Combinatorial Howe duality of symplectic type

Taehyeok Heo ${ }^{* 1}$ and Jae-Hoon Kwon ${ }^{+1,2}$
${ }^{1}$ Department of Mathematical Sciences, Seoul National University, Seoul, Korea
${ }^{2}$ Research Institute of Mathematics, Seoul National University, Seoul, Korea

Abstract

We give a symplectic analog of the RSK algorithm for Howe dual pairs of the form ($\mathfrak{g}, \mathrm{Sp}_{2 \ell}$), where \mathfrak{g} is a Lie (super)algebra of classical type. We introduce an analog of jeu de taquin sliding for spinor model of irreducible characters of a Lie superalgebra \mathfrak{g} to define P-tableau, and then define the associated Q-tableau in terms of a symplectic tableau due to King.

Keywords: crystal graphs, Howe duality, RSK correspondence, jeu de taquin

1 Introduction

Let \mathscr{P} be the set of partitions or Young diagrams $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ and, for $n \geq 1$, let $\mathscr{P}_{n}=\{\lambda \in \mathscr{P} \mid \ell(\lambda) \leq n\}$, where $\ell(\lambda)$ is the length of λ.

Let \mathcal{A} be a \mathbb{Z}_{2}-graded linearly ordered set and let $\mathscr{E}_{\mathcal{A}}$ be the exterior algebra generated by the superspace with a linear basis indexed by \mathcal{A}. Then $\mathscr{F}_{\mathcal{A}}=\mathscr{E}_{\mathcal{A}}^{*} \otimes \mathscr{E}_{\mathcal{A}}$ is a semisimple module over a classical Lie (super)algebra $\mathfrak{g}_{\mathcal{A}}$, the type of which depends on \mathcal{A}, and the ℓ-fold tensor power $\mathscr{F}_{\mathcal{A}}^{\otimes \ell}(\ell \geq 1)$ is a $\left(\mathfrak{g}_{\mathcal{A}}, \mathrm{Sp}_{2 \ell}\right)$-module with the following multiplicityfree decomposition:

$$
\begin{equation*}
\mathscr{F}_{\mathcal{A}}^{\otimes \ell} \cong \bigoplus_{(\lambda, \ell) \in \mathscr{P}(\mathrm{Sp})_{\mathcal{A}}} V_{\mathfrak{g}_{\mathcal{A}}}(\lambda, \ell) \otimes V_{\mathrm{Sp}_{2 \ell}}(\lambda), \tag{1.1}
\end{equation*}
$$

where the direct sum is over a set $\mathscr{P}(\mathrm{Sp})_{\mathcal{A}}$ of pairs $(\lambda, \ell) \in \mathscr{P} \times \mathbb{Z}_{+}$with $\ell(\lambda) \leq \ell$ (see $[1,4,3,5,12,18]$ for various choices of \mathcal{A}). Here $V_{\mathrm{Sp}_{2 \ell}}(\lambda)$ is the irreducible $\mathrm{Sp}_{2 \ell^{-}}$ module corresponding to λ, and $V_{\mathfrak{g}_{\mathcal{A}}}(\lambda, \ell)$ is the irreducible highest weight \mathfrak{g}-module corresponding to $V_{\mathrm{Sp}_{2 \ell}}(\lambda)$ appearing in $\mathscr{F}_{\mathcal{A}}^{\otimes \ell}$. This decomposition is obtained from a more general principle called Howe duality [3].

There exists a combinatorial object called a spinor model of type C, which gives the character of $V_{\mathfrak{g}}(\lambda, \ell)$ in (1.1) in a uniform way [9]. As a set, the spinor model $\mathbf{T}_{\mathcal{A}}(\lambda, \ell)$ consists of sequences of usual semistandard tableaux of two-columned shapes with letters in \mathcal{A}, where two adjacent tableaux satisfy certain configuration.

[^0]In this extended abstract, we give an analog of RSK algorithm for (1.1) in terms of spinor model. More precisely, we construct an explicit bijection

$$
\begin{equation*}
\mathbf{F}_{\mathcal{A}}^{\ell} \longrightarrow \bigsqcup_{\lambda \in \mathscr{P}(\mathrm{Sp})_{\mathcal{A}}} \mathbf{T}_{\mathcal{A}}(\lambda, \ell) \times \mathbf{K}(\lambda, \ell), \tag{1.2}
\end{equation*}
$$

where $\mathbf{F}_{\mathcal{A}}^{\ell}$ is the set of 2ℓ-tuple of \mathcal{A}-semistandard tableaux of single-columned shapes with letters in \mathcal{A}, and $\mathbf{K}(\lambda, \ell)$ is the set of symplectic tableaux of shape λ due to King [8] giving the character of $V_{\mathrm{Sp}_{2 \ell}}(\lambda)$. The bijection (1.2) yields the Cauchy type identity which follows from the decomposition (1.1) for arbitrary \mathcal{A}, and it recovers well-known identities $[7,16,19]$ when \mathcal{A} is a finite set of homogeneous degree. A full version of this paper including detailed proofs has appeared in [2].

2 Preliminaries

2.1 Notations

Let \mathbb{Z}_{+}denote the set of non-negative integers. We denote by $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots\right)$ the conjugate of λ. Let \mathcal{A} be a linearly ordered set with a \mathbb{Z}_{2}-grading $\mathcal{A}=\mathcal{A}_{0} \sqcup \mathcal{A}_{1}$. For example, for a positive integer n, let

$$
[n]=\{1<2<\cdots<n\}, \quad[\bar{n}]=\{\bar{n}<\overline{n-1}<\cdots<\overline{1}\},
$$

where we assume that all the entries are assumed to be of degree 0 . For positive integers m and n, let $\mathbb{I}_{m \mid n}=\left\{1<2<\cdots<m<1^{\prime}<2^{\prime}<\cdots<n^{\prime}\right\}$ with $\left(\mathbb{I}_{m \mid n}\right)_{0}=\{1<\cdots<$ $m\}$ and $\left(\mathbb{I}_{m \mid n}\right)_{1}=\left\{1^{\prime}<\cdots<n^{\prime}\right\}$.

For a skew Young diagram λ / μ, let $S S T_{\mathcal{A}}(\lambda / \mu)$ be the set of semistandard (or \mathcal{A} semistandard) tableaux of shape λ / μ, that is, tableaux with entries in \mathcal{A} such that (1) the entries in each row (resp. column) are weakly increasing from left to right (resp. from top to bottom), (2) the entries in \mathcal{A}_{0} (resp. \mathcal{A}_{1}) are strictly increasing in each column (resp. row).

