Séminaire Lotharingien de Combinatoire **85B** (2021) Article #24, 12 pp.

Combinatorial Howe duality of symplectic type

Taehyeok Heo^{*1} and Jae-Hoon Kwon^{+1,2}

¹Department of Mathematical Sciences, Seoul National University, Seoul, Korea ²Research Institute of Mathematics, Seoul National University, Seoul, Korea

Abstract. We give a symplectic analog of the RSK algorithm for Howe dual pairs of the form $(\mathfrak{g}, \operatorname{Sp}_{2\ell})$, where \mathfrak{g} is a Lie (super)algebra of classical type. We introduce an analog of jeu de taquin sliding for spinor model of irreducible characters of a Lie superalgebra \mathfrak{g} to define *P*-tableau, and then define the associated *Q*-tableau in terms of a symplectic tableau due to King.

Keywords: crystal graphs, Howe duality, RSK correspondence, jeu de taquin

1 Introduction

Let \mathscr{P} be the set of partitions or Young diagrams $\lambda = (\lambda_1, \lambda_2, ...)$ and, for $n \ge 1$, let $\mathscr{P}_n = \{\lambda \in \mathscr{P} \mid \ell(\lambda) \le n\}$, where $\ell(\lambda)$ is the length of λ .

Let \mathcal{A} be a \mathbb{Z}_2 -graded linearly ordered set and let $\mathscr{E}_{\mathcal{A}}$ be the exterior algebra generated by the superspace with a linear basis indexed by \mathcal{A} . Then $\mathscr{F}_{\mathcal{A}} = \mathscr{E}_{\mathcal{A}}^* \otimes \mathscr{E}_{\mathcal{A}}$ is a semisimple module over a classical Lie (super)algebra $\mathfrak{g}_{\mathcal{A}}$, the type of which depends on \mathcal{A} , and the ℓ -fold tensor power $\mathscr{F}_{\mathcal{A}}^{\otimes \ell}$ ($\ell \geq 1$) is a ($\mathfrak{g}_{\mathcal{A}}$, Sp_{2 ℓ})-module with the following multiplicityfree decomposition:

$$\mathscr{F}_{\mathcal{A}}^{\otimes \ell} \cong \bigoplus_{(\lambda,\ell) \in \mathscr{P}(\mathrm{Sp})_{\mathcal{A}}} V_{\mathfrak{g}_{\mathcal{A}}}(\lambda,\ell) \otimes V_{\mathrm{Sp}_{2\ell}}(\lambda), \tag{1.1}$$

where the direct sum is over a set $\mathscr{P}(\mathrm{Sp})_{\mathcal{A}}$ of pairs $(\lambda, \ell) \in \mathscr{P} \times \mathbb{Z}_+$ with $\ell(\lambda) \leq \ell$ (see [1, 4, 3, 5, 12, 18] for various choices of \mathcal{A}). Here $V_{\mathrm{Sp}_{2\ell}}(\lambda)$ is the irreducible $\mathrm{Sp}_{2\ell}$ module corresponding to λ , and $V_{\mathfrak{g}_{\mathcal{A}}}(\lambda, \ell)$ is the irreducible highest weight \mathfrak{g} -module corresponding to $V_{\mathrm{Sp}_{2\ell}}(\lambda)$ appearing in $\mathscr{F}_{\mathcal{A}}^{\otimes \ell}$. This decomposition is obtained from a more general principle called Howe duality [3].

There exists a combinatorial object called a spinor model of type *C*, which gives the character of $V_{g,A}(\lambda, \ell)$ in (1.1) in a uniform way [9]. As a set, the spinor model $\mathbf{T}_{\mathcal{A}}(\lambda, \ell)$ consists of sequences of usual semistandard tableaux of two-columned shapes with letters in \mathcal{A} , where two adjacent tableaux satisfy certain configuration.

