1,3)\}
$$

Consider $J=\{1,2,3,5\}$, cf. the underlined roots, with $T=\{(2,3),(1,3)|(2,3)|(1,2)\}$.
We write the permutations in Definition 2.1 as broken columns. Note that J is admissible since, based on Proposition 3.3 and the Bruhat cover notation from Section 2.1, we have

the bold entries are those swapped by the underlined transpositions. By considering the top part of the last permutation in each segment, and by concatenating them left to right, we obtain fill_A(J)= \begin{tabular}{|l|l|l}
2 \& 2 \& 1

\hline 3 \& 1 \&

\hline

 and sfill_A(J)=

\hline 2 \& 1 \& 1

\hline 3 \& 2

\hline
\end{tabular}.

Theorem 3.5 ($[5,6])$. The map "sfill_ A " is an affine crystal isomorphism between $\mathcal{A}(\lambda)$ (recall Definition 2.1) and $B^{\lambda^{\prime}}:=B^{\lambda_{1}^{\prime}, 1} \otimes B^{\overline{\lambda_{2}^{\prime}}, 1} \otimes \ldots$

The proof of bijectivity is given in [5] by exhibiting an inverse map. We will now present the algorithm for constructing this map, as the corresponding construction in the other classical types has this algorithm as a starting point.

3.2 The inverse map in type A_{n-1}

Consider $B^{\lambda^{\prime}}:=B^{\lambda_{1}^{\prime}, 1} \otimes B^{\lambda_{2}^{\prime}, 1} \otimes \ldots=B\left(\omega_{\lambda_{1}^{\prime}}\right) \otimes B\left(\omega_{\lambda_{2}^{\prime}}\right) \otimes \ldots$. This is simply the set of column-strict fillings of the Young diagram λ with integers in [n]. Fix a filling b in $B^{\lambda^{\prime}}$ written as a concatenation of columns $b_{1} \ldots b_{\lambda_{1}}$.

The algorithm for mapping b to a sequence of roots $S \subset \Gamma$ consists of two subalgorithms, which we call the Reorder algorithm (this reverses the ordering in the column b_{i} back to that of the corresponding column in fill_A(S)), and the Path algorithm (this provides the corresponding path in the quantum Bruhat graph). The Reorder algorithm (Algorithm 3.6) takes b as input and outputs a filling ord_A(b) $=C$, a reordering of the column entries, based on the circle order given in Definition 3.2.

Algorithm 3.6. ("ord_A")
let $C_{1}:=b_{1}$;
for i from 2 to λ_{1} do
for j from 1 to λ_{i}^{\prime} do
$\operatorname{let} C_{i}(j):=\min _{\prec_{C_{i-1}(j)}}\left(b_{i} \backslash\left\{C_{i}(1), \ldots, C_{i}(j-1)\right\}\right)$
end do;
end do;
return $C:=C_{1} \ldots C_{\lambda_{1}}$.
Example 3.7. Algorithm 3.6 gives the filling C from b below.

$$
\left.b=\begin{array}{|l|l|l|l}
3 & 2 & 1 & 2 \\
\hline 5 & 3 & 2 \\
\hline 6 & 4 & 4
\end{array}\right) \left.\xrightarrow{\text { ord_A }} \rightarrow \begin{array}{|l|l|l|l}
\hline 3 & 3 & 4 & 2 \\
\hline 5 & 2 & 2 & \\
\hline 6 & 4 & 1
\end{array} \right\rvert\,=C
$$

The Path algorithm (Algorithm 3.8) inputs the reordered filling C and outputs a sequence of roots path_$A(C)=S \subset \Gamma$. Let C_{0} be the increasing column $(1,2, \ldots, n)$.