For $a, b, c \in \mathbb{Z}_{+}$, let $\lambda(a, b, c)=\left(2^{b+c}, 1^{a}\right) /\left(1^{b}\right)$ be a skew Young diagram with two columns. For an \mathcal{A}-semistandard tableau T with two columns, let T^{L} and T^{R} denote the left and right columns of T, respectively.

We place a tableau so that its top or bottom edges is parallel with or same as a given horizontal line L. More precisely, let U_{1}, \ldots, U_{r} be column tableaux (that is, tableaux of single-columned shapes), which are \mathcal{A}-semistandard. For $\left(u_{1}, \ldots, u_{r}\right) \in \mathbb{Z}_{+}^{r}$, let

$$
\left\lfloor U_{1}, \ldots, U_{r}\right\rfloor_{\left(u_{1}, \ldots, u_{r}\right)}, \quad\left\lceil U_{1}, \ldots, U_{r}\right\rangle^{\left(u_{1}, \ldots, u_{r}\right)}
$$

be the tableaux such that the i-th column from the left is U_{i} and the bottom (resp. top) edge of U_{i} is slid by u_{i} positions up (resp. down) from L (see Examples 2.1, 2.4, 3.3, 3.6). In particular, we do not record the tuple $\left(u_{1}, \ldots, u_{r}\right)$ when $\left(u_{1}, \ldots, u_{r}\right)=(0, \ldots, 0)$.

2.2 Crystal and Schützenberger's jeu de taquin

Note that Schützenberger's jeu de taquin is also available for \mathcal{A}-semistandard tableaux. We use this algorithm in terms of crystal operator \mathcal{E} and \mathcal{F} for $\mathfrak{s l}_{2}$ (cf. [13]).

For $T=\left\lfloor T^{\mathrm{L}}, T^{\mathrm{R}}\right\rfloor_{(0, a)} \in S S T_{\lambda(a, b, c)}$ such that $\left\lfloor T^{\mathrm{L}}, T^{\mathrm{R}}\right\rfloor_{(0, a-1)}$ is not \mathcal{A}-semistandard, we define $\mathcal{E} T$ and $\mathcal{F} T$ to be the tableaux obtained by applying the usual jeu de taquin to the outer and inner corners of T, respectively. Here we define $\mathcal{E} T=\mathbf{0}$ and $\mathcal{F} T=\mathbf{0}$ when $a=0$ and $b=0$, respectively, where $\mathbf{0}$ is a formal symbol.

Example 2.1. Suppose that $\mathcal{A}=\mathbb{I}_{4 \mid 3}$.

Now, for $(U, V) \in S S T_{\mathcal{A}}\left(\left(1^{u}\right)\right) \times S S T_{\mathcal{A}}\left(\left(1^{v}\right)\right)\left(u, v \in \mathbb{Z}_{+}\right)$, we define

$$
X(U, V)=\left\{\begin{array}{ll}
\left((X T)^{\mathrm{L}},(X T)^{\mathrm{R}}\right) & \text { if } X T \neq \mathbf{0} \tag{2.1}\\
\mathbf{0} & \text { if } X T=\mathbf{0}
\end{array} \quad(X=\mathcal{E}, \mathcal{F})\right.
$$

where T is the unique tableau in $S S T_{\mathcal{A}}(\lambda(u-k, v-k, k))$ for some $0 \leq k \leq \min \{u, v\}$ such that $\left(T^{\mathrm{L}}, T^{\mathrm{R}}\right)=(U, V)$ and $\left\lfloor T^{\mathrm{L}}, T^{\mathrm{R}}\right\rfloor_{(0, u-k-1)}$ is not \mathcal{A}-semistandard. Put $\varphi(U, V)=$ $\max \left\{k \mid \mathcal{F}^{k}(U, V) \neq \mathbf{0}\right\}$ and $\mathcal{F}^{\max }(U, V)=\mathcal{F}^{\varphi(U, V)}(U, V)$.

For $r \geq 2$, let $\mathbf{E}_{\mathcal{A}}^{r}$ be the set of r-tuples of single-columned \mathcal{A}-semistandard tableaux. For $\left(U_{r}, \ldots, U_{1}\right) \in \mathbf{E}_{\mathcal{A}}^{r}$ and $1 \leq i \leq r-1$, we define

$$
X_{i}\left(U_{r}, \ldots, U_{1}\right)= \begin{cases}\left(U_{r}, \ldots, X\left(U_{i+1}, U_{i}\right), \ldots, U_{1}\right) & \text { if } X\left(U_{i+1}, U_{i}\right) \neq \mathbf{0} \tag{2.2}\\ \mathbf{0} & \text { if } X\left(U_{i+1}, U_{i}\right)=\mathbf{0}\end{cases}
$$

where $X(\cdot, \cdot)$ for $X=\mathcal{E}, \mathcal{F}$ is defined in (2.1). Then we have the following.
Lemma 2.2 ([2, Lemma 2.3]). $\mathbf{E}_{\mathcal{A}}^{r}$ is a regular $\mathfrak{s l}_{r}$-crystal with respect to \mathcal{E}_{i} and \mathcal{F}_{i} for $1 \leq i \leq$ $r-1$.

2.3 Spinor model

Let

$$
\mathscr{P}(\mathrm{Sp})=\left\{(\lambda, \ell) \mid \ell \geq 1, \lambda \in \mathscr{P}_{\ell}\right\} .
$$

For $a \in \mathbb{Z}_{+}$, let

$$
\mathbf{T}_{\mathcal{A}}(a)=\bigsqcup_{c \in \mathbb{Z}_{+}} \operatorname{SST}_{\mathcal{A}}(\lambda(a, 0, c))
$$

For $T \in \mathbf{T}_{\mathcal{A}}(a)$, we define

$$
{ }^{\mathrm{L}} T=\left(\mathcal{E}^{a} T\right)^{\mathrm{L}}, \quad{ }^{\mathrm{R}} T=\left(\varepsilon^{a} T\right)^{\mathrm{R}}
$$

Definition 2.3 ([9, Definition 6.7, Definition 6.10]). (1) For $a_{1}, a_{2} \in \mathbb{Z}_{+}$with $a_{2} \leq a_{1}$ and $\left(T_{2}, T_{1}\right) \in \mathbf{T}_{\mathcal{A}}\left(a_{2}\right) \times \mathbf{T}_{\mathcal{A}}\left(a_{1}\right)$, we define

$$
T_{2} \prec T_{1} \quad \text { if }\left\lfloor{ }^{\mathrm{R}} T_{2}, T_{1}^{\mathrm{L}}\right\rfloor \text { and }\left\lfloor T_{2}^{\mathrm{R}},{ }^{\mathrm{L}} T_{1}\right\rfloor_{\left(a_{2}, a_{1}\right)} \text { are } \mathcal{A} \text {-semistandard. }
$$