^{*}gjxogur123@snu.ac.kr

[†]jaehoonkw@snu.ac.kr

In this extended abstract, we give an analog of RSK algorithm for (1.1) in terms of spinor model. More precisely, we construct an explicit bijection

$$\mathbf{F}_{\mathcal{A}}^{\ell} \longrightarrow \bigsqcup_{\lambda \in \mathscr{P}(\mathrm{Sp})_{\mathcal{A}}} \mathbf{T}_{\mathcal{A}}(\lambda, \ell) \times \mathbf{K}(\lambda, \ell) , \qquad (1.2)$$

where $\mathbf{F}_{\mathcal{A}}^{\ell}$ is the set of 2ℓ -tuple of \mathcal{A} -semistandard tableaux of single-columned shapes with letters in \mathcal{A} , and $\mathbf{K}(\lambda, \ell)$ is the set of symplectic tableaux of shape λ due to King [8] giving the character of $V_{\text{Sp}_{2\ell}}(\lambda)$. The bijection (1.2) yields the Cauchy type identity which follows from the decomposition (1.1) for arbitrary \mathcal{A} , and it recovers well-known identities [7, 16, 19] when \mathcal{A} is a finite set of homogeneous degree. A full version of this paper including detailed proofs has appeared in [2].

2 Preliminaries

2.1 Notations

Let \mathbb{Z}_+ denote the set of non-negative integers. We denote by $\lambda' = (\lambda'_1, \lambda'_2, ...)$ the conjugate of λ . Let \mathcal{A} be a linearly ordered set with a \mathbb{Z}_2 -grading $\mathcal{A} = \mathcal{A}_0 \sqcup \mathcal{A}_1$. For example, for a positive integer n, let

$$[n] = \{1 < 2 < \dots < n\}, \quad [\overline{n}] = \{\overline{n} < \overline{n-1} < \dots < \overline{1}\},\$$

where we assume that all the entries are assumed to be of degree 0. For positive integers m and n, let $\mathbb{I}_{m|n} = \{1 < 2 < \cdots < m < 1' < 2' < \cdots < n'\}$ with $(\mathbb{I}_{m|n})_0 = \{1 < \cdots < m\}$ and $(\mathbb{I}_{m|n})_1 = \{1' < \cdots < n'\}$.

For a skew Young diagram λ/μ , let $SST_A(\lambda/\mu)$ be the set of semistandard (or *A*-semistandard) tableaux of shape λ/μ , that is, tableaux with entries in *A* such that (1) the entries in each row (resp. column) are weakly increasing from left to right (resp. from top to bottom), (2) the entries in A_0 (resp. A_1) are strictly increasing in each column (resp. row).

For $a, b, c \in \mathbb{Z}_+$, let $\lambda(a, b, c) = (2^{b+c}, 1^a)/(1^b)$ be a skew Young diagram with two columns. For an A-semistandard tableau T with two columns, let T^L and T^R denote the left and right columns of T, respectively.

We place a tableau so that its top or bottom edges is parallel with or same as a given horizontal line *L*. More precisely, let U_1, \ldots, U_r be column tableaux (that is, tableaux of single-columned shapes), which are A-semistandard. For $(u_1, \ldots, u_r) \in \mathbb{Z}_+^r$, let

$$\left\lfloor U_1,\ldots,U_r\right\rfloor_{(u_1,\ldots,u_r)},\quad \left\lceil U_1,\ldots,U_r\right\rceil^{(u_1,\ldots,u_r)}$$

be the tableaux such that the *i*-th column from the left is U_i and the bottom (resp. top) edge of U_i is slid by u_i positions up (resp. down) from *L* (see Examples 2.1, 2.4, 3.3, 3.6). In particular, we do not record the tuple (u_1, \ldots, u_r) when $(u_1, \ldots, u_r) = (0, \ldots, 0)$.

2.2 Crystal and Schützenberger's jeu de taquin

Note that Schützenberger's jeu de taquin is also available for A-semistandard tableaux. We use this algorithm in terms of crystal operator \mathcal{E} and \mathcal{F} for \mathfrak{sl}_2 (cf. [13]).