Algorithm 3.8. ("path_A")
for ifrom 1 to λ_{1} do let $S_{i}:=\varnothing, A:=C_{i-1} ;$
for (l, m) in Γ_{i} do
if $A(l) \neq C_{i}(l)$ and $A(l) \prec A(m) \prec C_{i}(l)$ then let $S_{i}:=S_{i}(l, m)$ and $A:=A(l, m)$; end if;
end do;
end do;
return $S:=S_{1} \ldots S_{\lambda_{1}}$.
Example 3.9. In Example 3.4, we recover J from sfill_ $A(J)$ via "path_ $A \circ$ ord_A."
Theorem 3.10 ([5]). If fill_A $(T)=C$, then the output of the Path algorithm $C \mapsto S$ is such that $S=T$. Moreover, the map "path_A \circ ord_ A " is the inverse of "sfill_A".

3.3 The quantum alcove model and filling map in type C_{n}

The filling map naturally extends to all classical types, however the corresponding inverse maps become more and more complex as we progress beyond type A_{n-1}. This fact is a direct consequence of the differences between the structures of the corresponding KN columns and quantum Bruhat graphs.

Recall from the construction of the filling map in type A_{n-1} that we treated the columns of a filling as initial segments of permutations. However, the KN columns of type C_{n} allow for both i and \bar{i} to appear as entries in such a column. In order to pursue the analogy with type A_{n-1}, we need to replace a KN column with its split version, i.e., two columns of the same height as the initial column. The splitting procedure, described in [3], gives an equivalent definition of KN columns, cf. Section 2.2.

Given our fixed dominant weight λ, an element b of $B^{\lambda^{\prime}}$ can be viewed as a concatenation of KN columns $b_{1} \ldots b_{\lambda_{1}}$, with b_{i} of height λ_{i}^{\prime}. Let $b^{\prime}:=b_{1}^{l} b_{1}^{r} \ldots b_{\lambda_{1}}^{l} b_{\lambda_{1}}^{r}$ be the associated filling of the shape 2λ, where $\left(b_{i}^{l}, b_{i}^{r}\right):=\left(l b_{i}, r b_{i}\right)=\operatorname{split} C C\left(b_{i}\right)$ is the splitting of the KN column b_{i}.

The algorithm for mapping b^{\prime} to a sequence of roots $S \subset \Gamma$ is similar to the type A_{n-1} one. The Reorder algorithm "ord_C" for type C_{n} is the obvious extension from type A_{n-1}. The Path algorithm "path_C" is also similar to its type A_{n-1} counterpart.

Theorem 3.11 ($[5,6])$. The map "path_C o ord_C o split_C" is the inverse of the sorted filling map "sfill_C" in type C_{n}, which is an affine crystal isomorphism between $\mathcal{A}(\lambda)$ and $B^{\lambda^{\prime}}$.

4 The bijection in types B_{n} and D_{n}

We now move to the main content of this paper: extending the work done in types A_{n-1} and C_{n} to both types B_{n} and D_{n}, by addressing the complexities in these types.

4.1 The quantum alcove model and filling map in type B_{n}

We start with the basic facts about the root system of type B_{n}. We can identify the space $\mathfrak{h}_{\mathbb{R}}^{*}$ with $V:=\mathbb{R}^{n}$, with coordinate vectors $\varepsilon_{1}, \ldots, \varepsilon_{n} \in V$. The root system is $\Phi=\left\{ \pm \varepsilon_{i} \pm\right.$ $\left.\varepsilon_{j}: i \neq j, 1 \leq i<j \leq n\right\} \cup\left\{ \pm \varepsilon_{i}: 1 \leq i \leq n\right\}$. The Weyl group W is the group of signed permutations, which acts on V by permuting the coordinates and changing their signs. A signed permutation is a bijection w from $[\bar{n}]:=\{1<2<\ldots<n<\bar{n}<\overline{n-1}<\ldots<\overline{1\}}$ to $[\bar{n}]$ which satisfies $w(\bar{\imath})=\overline{w(i)}$. Here, $\bar{\imath}$ is viewed as $-i$, so that $\overline{\bar{l}}=i$, and we can define $|i|$ and $\operatorname{sign}(i) \in\{ \pm 1\}$, for $i \in[\bar{n}]$. We will use the so-called window notation $w=w(1) w(2) \ldots w(n)$. For simplicity, given $1 \leq i<j \leq n$, we denote by (i, j) and $(i, \bar{\jmath})$ the positive roots $\varepsilon_{i}-\varepsilon_{j}$ and $\varepsilon_{i}+\varepsilon_{j}$, respectively; the corresponding reflections, denoted in the same way, are identified with the composition of transpositions $t_{i j} t_{\bar{\jmath} \imath}$ and $t_{i \bar{\jmath}} t_{j \bar{\imath}}$,
respectively. Finally, we denote by (i, \bar{i}) the root ε_{i} and the corresponding reflection, identified with the transposition $t_{i \bar{i}}$.