(2) For $(\lambda, \ell) \in \mathscr{P}(\mathrm{Sp})$, we define

$$
\mathbf{T}_{\mathcal{A}}(\lambda, \ell)=\left\{\mathbf{T}=\left(T_{\ell}, \ldots, T_{1}\right) \mid T_{i} \in \mathbf{T}_{\mathcal{A}}\left(\lambda_{i}\right) \text { for all } 1 \leq i \leq \ell \text { and } T_{\ell} \prec \cdots \prec T_{1}\right\} .
$$

Put

$$
\mathscr{P}(\mathrm{Sp})_{\mathcal{A}}=\left\{(\lambda, \ell) \in \mathscr{P}(\mathrm{Sp}) \mid \mathrm{T}_{\mathcal{A}}(\lambda, \ell) \neq \varnothing\right\}
$$

Let $\mathbf{x}_{\mathcal{A}}=\left\{x_{a} \mid a \in \mathcal{A}\right\}$ be the set of formal commuting variables indexed by \mathcal{A}. For an \mathcal{A}-semistandard tableau T, let $\mathbf{x}_{\mathcal{A}}^{T}=\prod_{a \in \mathcal{A}} x_{a}^{m_{a}}$, where m_{a} is the number of occurrences of a in T. Let t be a variable commuting with all $x_{a}(a \in \mathcal{A})$. For $(\lambda, \ell) \in \mathscr{P}(\mathrm{Sp})_{\mathcal{A}}$, we define the character of $\mathbf{T}_{\mathcal{A}}(\lambda, \ell)$ to be

$$
\begin{equation*}
S_{(\lambda, \ell)}\left(\mathbf{x}_{\mathcal{A}}\right)=t^{\ell} \sum_{\left(T_{\ell}, \ldots, T_{1}\right) \in \mathbf{T}_{\mathcal{A}}(\lambda, \ell)} \mathbf{x}_{\mathcal{A}}^{T_{\ell}} \cdots \mathbf{x}_{\mathcal{A}}^{T_{1}} \tag{2.3}
\end{equation*}
$$

The character $S_{(\lambda, \ell)}\left(\mathbf{x}_{\mathcal{A}}\right)$ gives various irreducible characters of Lie (super)algebras under suitable choices of \mathcal{A} (cf. [9]). In particular, it is the character of a finite-dimensional irreducible $\mathfrak{s p}_{2 n}$-module when $\mathcal{A}=[\bar{n}]$.
Example 2.4. Suppose $\mathcal{A}=\mathbb{I}_{4 \mid 3}$ and $(\lambda, \ell)=((3,2,1), 3)$. Let $\mathbf{T}=\left(T_{3}, T_{2}, T_{1}\right)$ be given by

where the dotted line is the common bottom line. In this case, $T_{3} \prec T_{2} \prec T_{1}$ and so $\mathbf{T} \in \mathbf{T}_{\mathcal{A}}(\lambda, \ell)$.
Definition 2.5 ([2, Definition 5.1]). Let $\mathbf{T}=\left(T_{\ell}, \ldots, T_{1}\right) \in \mathbf{T}_{\mathcal{A}}\left(a_{\ell}\right) \times \cdots \times \mathbf{T}_{\mathcal{A}}\left(a_{1}\right)$ be given for some $a_{1}, \ldots, a_{\ell} \in \mathbb{Z}_{+}$. Let λ / μ be a skew diagram with $\lambda, \mu \in \mathscr{P}_{\ell}$. We say that
(1) \mathbf{T} is of shape λ / μ if

$$
a_{i}=\lambda_{i}-\mu_{i}, \quad \operatorname{ht}\left(T_{i+1}^{\mathrm{L}}\right)+\mu_{i+1} \leq \operatorname{ht}\left(T_{i}^{\mathrm{L}}\right)+\mu_{i} \quad(1 \leq i \leq \ell)
$$

where $h t(U)$ denotes the height of a single-columned tableau U,
(2) \mathbf{T} is \mathcal{A}-admissible of shape λ / μ if \mathbf{T} is of shape λ / μ and

$$
\left\lfloor{ }^{\mathrm{R}} T_{i+1}, T_{i}^{\mathrm{L}}\right\rfloor_{\left(\mu_{i+1}, \mu_{i}\right)} \text { and }\left\lfloor T_{i+1}^{\mathrm{R}},{ }^{\mathrm{L}} T_{i}\right\rfloor_{\left(\lambda_{i+1}, \lambda_{i}\right)} \text { are } \mathcal{A} \text {-semistandard } \quad(1 \leq i \leq \ell-1)
$$

We denote by $\mathbf{T}_{\mathcal{A}}(\lambda / \mu, \ell)$ the set of \mathcal{A}-admissible tableaux of shape λ / μ. When \mathbf{T} is of shape λ / μ, let us often identify \mathbf{T} with a tableau

$$
\left\lfloor T_{\ell}, \ldots, T_{1}\right\rfloor_{\left(\mu_{\ell}, \ldots, \mu_{1}\right)}:=\left\lfloor T_{\ell}^{\mathrm{L}}, T_{\ell}^{\mathrm{R}}, \ldots, T_{1}^{\mathrm{L}}, T_{1}^{\mathrm{R}}\right\rfloor_{\left(\mu_{\ell}, \lambda_{\ell}, \ldots, \mu_{1}, \lambda_{1}\right)} .
$$

3 Symplectic jeu de taquin

3.1 Symplectic jeu de taquin for $\mathbf{K N}$ tableaux

Recall that there exists a well-known combinatorial model for the irreducible highest weight $\mathfrak{s p}_{2 n}$-module, called Kashiwara-Nakashima tableaux of type C (KN tableaux for short) [6]. For $\lambda \in \mathscr{P}_{n}$, denote by $\mathbf{K} \mathbf{N}_{\lambda}$ the set of KN tableaux of shape λ with letters in $\{1<\cdots<n<\bar{n}<\cdots<\overline{1}\}$.