For $T = [T^{L}, T^{R}]_{(0,a)} \in SST_{\lambda(a,b,c)}$ such that $[T^{L}, T^{R}]_{(0,a-1)}$ is not \mathcal{A} -semistandard, we define $\mathcal{E}T$ and $\mathcal{F}T$ to be the tableaux obtained by applying the usual jeu de taquin to the outer and inner corners of T, respectively. Here we define $\mathcal{E}T = \mathbf{0}$ and $\mathcal{F}T = \mathbf{0}$ when a = 0 and b = 0, respectively, where $\mathbf{0}$ is a formal symbol.

Example 2.1. Suppose that $\mathcal{A} = \mathbb{I}_{4|3}$.

2	2'	2	2
1'	$2' \xrightarrow{\mathcal{E}}$	$1' 2' \frac{\mathcal{E}}{\mathcal{E}}$. 2′
1'	F	$1' 2' \overleftarrow{\mathcal{F}}$	1' 2'
J 3'		3'	1' 3'

Now, for $(U, V) \in SST_{\mathcal{A}}((1^u)) \times SST_{\mathcal{A}}((1^v))$ $(u, v \in \mathbb{Z}_+)$, we define

$$\mathfrak{X}(U,V) = \begin{cases} ((\mathfrak{X}T)^{\mathrm{L}}, (\mathfrak{X}T)^{\mathrm{R}}) & \text{if } \mathfrak{X}T \neq \mathbf{0}, \\ \mathbf{0} & \text{if } \mathfrak{X}T = \mathbf{0}, \end{cases} \qquad (\mathfrak{X} = \mathcal{E}, \mathfrak{F}),$$
(2.1)

where *T* is the unique tableau in $SST_{\mathcal{A}}(\lambda(u-k,v-k,k))$ for some $0 \le k \le \min\{u,v\}$ such that $(T^{L}, T^{R}) = (U, V)$ and $\lfloor T^{L}, T^{R} \rfloor_{(0,u-k-1)}$ is not *A*-semistandard. Put $\varphi(U, V) = \max\{k \mid \mathcal{F}^{k}(U, V) \neq \mathbf{0}\}$ and $\mathcal{F}^{\max}(U, V) = \mathcal{F}^{\varphi(U,V)}(U, V)$.

For $r \ge 2$, let $\mathbf{E}_{\mathcal{A}}^r$ be the set of *r*-tuples of single-columned \mathcal{A} -semistandard tableaux. For $(U_r, \ldots, U_1) \in \mathbf{E}_{\mathcal{A}}^r$ and $1 \le i \le r - 1$, we define

$$\mathfrak{X}_{i}(U_{r},\ldots,U_{1}) = \begin{cases}
(U_{r},\ldots,\mathfrak{X}(U_{i+1},U_{i}),\ldots,U_{1}) & \text{if } \mathfrak{X}(U_{i+1},U_{i}) \neq \mathbf{0}, \\
\mathbf{0} & \text{if } \mathfrak{X}(U_{i+1},U_{i}) = \mathbf{0},
\end{cases}$$
(2.2)

where $\mathfrak{X}(\cdot, \cdot)$ for $\mathfrak{X} = \mathcal{E}, \mathcal{F}$ is defined in (2.1). Then we have the following.

Lemma 2.2 ([2, Lemma 2.3]). $\mathbf{E}_{\mathcal{A}}^r$ is a regular \mathfrak{sl}_r -crystal with respect to \mathcal{E}_i and \mathcal{F}_i for $1 \leq i \leq r-1$.