We now consider the specialization of the quantum alcove model to type B_{n}. For any $k=1, \ldots, n$, we have the following (split) ω_{k}-chain, denoted by $\Gamma^{l}(k) \Gamma^{r}(k)$ [5], where:

$$
\begin{align*}
\Gamma^{l}(k):= & \Gamma^{k k} \ldots \Gamma^{k 1}, \quad \Gamma^{r}(k):=\Gamma^{k} \ldots \Gamma^{2} \tag{4.1}\\
\Gamma^{k i}:= & \left(\begin{array}{l}
(i, k+1), \quad(i, k+2), \ldots, \quad(i, n), \\
\\
\\
\\
\\
\\
\\
\\
(i, \bar{i}), \bar{n}), \\
(i, \overline{i-1}), \quad(i, \overline{n-1}), \ldots,(i, \overline{i-2}), \ldots, \quad(i, \overline{1})), \\
\Gamma^{i}:= \\
((i, \overline{i-1}),(i, \overline{i-2}), \ldots,(i, \overline{1})) .
\end{array}\right.
\end{align*}
$$

We refer to the four rows above in $\Gamma^{k i}$ as stages I, II, III, and IV respectively. We can construct a λ-chain as a concatenation $\Gamma:=\Gamma_{1}^{l} \Gamma_{1}^{r} \ldots \Gamma_{\lambda_{1}}^{l} \Gamma_{\lambda_{1}}^{r}$, where $\Gamma_{i}^{l}:=\Gamma^{l}\left(\lambda_{i}^{\prime}\right)$ and $\Gamma_{i}^{r}:=\Gamma^{r}\left(\lambda_{i}^{\prime}\right)$. We will use interchangeably the set of positions J in the λ-chain Γ and the sequence of roots T in Γ in those positions, which we call a folding sequence. The factorization of Γ with factors $\Gamma_{i}^{l}, \Gamma_{i}^{r}$ induces a factorization of T with factors T_{i}^{l}, T_{i}^{r}. We define the circle order \prec_{a} in a similar way to Definition 3.2, but on the set $[\bar{n}]$. Below is a criterion for $\operatorname{QBG}(W)$ in type B_{n}, analogous to Proposition 3.3.

Proposition 4.1 ([1]). The quantum Bruhat graph of type B_{n} has the following edges.

1. Given $1 \leq i<j \leq n$, we have an edge $w \xrightarrow{(i, j)} w \cdot(i, j)$ if and only if there is no k such that $i<k<j$ and $w(i) \prec w(k) \prec w(j)$.
2. Given $1 \leq i<j \leq n$, we have an edge $w \xrightarrow{(i, \bar{j})} w \cdot(i, \bar{\jmath})$ if and only if one of the following conditions holds:
(a) $w(i)<w(\bar{\jmath}), \operatorname{sign}(w(i))=\operatorname{sign}(w(\bar{j}))$, and there is no k such that $i<k<\bar{\jmath}$ and $w(i)<w(k)<w(\bar{\jmath}) ;$
(b) $\operatorname{sign}(w(i))=-1, \operatorname{sign}(w(\bar{\jmath}))=1$, and there is no k such that $i<k \neq j<\bar{\jmath}$ and $w(i) \prec w(k) \prec w(\bar{\jmath})$.
3. Given $1 \leq i \leq n$, we have an edge $w \xrightarrow{(i, \bar{i})} w \cdot(i, \bar{i})$ if and only if:
(a) $w(i)<w(\bar{i})$ and there is no k such that $i<k<\bar{\imath}$ and $w(i) \prec w(k) \prec w(\bar{i})$;
(b) or $w(\bar{i})<w(i)$ and $i=n$.