Note that a tableau with letters in $\{1<\cdots<n<\bar{n}<\cdots<\overline{1}\}$ is a KN tableau if and only if it satisfies the admissibility condition (see [17, Section 4]). With this characterization, one can define the set $\mathbf{K} \mathbf{N}_{\lambda / \mu}$ of admissible tableaux of a skew shape λ / μ with $\lambda, \mu \in \mathscr{P}_{n}$ [14, Definition 6.1.1].

For $(\lambda, \ell) \in \mathscr{P}(\mathrm{Sp})_{[\bar{n}]}$, put $\rho_{n}(\lambda, \ell)=\left(n-\lambda_{\ell}, n-\lambda_{\ell-1}, \ldots, n-\lambda_{1}\right)^{\prime}$, which is the conjugate of the rectangular complement of λ in $\left(n^{\ell}\right)$.

For $U \in S S T_{[\bar{n}]}\left(\left(1^{m}\right)\right)$, let U^{c} be the tableau in $S S T_{[n]}\left(\left(1^{n-m}\right)\right)$ such that k appears in U^{c} if and only if \bar{k} does not appear in U for each $k \in[n]$. For $T \in \mathbf{T}_{n}(a)$, define $T^{\text {ad }}$ to be the tableau obtained by putting ${ }^{\mathrm{L}} T$ below $\left({ }^{\mathrm{R}} T\right)^{c}$. Then the map $T \longmapsto T^{\text {ad }}$ is a bijection from $\mathbf{T}_{n}(a)$ to $\mathbf{K} \mathbf{N}_{\left(1^{n-a}\right)}$ [11, Lemma 3.11]. Moreover, we have a bijection [2, Corollary 5.6]

$$
\begin{align*}
& \mathbf{T}_{[\bar{n}]}(\lambda / \mu, \ell) \longrightarrow \mathbf{K} \mathbf{N}_{\rho_{n+\mu_{1}}(\lambda, \ell) / \rho_{\mu_{1}}(\mu, \ell)} \tag{3.1}\\
& \mathbf{T}=\left\lfloor T_{\ell}, \ldots, T_{1}\right\rfloor_{\left(\mu_{\ell}, \ldots, \mu_{1}\right)} \longmapsto \mathbf{T}^{\mathrm{ad}}:=\left\lceil T_{\ell}^{\mathrm{ad}}, \ldots, T_{1}^{\mathrm{ad}}\right\rceil^{\rho_{\mu_{1}}(\mu, \ell)}
\end{align*}
$$

For $\mathbf{T} \in \mathbf{T}_{[\bar{n}]}(\lambda / \mu, \ell)$ and an inner corner c of T (if exists), one may apply the symplectic analog of jeu de taquin in [17] (see also [14, Section 6]) to obtain another admissible tableau, say $j \operatorname{dt}_{K N}(T, c)$. It is proved in [14] that there exists a unique KN tableau in $\mathbf{K} \mathbf{N}_{v}$ for some $v \in \mathscr{P}_{n}$, which is obtained from T by applying $\mathrm{jdt}_{K N}$ successively.

3.2 Symplectic jeu de taquin for spinor model

Note that $\mathbf{T} \in \mathbf{T}_{\mathcal{A}}(\lambda / \mu, \ell)$ does not necessarily correspond to a KN tableau of skew shape for arbitrary \mathcal{A} as in (3.1). In order to define an analog of jeu de taquin, we first
introduce the notion of n-conjugate of T.
Let us assume that $\mathbf{T}=\left(T_{\ell}^{\mathrm{L}}, T_{\ell}^{\mathrm{R}}, \ldots, T_{1}^{\mathrm{L}}, T_{1}^{\mathrm{R}}\right) \in \mathbf{E}_{\mathcal{A}}^{2 \ell}$. Then we have a map

$$
\begin{aligned}
& \mathbf{E}_{\mathcal{A}}^{2 \ell} \longrightarrow \bigsqcup_{\mu \in \mathscr{P}} S S T_{\mathcal{A}}(\mu) \times S S T_{[2 \ell]}\left(\mu^{\prime}\right), \\
& \mathbf{U} \longmapsto\left(P_{\mathcal{A}}(\mathbf{U}), Q_{\mathcal{A}}(\mathbf{U})\right)
\end{aligned}
$$

where $P_{\mathcal{A}}(\mathbf{U})$ is obtained by the usual Schensted's column insertion and $Q_{\mathcal{A}}(\mathbf{U})$ is the associated recording tableau.

Definition 3.1. Let $\mathbf{T}=\left(T_{\ell}, \ldots, T_{1}\right) \in \mathbf{T}_{\mathcal{A}}(\lambda / \mu, \ell)$ be given and set $v=\operatorname{sh}\left(P_{\mathcal{A}}(\mathbf{T})\right)$. For $n \geq \ell(v)$, we define the n-conjugate of \mathbf{T} to be the unique tableau $\overline{\mathbf{T}} \in \mathbf{T}_{[\bar{n}]}(\lambda / \mu, \ell)$ such that

$$
P_{[\bar{n}]}(\overline{\mathbf{T}})=H_{v} \quad \text { and } \quad Q_{[\bar{n}]}(\overline{\mathbf{T}})=Q_{\mathcal{A}}(\mathbf{T}),
$$

where $H_{v} \in S S T_{[\bar{n}]}(v)$ is such that the i-th row from the top is filled with $\overline{n-i+1}$ for $1 \leq i \leq n$.
Now, let us introduce an analog of jeu de taquin for spinor model. We first consider the case when $\ell=2$. Suppose that $\mathbf{T}=\left(T_{2}, T_{1}\right) \in \mathbf{T}_{\mathcal{A}}\left(a_{2}\right) \times \mathbf{T}_{\mathcal{A}}\left(a_{1}\right)$ is given for some $a_{1}, a_{2} \in \mathbb{Z}_{+}$. Let

$$
d\left(T_{1}, T_{2}\right)=\min \left\{d \in \mathbb{Z}_{+} \mid\left\lfloor T_{2}, T_{1}\right\rfloor_{(0, d)} \text { is } \mathcal{A} \text {-admissible (of a skew shape) }\right\}
$$

We assume that $\mathbf{T}=\left(T_{2}^{\mathrm{L}}, T_{2}^{\mathrm{R}}, T_{1}^{\mathrm{L}}, T_{1}^{\mathrm{R}}\right) \in \mathbf{E}_{\mathcal{A}}^{4}$ and consider the $\mathfrak{s l}_{4}$-crystal structure on $\mathbf{E}_{\mathcal{A}}^{4}$ given in Lemma 2.2.