2.3 Spinor model

Let

$$\mathscr{P}(\mathsf{Sp}) = \{ (\lambda, \ell) \mid \ell \ge 1, \ \lambda \in \mathscr{P}_{\ell} \}.$$

For $a \in \mathbb{Z}_+$, let

$$\mathbf{T}_{\mathcal{A}}(a) = \bigsqcup_{c \in \mathbb{Z}_+} SST_{\mathcal{A}}(\lambda(a, 0, c)).$$

For $T \in \mathbf{T}_{\mathcal{A}}(a)$, we define

$${}^{\mathrm{L}}T = (\mathcal{E}^{a}T)^{\mathrm{L}}, \quad {}^{\mathrm{R}}T = (\mathcal{E}^{a}T)^{\mathrm{R}}.$$

Definition 2.3 ([9, Definition 6.7, Definition 6.10]). (1) For $a_1, a_2 \in \mathbb{Z}_+$ with $a_2 \leq a_1$ and $(T_2, T_1) \in \mathbf{T}_A(a_2) \times \mathbf{T}_A(a_1)$, we define

$$T_2 \prec T_1$$
 if $\lfloor {}^{\mathsf{R}}T_2, T_1^{\mathsf{L}} \rfloor$ and $\lfloor T_2^{\mathsf{R}}, {}^{\mathsf{L}}T_1 \rfloor_{(a_2, a_1)}$ are \mathcal{A} -semistandard.

(2) For $(\lambda, \ell) \in \mathscr{P}(Sp)$, we define

$$\mathbf{T}_{\mathcal{A}}(\lambda,\ell) = \{ \mathbf{T} = (T_{\ell},\ldots,T_1) \mid T_i \in \mathbf{T}_{\mathcal{A}}(\lambda_i) \text{ for all } 1 \leq i \leq \ell \text{ and } T_{\ell} \prec \cdots \prec T_1 \}.$$

Put

$$\mathscr{P}(\mathrm{Sp})_{\mathcal{A}} = \{ (\lambda, \ell) \in \mathscr{P}(\mathrm{Sp}) \, | \, \mathbf{T}_{\mathcal{A}}(\lambda, \ell) \neq \emptyset \}.$$

Let $\mathbf{x}_{\mathcal{A}} = \{ x_a \mid a \in \mathcal{A} \}$ be the set of formal commuting variables indexed by \mathcal{A} . For an \mathcal{A} -semistandard tableau T, let $\mathbf{x}_{\mathcal{A}}^T = \prod_{a \in \mathcal{A}} x_a^{m_a}$, where m_a is the number of occurrences of a in T. Let t be a variable commuting with all x_a ($a \in \mathcal{A}$). For $(\lambda, \ell) \in \mathscr{P}(\mathrm{Sp})_{\mathcal{A}}$, we define the character of $\mathbf{T}_{\mathcal{A}}(\lambda, \ell)$ to be

$$S_{(\lambda,\ell)}(\mathbf{x}_{\mathcal{A}}) = t^{\ell} \sum_{(T_{\ell},\dots,T_{1})\in\mathbf{T}_{\mathcal{A}}(\lambda,\ell)} \mathbf{x}_{\mathcal{A}}^{T_{\ell}}\cdots\mathbf{x}_{\mathcal{A}}^{T_{1}}.$$
(2.3)

The character $S_{(\lambda,\ell)}(\mathbf{x}_{\mathcal{A}})$ gives various irreducible characters of Lie (super)algebras under suitable choices of \mathcal{A} (cf. [9]). In particular, it is the character of a finite-dimensional irreducible \mathfrak{sp}_{2n} -module when $\mathcal{A} = [\overline{n}]$.

Example 2.4. Suppose $A = I_{4|3}$ and $(\lambda, \ell) = ((3, 2, 1), 3)$. Let $\mathbf{T} = (T_3, T_2, T_1)$ be given by

where the dotted line is the common bottom line. In this case, $T_3 \prec T_2 \prec T_1$ and so $\mathbf{T} \in \mathbf{T}_{\mathcal{A}}(\lambda, \ell)$.