Definition 4.2. Given a folding sequence T, we consider the signed permutations $\pi_{i}^{l}:=T_{1}^{l} T_{1}^{r} \ldots T_{i-1}^{l} T_{i-1}^{r} T_{i}^{l}, \pi_{i}^{r}:=\pi_{i}^{l} T_{i}^{r}$ (cf. the notation in Section 3.1). Then the filling map is
the map "fill_B" from folding sequences T in $\mathcal{A}(\lambda)$ to fillings fill_ $B(T)=C_{1}^{l} C_{1}^{r} \ldots C_{\lambda_{1}}^{l} C_{\lambda_{1}}^{r}$ of the shape 2λ, which are viewed as concatenations of columns; here $C_{i}^{l}:=\pi_{i}^{l}\left[1, \lambda_{i}^{\prime}\right]$ and $C_{i}^{r}:=\pi_{i}^{r}\left[1, \lambda_{i}^{\prime}\right]$, for $i=1, \ldots, \lambda_{1}$. We then define sfill_B: $\mathcal{A}(\lambda) \rightarrow B^{\lambda^{\prime}}$ to be the composition "sort o fill_B", where "sort" reorders the entries of each column increasingly; here we represent a KR crystal $B^{r, 1}$ as a split (also known as doubled) KN column of height r, see Section 4.2.

4.2 The type B_{n} inverse map

Recall from Section 2.2 that $B^{k, 1}$, as a classical type crystal, is isomorphic to the crystal $B\left(\omega_{k}\right) \sqcup B\left(\omega_{k-2}\right) \sqcup B\left(\omega_{k-4}\right) \sqcup \ldots$ where, as before, the elements of the set $B\left(\omega_{r}\right)$ are given by type $B \mathrm{KN}$ columns of height r. This presents the following two issues.

1. As in type C_{n}, the KN columns in type B_{n} are allowed to contain both i and \bar{i} values; in addition, they may contain the value 0 . There is a type B_{n} splitting algorithm "split_B;" see [4] and Definition 4.3.
2. $B^{k, 1}$ contains columns of height less than k, so we need to extend them to full height k, such that the reflections corresponding to $\Gamma^{l}(k) \Gamma^{r}(k)$ in (4.1) may be correctly applied. The respective algorithm "extend_B" is given in Definition 4.4.

Definition 4.3 ([4]]). Let C be a column and $I=\left\{z_{1}>\ldots>z_{r}\right\}$ be the set letters 0 in C and the unbarred letters z such that the pair (z, \bar{z}) occurs in C. The column C can be split when there exists a set of r unbarred letters $J=\left\{t_{1}>\ldots>t_{r}\right\} \subset[n]$ such that t_{1} is the greatest letter in [n] satisfying: $t_{1}<z_{1}, t_{1} \notin C$, and $\overline{t_{1}} \notin C$, and for $i=2, \ldots, r$, the letter t_{i} is the greatest value in $[n]$ satisfying $t_{i}<\min \left(t_{i-1}, z_{i}\right), t_{i} \notin C$, and $\bar{t}_{i} \notin C$. In this case we write:

1. $r C$ for the column obtained by changing $\overline{z_{i}}$ into $\overline{t_{i}}$ in C for each letter $z_{i} \in I$, and by reordering if necessary,
2. lC for the column obtained by changing z_{i} into t_{i} in C for each letter $z_{i} \in I$, and by reordering if necessary.