Definition 3.2 ([2, Section 5.2]). Under the above hypothesis, suppose that $d=d\left(T_{1}, T_{2}\right)>0$. Define

$$
j \mathrm{dt}_{\text {spin }}(\mathbf{T})=\mathbf{T}^{\prime}=\left(T_{2}^{\prime}, T_{1}^{\prime}\right)
$$

to be the pair $\left(T_{2}^{\prime}, T_{1}^{\prime}\right)$ obtained by applying a sequence of crystal operators as follows:
Case 1. Suppose that $\left[{ }^{\mathrm{R}} T_{2}, T_{1}^{\mathrm{L}}\right\rfloor_{(0, d-1)}$ is not \mathcal{A}-semistandard. Then

$$
\mathbf{T}^{\prime}:=\left(U_{4}, U_{3}, U_{2}, U_{1}\right)= \begin{cases}\mathcal{F}_{3}^{a_{2}-1} \mathcal{E}_{2} \varepsilon_{3}^{a_{2}} \mathbf{T} & \text { if } \varepsilon_{3}\left(\mathcal{E}_{2} \varepsilon_{3}^{a_{2}} \mathbf{T}\right)=0 \tag{3.2}\\ \mathcal{F}_{3}^{a_{2}} \varepsilon_{2} \varepsilon_{3}^{a_{2}} \mathbf{T} & \text { if } \varepsilon_{3}\left(\varepsilon_{2} \varepsilon_{3}^{a_{2}} \mathbf{T}\right)=1\end{cases}
$$

Case 2. Suppose that $\left[{ }^{\mathrm{R}} T_{2}, T_{1}^{\mathrm{L}}\right\rfloor_{(0, d-1)}$ is \mathcal{A}-semistandard, but $\left\lfloor T_{2}^{\mathrm{R}}{ }^{\mathrm{L}} T_{1}\right\rfloor_{(0, d-1)}$ is not. Then

$$
\begin{equation*}
\mathbf{T}^{\prime}:=\left(U_{4}, U_{3}, U_{2}, U_{1}\right)=\mathcal{F}_{1}^{a_{1}+1} \mathcal{F}_{2} \varepsilon_{1}^{a_{1}} \mathbf{T} \tag{3.3}
\end{equation*}
$$

Example 3.3. Suppose that $\mathcal{A}=\mathbb{I}_{4 \mid 3}$.
(1) The following is an example of Case 1 with $\varepsilon_{3}\left(\varepsilon_{2} \varepsilon_{3}^{a_{2}} \mathbf{T}\right)=0$.

(2) The following is an example of Case 2.

One can check that $\mathrm{jdt}_{\text {spin }}$ is compatible with the n-conjugate for a sufficiently large n, that is, $\overline{\mathrm{jdt}_{\text {spin }}(\mathbf{T})}=j \mathrm{jdt}_{\text {spin }}(\overline{\mathbf{T}})$. Furthermore, $\mathrm{jdt}_{\text {spin }}$ can be viewed as a generalization of $\mathrm{jdt} \mathrm{K}_{\mathrm{KN}}$ in the following sense.

$$
\begin{equation*}
\left(\operatorname{jdt}_{\text {spin }}(\overline{\mathbf{T}})\right)^{\mathrm{ad}}=\operatorname{jdt}_{K N}\left(\overline{\mathbf{T}}^{\mathrm{ad}}, c\right), \tag{3.4}
\end{equation*}
$$

where $(\cdot)^{\text {ad }}$ is given in (3.1), and c is the inner corner of $\mathbf{T}^{\text {ad }}$.
Now consider a general case. Let $\mathbf{T}=\left(T_{\ell}, \ldots, T_{1}\right) \in \mathbf{T}_{\mathcal{A}}(\lambda / \mu, \ell)$ be given. Let c be the inner corner of λ / μ in the i-th column from the right.

Let b be the inner corner of $\overline{\mathbf{T}}^{\text {ad }}$ in the $(i+1)$-th column from the right, where $\overline{\mathbf{T}}$ is the n-conjugate of \mathbf{T} for a sufficiently large n, and consider $\operatorname{jdt}_{K N}\left(\overline{\mathbf{T}}^{\mathrm{ad}}, b\right)$. By Definition 3.2 and (3.4), there exists a composite of operators \mathcal{E}_{i} and \mathcal{F}_{i}, say \mathcal{X}, such that

$$
\begin{equation*}
(x \overline{\mathbf{T}})^{\mathrm{ad}}=\operatorname{jdt}_{K N}\left(\overline{\mathbf{T}}^{\mathrm{ad}}, b\right) . \tag{3.5}
\end{equation*}
$$

We remark that the composite X is independent of the choice of n.
Definition 3.4 ([2, Definition 5.14]). Under the above hypothesis, we define

$$
\begin{equation*}
\operatorname{jdt}_{\text {spin }}(\mathbf{T}, c)=X \mathbf{T} . \tag{3.6}
\end{equation*}
$$

Theorem 3.5 ([2, Theorem 5.15]). Let $\mathbf{T}=\left(T_{\ell}, \ldots, T_{1}\right) \in \mathbf{T}_{\mathcal{A}}(\lambda / \mu, \ell)$ be given. There exists a unique $\mathrm{P}(\mathbf{T}) \in \mathbf{T}_{\mathcal{A}}(\nu, \ell)$ for some $(\nu, \ell) \in \mathscr{P}(\mathrm{Sp})_{\mathcal{A}}$, which can be obtained from \mathbf{T} by applying $j \mathrm{dt}_{\text {spin }}(\cdot, c)$ finitely many times with respect to inner corners c.

Example 3.6. Let $\mathbf{T}=\left\lfloor T_{3}, T_{2}, T_{1}\right\rfloor_{(0,1,2)}$ be given as below. Then $\mathrm{P}(\mathbf{T})$ can be obtained by

$$
\mathrm{P}(\mathbf{T})=\mathrm{jdt}_{\text {spin }}\left(\mathrm{jdt}_{\text {spin }}\left(\mathrm{jdt}_{\text {spin }}\left(\mathbf{T}, c_{1}\right), c_{2}\right), c_{3}\right)=\mathcal{E}_{4} \mathcal{F}_{3} \mathcal{F}_{4} \mathcal{E}_{2} \mathcal{E}_{3} \mathbf{T}
$$