Definition 2.5 ([2, Definition 5.1]). Let $\mathbf{T} = (T_{\ell}, \ldots, T_1) \in \mathbf{T}_{\mathcal{A}}(a_{\ell}) \times \cdots \times \mathbf{T}_{\mathcal{A}}(a_1)$ be given for some $a_1, \ldots, a_{\ell} \in \mathbb{Z}_+$. Let λ / μ be a skew diagram with $\lambda, \mu \in \mathscr{P}_{\ell}$. We say that

(1) **T** is of shape λ / μ if

$$a_i = \lambda_i - \mu_i$$
, $\operatorname{ht}(T_{i+1}^{\operatorname{L}}) + \mu_{i+1} \le \operatorname{ht}(T_i^{\operatorname{L}}) + \mu_i$ $(1 \le i \le \ell)$,

where ht(U) denotes the height of a single-columned tableau U,

(2) **T** is A-admissible of shape λ/μ if **T** is of shape λ/μ and

$$\lfloor^{\mathbb{R}}T_{i+1}, T_{i}^{\mathbb{L}}\rfloor_{(\mu_{i+1},\mu_{i})}$$
 and $\lfloor T_{i+1}^{\mathbb{R}}, {}^{\mathbb{L}}T_{i}\rfloor_{(\lambda_{i+1},\lambda_{i})}$ are \mathcal{A} -semistandard $(1 \leq i \leq \ell - 1)$.

We denote by $\mathbf{T}_{\mathcal{A}}(\lambda/\mu, \ell)$ the set of \mathcal{A} -admissible tableaux of shape λ/μ . When **T** is of shape λ/μ , let us often identify **T** with a tableau

$$\left\lfloor T_{\ell},\ldots,T_{1}\right\rfloor_{\left(\mu_{\ell},\ldots,\mu_{1}\right)}:=\left\lfloor T_{\ell}^{\mathrm{L}},T_{\ell}^{\mathrm{R}},\ldots,T_{1}^{\mathrm{L}},T_{1}^{\mathrm{R}}\right\rfloor_{\left(\mu_{\ell},\lambda_{\ell},\ldots,\mu_{1},\lambda_{1}\right)}$$

3 Symplectic jeu de taquin

3.1 Symplectic jeu de taquin for KN tableaux

Recall that there exists a well-known combinatorial model for the irreducible highest weight \mathfrak{sp}_{2n} -module, called Kashiwara–Nakashima tableaux of type *C* (KN tableaux for short) [6]. For $\lambda \in \mathscr{P}_n$, denote by \mathbf{KN}_{λ} the set of KN tableaux of shape λ with letters in $\{1 < \cdots < n < \overline{n} < \cdots < \overline{1}\}$.

Note that a tableau with letters in $\{1 < \cdots < n < \overline{n} < \cdots < \overline{1}\}$ is a KN tableau if and only if it satisfies the *admissibility* condition (see [17, Section 4]). With this characterization, one can define the set $\mathbf{KN}_{\lambda/\mu}$ of admissible tableaux of a skew shape λ/μ with $\lambda, \mu \in \mathcal{P}_n$ [14, Definition 6.1.1].

For $(\lambda, \ell) \in \mathscr{P}(\mathrm{Sp})_{[\overline{n}]}$, put $\rho_n(\lambda, \ell) = (n - \lambda_\ell, n - \lambda_{\ell-1}, \dots, n - \lambda_1)'$, which is the conjugate of the rectangular complement of λ in (n^ℓ) .

For $U \in SST_{[n]}((1^m))$, let U^c be the tableau in $SST_{[n]}((1^{n-m}))$ such that k appears in U^c if and only if \overline{k} does not appear in U for each $k \in [n]$. For $T \in \mathbf{T}_n(a)$, define T^{ad} to be the tableau obtained by putting ${}^{L}T$ below $({}^{R}T)^c$. Then the map $T \mapsto T^{ad}$ is a bijection from $\mathbf{T}_n(a)$ to $\mathbf{KN}_{(1^{n-a})}$ [11, Lemma 3.11]. Moreover, we have a bijection [2, Corollary 5.6]

$$\mathbf{T}_{[\overline{n}]}(\lambda/\mu,\ell) \longrightarrow \mathbf{KN}_{\rho_{n+\mu_{1}}(\lambda,\ell)/\rho_{\mu_{1}}(\mu,\ell)}$$

$$\mathbf{T} = \left\lfloor T_{\ell}, \dots, T_{1} \right\rfloor_{(\mu_{\ell},\dots,\mu_{1})} \longmapsto \mathbf{T}^{\mathrm{ad}} := \left\lceil T_{\ell}^{\mathrm{ad}}, \dots, T_{1}^{\mathrm{ad}} \right\rceil^{\rho_{\mu_{1}}(\mu,\ell)}$$
(3.1)