The pair $(l C, r C)$ is then called a split (or doubled) column.
Definition 4.4 ([1]). Given a split column (lC, $r C$) of length $1 \leq r<n$ and $r \leq k<n$, append $\left\{\bar{\imath}_{1}<\ldots<\bar{i}_{r-k}\right\}$ to $l C$ and $\left\{i_{1}<\ldots<i_{r-k}\right\}$ to $r C$, where i_{1} is the minimal value in $[\bar{n}]$ such that $i_{1}, \bar{\nu}_{1} \notin l C, r C$, and i_{t} for $2 \leq t \leq r-k$ is minimum value in $[\bar{n}]$ such that $i_{t}, \bar{i}_{t} \notin l C, r C$ and $i_{t}>i_{t-1}$. Sort the extended columns increasingly. Let ($\left.\widehat{l C}, \widehat{r C}\right)$ be the extended split column.

Example 4.5. A type $B_{8} K N$ column with its split and extended height 6 columns.

$$
C=\begin{array}{|l|}
\hline 5 \\
\hline 0 \\
\hline \overline{8} \\
\hline \overline{5} \\
\hline
\end{array}(l C, r C)=\begin{array}{|c|c|}
\hline 4 & 5 \\
\hline 7 & \overline{8} \\
\hline \overline{\overline{8}} & \overline{7} \\
\hline \overline{5} & \overline{4} \\
\hline
\end{array}(\widehat{l C}, \widehat{r C})=\begin{array}{|c|c|}
\hline 4 & 1 \\
\hline 7 & 2 \\
\hline \overline{\overline{8}} & 5 \\
\hline \overline{5} & \overline{8} \\
\hline \overline{2} & \overline{7} \\
\hline \overline{1} & \overline{4} \\
\hline
\end{array}
$$

There are additional complexity issues due to the structure of $\operatorname{QBG}(W)$ in type B_{n}. The subtle differences in the quantum Bruhat criteria for types C_{n} and B_{n} make the natural extensions of the reorder rule and Path algorithm fail in type B_{n}. We enhance these algorithms, based on the following pattern avoidance in two adjacent columns.

Definition 4.6. We say that columns $C=\left(l_{1}, l_{2}, \ldots, l_{k}\right)$ and $C^{\prime}=\left(r_{1}, r_{2}, \ldots, r_{k}\right)$ are blocked off at i by $b=r_{i}$ if and only if the following hold:

1. $\left|l_{i}\right| \leq b<n$, where $\left|l_{i}\right|=b$, if and only if $l_{i}=\bar{b}$;
2. $\{1,2, \ldots, b\} \subset\left\{\left|l_{1}\right|,\left|l_{2}\right|, \ldots,\left|l_{i}\right|\right\}$ and $\{1,2, \ldots, b\} \subset\left\{\left|r_{1}\right|,\left|r_{2}\right|, \ldots,\left|r_{i}\right|\right\}$;
3. $\left|\left\{j: 1 \leq j \leq i, l_{j}<0, r_{j}>0\right\}\right|$ is odd.

Proposition 4.7. If columns C and C^{\prime} are blocked off at i by b, then there is no subsequence of the respective part of Γ producing a path between C and C^{\prime} in $\mathrm{QBG}(W)$.

We now define the enhanced versions of the Reorder and Path algorithms. Let $b:=$ $b_{1}^{l} b_{1}^{r} \ldots b_{\lambda_{1}}^{l} b_{\lambda_{1}}^{r}=b_{1} \ldots b_{2 \lambda_{1}}$ be extended split columns indexing a vertex of the crystal $B^{\lambda^{\prime}}$ of type B_{n}. Similarly, let $\Gamma:=\Gamma_{1}^{l} \Gamma_{1}^{r} \ldots \Gamma_{\lambda_{1}}^{l} \Gamma_{\lambda_{1}}^{r}=\Gamma_{1} \ldots \Gamma_{2 \lambda_{1}}$.