		1	1	1^{\prime}	2^{\prime}					2	2^{\prime}		
		2	3	1^{\prime}				1	1	1^{\prime}	2^{\prime}		
2	4			1^{\prime}	2^{\prime}	3^{\prime}		2	2	3	2^{\prime}	1^{\prime}	
3	2^{\prime}	3^{\prime}		c_{1}		3	4	1^{\prime}		3^{\prime}			
1^{\prime}		c_{2}		c_{3}		1^{\prime}		2^{\prime}		3^{\prime}			
$\mathbf{T}=\left\lfloor T_{3}, T_{2}, T_{1}\right\rfloor_{(0,1,2)}$						$\mathrm{P}(\mathbf{T})=\left\lfloor T_{3}^{\prime}, T_{2}^{\prime}, T_{1}^{\prime}\right\rfloor$							

4 Symplectic RSK correspondence

4.1 Oscillating tableaux and King tableaux

An oscillating tableau is a sequence of partitions $Q=\left(Q_{1}, \ldots, Q_{s}\right)$ for some $s \geq 1$ such that each pair $\left(Q_{i}, Q_{i+1}\right)$ differs by one box for $1 \leq i \leq s-1$, i.e., $Q_{i} / Q_{i+1}=\square$ or $Q_{i+1} / Q_{i}=\square$. We say that $Q=\left(Q_{1}, \ldots, Q_{s}\right)$ is vertical if $Q_{1} \subsetneq \cdots \subsetneq Q_{r} \supsetneq \cdots \supsetneq Q_{s}$ for some $1 \leq r \leq s$ and Q_{r} / Q_{1} and Q_{r} / Q_{s} is a skew diagram of vertical strip. Here $A \subsetneq B \Longleftrightarrow A \subseteq B$ and $A \neq B$. We denote by $|Q|=s$ the length of $Q=\left(Q_{1}, \ldots, Q_{s}\right)$.

Definition 4.1 ([2, Section 6.1]). Let $(\lambda, \ell) \in \mathscr{P}(S p)$ be given. For $n \geq \lambda_{1}$, define $\mathbf{O}(\lambda, \ell ; n)$ to be a set of sequences of oscillating tableaux $Q=\left(Q^{(1)}: \cdots: Q^{(\ell)}\right)$ such that

- Q is itself an oscillating tableau,
- $Q^{(i)}=\left(Q_{i, 1}, \ldots, Q_{i, s_{i}}\right)$ is a vertical oscillating tableau for $1 \leq i \leq \ell$,
- $\ell\left(Q_{i, j}\right) \leq n$ for $1 \leq i \leq \ell$ and $1 \leq j \leq s_{i}$,
- $Q_{1,1}=\square$ and $Q_{\ell, s_{\ell}}=\rho_{n}(\lambda, \ell)$.

For $Q=\left(Q^{(1)}: \cdots: Q^{(\ell)}\right) \in \mathbf{O}(\lambda, \ell ; n)$ with $\left|Q^{(i)}\right|=s_{i}$, let $\sigma(Q)=\left(\widehat{Q}^{(1)}: \cdots: \widehat{Q}^{(\ell)}\right)$ be a sequence of oscillating tableaux $\widehat{Q}^{(i)}$ given as follows;

$$
\widehat{Q}^{(i)}=\left((i) \cup Q_{i-1, s_{i-1}}(i) \cup Q_{i, 1}, \ldots,(i) \cup Q_{i, s_{i}}\right) \quad(1 \leq i \leq \ell)
$$

Here we denote by $(i) \cup Q_{i, k}$ the partition obtained by adding i to $Q_{i, k}$ as its first part. Then we show $\sigma(Q) \in \mathbf{O}(\lambda, \ell ; n+1)$. Indeed, $\sigma: \mathbf{O}(\lambda, \ell ; n) \longrightarrow \mathbf{O}(\lambda, \ell ; n+1)$ is a bijection for $n \geq \lambda_{1}$, and induces an equivalence relation on $\bigsqcup_{n \geq \lambda_{1}} \mathbf{O}(\lambda, \ell ; n) \times\{n\}$, where $\left(Q^{\prime}, m\right) \sim(Q, n)$ if and only if $\sigma^{m-n}(Q)=Q^{\prime}$ for $Q^{\prime} \in \mathbf{O}(\lambda, \ell ; m)$ and $Q \in$ $\mathbf{O}(\lambda, \ell ; n)$ with $m \geq n$. We define

$$
\mathbf{O}(\lambda, \ell)=\left\{[Q, n] \mid Q \in \mathbf{O}(\lambda, \ell ; n)\left(n \geq \lambda_{1}\right)\right\}
$$

where $[Q, n]$ is the equivalence class of $Q \in \mathbf{O}(\lambda, \ell ; n)$ with respect to \sim. We call $[Q, n]$ an oscillating tableau of shape (λ, ℓ).

For $(\lambda, \ell) \in \mathscr{P}(\mathrm{Sp})$, let $\mathbf{K}(\lambda, \ell)$ be the set of tableaux of shape λ with letters in $\{1<\overline{1}<\cdots<\ell<\bar{\ell}\}$, whose letters are of degree 0 , such that all entries in the i th row are larger than or equal to i. It is known as the set of King tableaux of shape λ [8]. Based on [15], we construct a bijection between King tableaux and oscillating tableaux.

Theorem 4.2 ([15, Theorem 2.7], [2, Corollary 6.8]). For $\lambda \subseteq\left(n^{\ell}\right)$, we have an explicit bijection

$$
\begin{equation*}
\mathbf{K}(\lambda, \ell) \longrightarrow \mathbf{O}(\lambda, \ell) . \tag{4.1}
\end{equation*}
$$

4.2 Symplectic RSK correspondence

For $\mathbf{a}=\left(a_{1}, \ldots, a_{\ell}\right) \in \mathbb{Z}_{+}^{\ell}$, let $\mathbf{T}_{\mathcal{A}}(\mathbf{a})=\mathbf{T}_{\mathcal{A}}\left(a_{\ell}\right) \times \cdots \times \mathbf{T}_{\mathcal{A}}\left(a_{1}\right)$, and $\mathbb{Z} /(\mathbf{a}+\mathbf{1}) \mathbb{Z}=$ $\mathbb{Z} /\left(a_{\ell}+1\right) \mathbb{Z} \times \cdots \times \mathbb{Z} /\left(a_{1}+1\right) \mathbb{Z}$, where $\mathbb{Z} /(a+1) \mathbb{Z}$ is understood as the set $\{0,1, \ldots, a\}$ for $a \in \mathbb{Z}_{+}$, and let $\mathbf{F}_{\mathcal{A}}^{\ell}=\mathbf{E}_{\mathcal{A}}^{2 \ell}$.