For $\mathbf{T} \in \mathbf{T}_{[\overline{n}]}(\lambda/\mu, \ell)$ and an inner corner *c* of *T* (if exists), one may apply the symplectic analog of jeu de taquin in [17] (see also [14, Section 6]) to obtain another admissible tableau, say $jdt_{KN}(T,c)$. It is proved in [14] that there exists a unique KN tableau in \mathbf{KN}_{ν} for some $\nu \in \mathscr{P}_n$, which is obtained from *T* by applying jdt_{KN} successively.

3.2 Symplectic jeu de taquin for spinor model

Note that $\mathbf{T} \in \mathbf{T}_{\mathcal{A}}(\lambda/\mu, \ell)$ does not necessarily correspond to a KN tableau of skew shape for arbitrary \mathcal{A} as in (3.1). In order to define an analog of jeu de taquin, we first

introduce the notion of *n*-conjugate of **T**.

Let us assume that $\mathbf{T} = (T_{\ell}^{\mathsf{L}}, T_{\ell}^{\mathsf{R}}, \dots, T_{1}^{\mathsf{L}}, T_{1}^{\mathsf{R}}) \in \mathbf{E}_{\mathcal{A}}^{2\ell}$. Then we have a map

$$\mathbf{E}_{\mathcal{A}}^{2\ell} \longrightarrow \bigsqcup_{\mu \in \mathscr{P}} SST_{\mathcal{A}}(\mu) \times SST_{[2\ell]}(\mu') ,$$
$$\mathbf{U} \longmapsto (P_{\mathcal{A}}(\mathbf{U}), Q_{\mathcal{A}}(\mathbf{U}))$$

where $P_A(\mathbf{U})$ is obtained by the usual Schensted's column insertion and $Q_A(\mathbf{U})$ is the associated recording tableau.

Definition 3.1. Let $\mathbf{T} = (T_{\ell}, ..., T_1) \in \mathbf{T}_{\mathcal{A}}(\lambda/\mu, \ell)$ be given and set $\nu = \operatorname{sh}(P_{\mathcal{A}}(\mathbf{T}))$. For $n \geq \ell(\nu)$, we define the *n*-conjugate of \mathbf{T} to be the unique tableau $\overline{\mathbf{T}} \in \mathbf{T}_{[\overline{n}]}(\lambda/\mu, \ell)$ such that

$$P_{[\overline{n}]}(\overline{\mathbf{T}}) = H_{\nu}$$
 and $Q_{[\overline{n}]}(\overline{\mathbf{T}}) = Q_{\mathcal{A}}(\mathbf{T})$

where $H_{\nu} \in SST_{[\overline{n}]}(\nu)$ is such that the *i*-th row from the top is filled with $\overline{n-i+1}$ for $1 \le i \le n$.

Now, let us introduce an analog of jeu de taquin for spinor model. We first consider the case when $\ell = 2$. Suppose that $\mathbf{T} = (T_2, T_1) \in \mathbf{T}_A(a_2) \times \mathbf{T}_A(a_1)$ is given for some $a_1, a_2 \in \mathbb{Z}_+$. Let

$$d(T_1, T_2) = \min \left\{ d \in \mathbb{Z}_+ \left| \left\lfloor T_2, T_1 \right\rfloor_{(0,d)} \text{ is } \mathcal{A}\text{-admissible (of a skew shape)} \right\}.$$

We assume that $\mathbf{T} = (T_2^{\text{L}}, T_2^{\text{R}}, T_1^{\text{L}}, T_1^{\text{R}}) \in \mathbf{E}_{\mathcal{A}}^4$ and consider the \mathfrak{sl}_4 -crystal structure on $\mathbf{E}_{\mathcal{A}}^4$ given in Lemma 2.2.