Algorithm 4.8. ("ord_B")
let $C_{1}:=b_{1}$;
for i from 2 to $2 \lambda_{1}$ do
for j from 1 to $\lambda_{i}^{\prime}-1$ do
let $C_{i}(j):=\min _{\prec_{C_{i-1}(j)}}\left(b_{i} \backslash\left\{C_{i}(1), \ldots, C_{i}(j-1)\right\}\right.$ so that C_{i-1}, C_{i} not blocked off at j)
end do;
let $C_{i}\left(\lambda_{i}^{\prime}\right):=\min _{\prec_{c_{i-1}(j)}}\left(b_{i} \backslash\left\{C_{i}(1), \ldots, C_{i}\left(\lambda_{i}^{\prime}-1\right)\right\}\right.$
end do;
return $C:=C_{1} \ldots C_{2 \lambda_{1}}=C_{1}^{l} C_{1}^{r} \ldots C_{\lambda_{1}}^{l} C_{\lambda_{1}}^{r}$.
Example 4.9. Algorithm 4.8 gives the filling C from b below. Note that Algorithm 3.6 would have paired the 3 with the $\overline{3}$ in the $4^{\text {th }}$ row. However, this would cause the two columns to be blocked off at 4 by 3, so the type B algorithm skips to the next value and pairs the 8 with the $\overline{3}$ instead.

$$
b=\begin{array}{|c|c|}
\hline 1 & 1 \\
\hline 4 & 3 \\
\hline \overline{2} & 5 \\
\hline \overline{3} & 8 \\
\hline 5 & \overline{2} \\
\hline \text { ord } _B \\
\hline
\end{array} \begin{array}{|l|l|}
\hline 1 & 1 \\
\hline \frac{4}{2} & 5 \\
\hline \overline{3} & \overline{2} \\
\hline & 8 \\
\hline & 3 \\
\hline
\end{array}=C
$$

The algorithm "path_B" (Algorithm 4.10) takes the type B reordered, extended, split filling $C=C_{1} \ldots C_{2 \lambda_{1}}$ given by Algorithm 4.8, and outputs a sequence of roots path_B $(C)=S \subset \Gamma$. We let C_{0} be the increasing column $(1,2, \ldots, n)$.

Algorithm 4.10. ("path_B")
for i from 1 to $2 \lambda_{1}$ do let $S_{i}:=\varnothing, A:=C_{i-1}$;
for (l, m) in $\Gamma_{i} d o$
if $(l, m)=(i, i+1)$ and A, C_{i} are blocked off at i by $C_{i}(i)$, then let $S_{i}:=S_{i},(i, i+1)$, $A:=A(i, i+1)$;
elsif $A(l) \neq C_{i}(l)$ and $A(l) \prec A(m) \prec C_{i}(l)$ and $A(l, m), C_{i}$ not blocked off at l by $C_{i}(l)$, then let $S_{i}:=S_{i}(l, m), A:=A(l, m)$;
end $i f$;
end do;
end do;
return $S:=S_{1} \ldots S_{2 \lambda_{1}}=S_{1}^{l} S_{1}^{r} \ldots S_{\lambda_{1}}^{l} S_{\lambda_{1}}^{r}$.

Example 4.11. Consider the crystal $B^{(2,2)}$ of type B_{3}. Then $\lambda^{\prime}=\lambda=(2,2)$ and $\Gamma=$ $\Gamma(2) \Gamma(2)$. Suppose that we have $\widehat{r C_{1}}=$\begin{tabular}{|l}
$\frac{\overline{3}}{2}$

\hline$\frac{1}{2}$

\hline

 and $\widehat{l C_{2}}=$

$\frac{1}{3}$

\hline 2

\hline 2
\end{tabular} . Algorithm 4.10 produces the following subset of $\Gamma^{l}(2)=\{(2,3),(2, \overline{2}),(2, \overline{3}),(2, \overline{1}),(1,3),(1, \overline{1}),(1, \overline{3})\}$:

Notice that Algorithm 3.8 would have called for the use of $(1,3)$ instead of $(1, \overline{3})$. This would have caused the resulting word to be blocked off with $\widehat{l C_{2}}$ at 1 by 1 , and we can see that the original Path algorithm would not terminate correctly.

Theorem 4.12. The map "path_B o ord_B o extend_B \circ split_ B " is the inverse of the type B_{n} map "sfill_B."