Lemma 4.3 ([2, Corollary 7.5]). We have a bijection

$$
\begin{align*}
\mathbf{F}_{\mathcal{A}}^{\ell} \longrightarrow \bigsqcup_{\mathbf{a}} \mathbf{T}_{\mathcal{A}}(\mathbf{a}) \times \mathbb{Z} /(\mathbf{a}+\mathbf{1}) \mathbb{Z}, \tag{4.2}\\
\mathbf{T} \longmapsto\left(\mathcal{F}^{\max } \mathbf{T}, \varphi(\mathbf{T})\right)
\end{align*}
$$

where

$$
\begin{aligned}
\mathcal{F}^{\max } \mathbf{T} & =\left(\mathcal{F}^{\max }\left(U_{2 \ell}, U_{2 \ell-1}\right), \ldots, \mathcal{F}^{\max }\left(U_{2}, U_{1}\right)\right), \\
\varphi(\mathbf{T}) & =\left(\varphi\left(U_{2 \ell}, U_{2 \ell-1}\right), \ldots, \varphi\left(U_{2}, U_{1}\right)\right),
\end{aligned}
$$

for $\mathbf{T}=\left(U_{2 \ell}, \ldots, U_{1}\right) \in \mathbf{F}_{\mathcal{A}}^{\ell}$ and the union is over $\mathbf{a} \in \mathbb{Z}_{+}^{\ell}$ such that $\mathbf{T}_{\mathcal{A}}(\mathbf{a}) \neq \varnothing$.
Let $\mathbf{T}=\left(T_{\ell}, \ldots, T_{1}\right) \in \mathbf{T}_{\mathcal{A}}(\mathbf{a})$ be given. Let us define a recording tableau for $\mathrm{P}(\mathbf{T})$ (see Theorem 3.5). We assume that $\mathbf{T} \in \mathbf{T}_{\mathcal{A}}(\lambda / \mu, \ell)$ for some skew shape λ / μ. Let \bar{T} be the n-conjugate of \mathbf{T} for a sufficiently large n. Then $\overline{\mathbf{T}}^{\text {ad }}$ is a KN tableau of shape $\rho_{n+\mu_{1}}(\lambda, \ell) / \rho_{\mu_{1}}(\mu, \ell)$.

By using an analog of Robinson-Schensted correspondence for KN tableaux of type C [14, Theorem 5.2.2] and given $\left(c_{1}, \ldots, c_{\ell}\right) \in \mathbb{Z} /(\mathbf{a}+\mathbf{1}) \mathbb{Z}$, we obtain an oscillating tableaux $Q(\mathbf{T} ; n)$ from $\overline{\mathbf{T}}^{\text {ad }}$ such that $Q(\mathbf{T} ; n) \in \mathbf{O}(\lambda, \ell ; n)$ and $\sigma(Q(\mathbf{T} ; n))=Q(\mathbf{T} ; n+1)$ [2, Lemma 6.2]. Then we define

$$
Q(\mathbf{T})=[Q(\mathbf{T} ; n), n] \in \mathbf{O}(\lambda, \ell)
$$

Theorem 4.4 ([2, Proposition 6.4, Theorem 7.2]). We have a bijection

$$
\begin{align*}
\bigsqcup_{\mathbf{a} \in \mathbb{Z}_{+}^{\ell}} \mathbf{T}_{\mathcal{A}}(\mathbf{a}) \times \mathbb{Z} /(\mathbf{a}+\mathbf{1}) \mathbb{Z} \longrightarrow & \bigsqcup_{(\lambda, \ell) \in \mathscr{P}(\mathrm{Sp})_{\mathcal{A}}} \mathbf{T}_{\mathcal{A}}(\lambda, \ell) \times \mathbf{O}(\lambda, \ell) . \tag{4.3}\\
& \left(\mathbf{T},\left(c_{1}, \ldots, c_{\ell}\right)\right) \longmapsto \\
& (\mathrm{P}(\mathbf{T}), Q(\mathbf{T}))
\end{align*}
$$

Now we consider the composition of the following sequence of bijections (4.2), (4.3), and (4.1)

$$
\begin{aligned}
\mathbf{F}_{\mathcal{A}}^{\ell} & \xrightarrow{(4.2)} \bigsqcup_{\mathbf{a}} \mathbf{T}_{\mathcal{A}}(\mathbf{a}) \times \mathbb{Z} /(\mathbf{a}+\mathbf{1}) \mathbb{Z} \\
& \xrightarrow{(4.3)} \bigsqcup_{(\lambda, \ell)} \mathbf{T}_{\mathcal{A}}(\lambda, \ell) \times \mathbf{O}(\lambda, \ell) \quad \xrightarrow{(4.1)} \bigsqcup_{(\lambda, \ell)} \mathbf{T}_{\mathcal{A}}(\lambda, \ell) \times \mathbf{K}(\lambda, \ell)
\end{aligned}
$$

and denote by $(\mathrm{P}(\mathbf{T}), \mathrm{Q}(\mathbf{T}))$ the image of $\mathbf{T} \in \mathbf{F}_{\mathcal{A}}^{\ell}$ under the above composition.
Theorem 4.5 ([2, Theorem 7.7]). The map $\mathbf{T} \mapsto(\mathrm{P}(\mathbf{T}), \mathrm{Q}(\mathbf{T}))$ gives a bijection

$$
\mathbf{F}_{\mathcal{A}}^{\ell} \longrightarrow \bigsqcup_{(\lambda, \ell) \in \mathscr{P}(\mathrm{Sp})_{\mathcal{A}}} \mathbf{T}_{\mathcal{A}}(\lambda, \ell) \times \mathbf{K}(\lambda, \ell)
$$

4.3 Cauchy identity

Let $\mathbf{z}=\left\{z_{1}, \ldots, z_{\ell}\right\}$ be formal commuting variables, which commutes with $\mathbf{x}=\mathbf{x}_{\mathcal{A}}$. Let $(\lambda, \ell) \in \mathscr{P}(\mathrm{Sp})$ be given. For $K \in \mathbf{K}(\lambda, \ell)$, let $\mathbf{z}^{K}=\prod_{i=1}^{\ell} z_{i}^{m_{i}-m_{\bar{i}}}$, where m_{i} (resp. $m_{\bar{i}}$) is the number of occurrences of i (resp. \bar{i}) in K. Then put

$$
s p_{\lambda}(\mathbf{z})=\sum_{K \in \mathbf{K}(\lambda, \ell)} \mathbf{z}^{K} .
$$

It is well-known that $s p_{\lambda}(\mathbf{z})$ is the character of the irreducible highest weight module of $\mathrm{Sp}_{2 \ell}$ with highest weight corresponding to λ [8].

Let $\mathbf{U}=\left(U_{2 \ell}, \ldots, U_{1}\right) \in \mathbf{F}_{\mathcal{A}}^{\ell}$ be given with the $\operatorname{ht}\left(U_{i}\right)=u_{i}$. Let $\mathbf{x}^{\mathbf{U}}=\prod_{i=1}^{2 \ell} \mathbf{x}^{U_{i}}$ and $\mathbf{z}^{\mathbf{U}}=\prod_{i=1}^{\ell} z_{i}^{u_{2 i}-u_{2 i-1}}$. Then we have

$$
\operatorname{chF}_{\mathcal{A}}^{\ell}:=\sum_{\mathbf{U}} \mathbf{x}^{\mathbf{U}} \mathbf{z}^{\mathbf{U}}=\prod_{j=1}^{\ell} \frac{\prod_{a \in \mathcal{A}_{0}}\left(1+x_{a} z_{j}\right)\left(1+x_{a} z_{j}^{-1}\right)}{\prod_{a \in \mathcal{A}_{1}}\left(1-x_{a} z_{j}\right)\left(1-x_{a} z_{j}^{-1}\right)}
$$

Theorem 4.6 ([2, Theorem 7.9]). We have the following identity

$$
\begin{equation*}
t^{\ell} \prod_{j=1}^{\ell} \frac{\prod_{a \in \mathcal{A}_{0}}\left(1+x_{a} z_{j}\right)\left(1+x_{a} z_{j}^{-1}\right)}{\prod_{a \in \mathcal{A}_{1}}\left(1-x_{a} z_{j}\right)\left(1-x_{a} z_{j}^{-1}\right)}=\sum_{(\lambda, \ell) \in \mathscr{P}(\mathrm{Sp})_{\mathcal{A}}} S_{(\lambda, \ell)}\left(\mathbf{x}_{\mathcal{A}}\right) s p_{\lambda}(\mathbf{z}) \tag{4.4}
\end{equation*}
$$

We recover well-known identities when \mathcal{A} is homogeneous. If $\mathcal{A}=\mathcal{A}_{0}$, then (4.4) is the identity $[7,(6.19)]$. If $\mathcal{A}=\mathcal{A}_{1}$ and $\ell \geq n$, then (4.4) and the stability of $\mathbf{T}_{\mathcal{A}}(\lambda, \ell)$ [10, Theorem 6.5] imply the following identity [16, 19]

$$
\begin{equation*}
\frac{1}{\prod_{i=1}^{n} \prod_{j=1}^{\ell}\left(1-x_{i} z_{j}\right)\left(1-x_{i} z_{j}^{-1}\right)}=\sum_{\ell(\lambda) \leq n} s p_{\lambda}(\mathbf{z}) s_{\lambda}(\mathbf{x}) \prod_{1 \leq i<j \leq n}\left(1-x_{i} x_{j}\right)^{-1} \tag{4.5}
\end{equation*}
$$

where $s_{\lambda}(\mathbf{x})$ is the Schur polynomial in x_{1}, \ldots, x_{n}, and $\ell(\lambda)$ is the length of λ.

Acknowledgements

This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) (Grant numbers 2019R1A2C108483311 and 2020R1A5A1016126).

References

[1] S.-J. Cheng, J.-H. Kwon, and W. Wang. "Kostant homology formulas for oscillator modules of Lie superalgebras". Advances in Mathematics 224.4 (2010), pp. 1548-1588. Doi.
[2] T. Heo and J.-H. Kwon. "Combinatorial Howe duality of symplectic type". Preprint. 2020. arXiv:2008.05093.
[3] R. Howe. "Remarks on classical invariant theory". Transactions of the American Mathematical Society 313.2 (1989), pp. 539-570. Doi.
[4] R. Howe. "Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond". The Schur lectures (1992)(Tel Aviv) (1995), pp. 1-182.
[5] R. Howe, E.-C. Tan, and J. Willenbring. "Stable branching rules for classical symmetric pairs". Transactions of the American mathematical society 357.4 (2005), pp. 1601-1626. DoI.
[6] M. Kashiwara and T. Nakashima. "Crystal graphs for representations of the q-analogue of classical Lie algebras". Journal of algebra 165.2 (1994), pp. 295-345. DoI.
[7] R. C. King. "Branching rules for classical Lie groups using tensor and spinor methods". Journal of Physics A: Mathematical and General 8.4 (1975), p. 429. Dor.
[8] R. C. King. "Weight multiplicities for the classical groups". Group theoretical methods in physics. Springer, 1976, pp. 490-499. DoI.
[9] J.-H. Kwon. "Super duality and crystal bases for quantum ortho-symplectic superalgebras". International Mathematics Research Notices 2015.23 (2015), pp. 12620-12677. Doi.
[10] J.-H. Kwon. "Combinatorial extension of stable branching rules for classical groups". Transactions of the American Mathematical Society 370.9 (2018), pp. 6125-6152. Dor.
[11] J.-H. Kwon. "Lusztig data of Kashiwara-Nakashima tableaux in types B and C". Journal of Algebra 503 (2018), pp. 222-264. Doi.
[12] N. Lam and R. Zhang. "Quasi-finite modules for Lie superalgebras of infinite rank". Transactions of the American Mathematical Society 358.1 (2006), pp. 403-439. Dor.
[13] A. Lascoux. "Double crystal graphs". Studies in memory of Issai Schur. Springer, 2003, pp. 95-114. Doi.
[14] C. Lecouvey. "Schensted-type correspondence, plactic monoid, and jeu de taquin for type C_{n} ". Journal of Algebra 247.2 (2002), pp. 295-331. Doi.
[15] S. J. Lee. "Crystal structure on King tableaux and semistandard oscillating tableaux". Preprint. 2019. arXiv:1910.04459.
[16] D. E. Littlewood. The theory of group characters and matrix representations of groups. Vol. 357. American Mathematical Soc., 1977.
[17] J. Sheats. "A symplectic jeu de taquin bijection between the tableaux of King and of De Concini". Transactions of the American Mathematical Society 351.9 (1999), pp. 3569-3607. Dor.
[18] W. Wang. "Duality in infinite dimensional Fock representations". Communications in Contemporary Mathematics 1.02 (1999), pp. 155-199. Doi.
[19] H. Weyl. The classical groups: their invariants and representations. Vol. 45. Princeton university press, 1946.

[^0]: *gjxogur123@snu.ac.kr
 †jaehoonkw@snu.ac.kr