4.3 The type D_{n} bijection

We briefly outline the major differences in the type D_{n} constructions. First, since KN columns of type D_{n} have no relation in the ordering of n and \bar{n}, the type D_{n} splitting algorithm "split_ D " begins by converting all (n, \bar{n}) pairs in a given column to 0 values, and then it continues as in type B_{n} [4]. There is still need for the extending algorithm, and we use the same one as in type B_{n}, but we call it "extend_ D ". The quantum Bruhat graph criterion in type D_{n} differs from type B_{n} in that we no longer have any arrows of the form (i, \bar{i}), but in return we have less restriction concerning arrows of the form (i, \bar{j}). This change requires further modifications to the Path and Reordering algorithms, based on the following "type D_{n} blocked off" condition.

Definition 4.13. The columns $C=\left(l_{1}, l_{2}, \ldots, l_{k}\right)$ and $C^{\prime}=\left(r_{1}, r_{2}, \ldots, r_{k}\right)$ are type D_{n} blocked off at i by $b=r_{i}$ if and only if C and C^{\prime} are blocked off at i by $b=r_{i}$, or the following hold:

1. $-\left|l_{i}\right| \leq b<0$, where $-\left|l_{i}\right|=b$ if and only if $l_{i}=\bar{b}$;
2. $\{b, b+1, \ldots, n\} \subset\left\{\left|l_{1}\right|,\left|l_{2}\right|, \ldots,\left|l_{i}\right|\right\}$ and $\{b, b+1, \ldots, n\} \subset\left\{\left|r_{1}\right|,\left|r_{2}\right|, \ldots,\left|r_{i}\right|\right\}$;
3. and $\left|\left\{j: 1 \geq j \geq i, l_{j}>0, r_{j}<0\right\}\right|$ is odd.

We then define "path_D" and "ord_D" to be as in type B_{n}, but by replacing "blocked off" with "type D_{n} blocked off".

Theorem 4.14. The map "path_D o ord_D o extend_D o split_D" is the inverse of the type D_{n} map "sfill_D."

References

[1] C. Briggs. "On Combinatorial Models for Kirillov-Reshetikhin Crystals of Type B." ProQuest Dissertations And Theses; Thesis (Ph.D.) 79-01(E) (2017), p. 56.
[2] J. Hong and S.-J. Kang. Introduction to Quantum Groups and Crystal Bases. Vol. 42. Graduate Studies in Mathematics. Providence, RI: Amer. Math. Soc., 2002.
[3] C. Lecouvey. "Schensted-type correspondence, plactic monoid, and jeu de taquin for type $C_{n}{ }^{\prime \prime}$. J. Algebra 247 (2002), pp. 295-331.
[4] C. Lecouvey. "Schensted-type correspondences and plactic monoids for types B_{n} and D_{n} ". J. Algebraic Combin. 18 (2003), pp. 99-133.
[5] C. Lenart. "From Macdonald polynomials to a charge statistic beyond type A". J. Combin. Theory Ser. A 119 (2012), pp. 683-712.
[6] C. Lenart and A. Lubovsky. "A generalization of the alcove model and its applications". J. Algebraic Combin. 41 (2015), pp. 751-783.
[7] C. Lenart and A. Lubovsky. "A uniform realization of the combinatorial R-matrix". Adv. Math. 334 (2018), pp. 151-183.
[8] C. Lenart, S. Naito, D. Sagaki, A. Schilling, and M. Shimozono. "A uniform model for Kirillov-Reshetikhin crystals II: Path models and $P=X^{\prime \prime}$. Int. Math. Res. Not. 14 (2017), pp. 4259-4319.
[9] C. Lenart and A. Postnikov. "A combinatorial model for crystals of Kac-Moody algebras". Trans. Amer. Math. Soc. 360 (2008), pp. 4349-4381.

[^0]: *clenart@albany.edu. C. Lenart was partially supported by the NSF grants DMS-1362627 and DMS1855592.
 \dagger alschultze@albany.edu. A. Schultze was partially supported by the NSF grant DMS-1362627 and the Chateaubriand Fellowship from the Embassy of France in the United States.