Definition 3.2 ([2, Section 5.2]). Under the above hypothesis, suppose that $d = d(T_1, T_2) > 0$. *Define*

$$\mathsf{jdt}_{spin}(\mathbf{T}) = \mathbf{T}' = (T'_2, T'_1)$$

to be the pair (T'_2, T'_1) obtained by applying a sequence of crystal operators as follows:

Case 1. Suppose that $\lfloor {}^{R}T_{2}, T_{1}^{L} \rfloor_{(0,d-1)}$ is not A-semistandard. Then

$$\mathbf{T}' := (U_4, U_3, U_2, U_1) = \begin{cases} \mathcal{F}_3^{a_2 - 1} \mathcal{E}_2 \mathcal{E}_3^{a_2} \mathbf{T} & \text{if } \mathcal{E}_3 (\mathcal{E}_2 \mathcal{E}_3^{a_2} \mathbf{T}) = 0, \\ \mathcal{F}_3^{a_2} \mathcal{E}_2 \mathcal{E}_3^{a_2} \mathbf{T} & \text{if } \mathcal{E}_3 (\mathcal{E}_2 \mathcal{E}_3^{a_2} \mathbf{T}) = 1. \end{cases}$$
(3.2)

Case 2. Suppose that $\lfloor {}^{\mathsf{R}}T_2, T_1^{\mathsf{L}} \rfloor_{(0,d-1)}$ is A-semistandard, but $\lfloor T_2^{\mathsf{R}}, {}^{\mathsf{L}}T_1 \rfloor_{(0,d-1)}$ is not. Then

$$\mathbf{T}' := (U_4, U_3, U_2, U_1) = \mathcal{F}_1^{a_1 + 1} \mathcal{F}_2 \mathcal{E}_1^{a_1} \mathbf{T}.$$
(3.3)

Example 3.3. *Suppose that* $A = \mathbb{I}_{4|3}$ *.*

(1) The following is an example of Case 1 with $\varepsilon_3(\varepsilon_2\varepsilon_3^{a_2}\mathbf{T}) = 0$.

(2) The following is an example of Case 2.

One can check that jdt_{spin} is compatible with the *n*-conjugate for a sufficiently large *n*, that is, $\overline{jdt_{spin}(\mathbf{T})} = jdt_{spin}(\overline{\mathbf{T}})$. Furthermore, jdt_{spin} can be viewed as a generalization of jdt_{KN} in the following sense.

$$\left(\operatorname{jdt}_{spin}(\overline{\mathbf{T}})\right)^{\mathrm{ad}} = \operatorname{jdt}_{KN}\left(\overline{\mathbf{T}}^{\mathrm{ad}}, c\right),$$
(3.4)

where $(\cdot)^{ad}$ is given in (3.1), and *c* is the inner corner of $\overline{\mathbf{T}}^{ad}$.

Now consider a general case. Let $\mathbf{T} = (T_{\ell}, ..., T_1) \in \mathbf{T}_{\mathcal{A}}(\lambda/\mu, \ell)$ be given. Let *c* be the inner corner of λ/μ in the *i*-th column from the right.

Let *b* be the inner corner of $\overline{\mathbf{T}}^{ad}$ in the (i + 1)-th column from the right, where $\overline{\mathbf{T}}$ is the *n*-conjugate of **T** for a sufficiently large *n*, and consider $jdt_{KN}(\overline{\mathbf{T}}^{ad}, b)$. By Definition 3.2 and (3.4), there exists a composite of operators \mathcal{E}_i and \mathcal{F}_i , say \mathcal{X} , such that

$$\left(\mathfrak{X}\,\overline{\mathbf{T}}\right)^{\mathrm{ad}} = \mathrm{jdt}_{KN}\left(\overline{\mathbf{T}}^{\mathrm{ad}},b\right).$$
 (3.5)

We remark that the composite \mathcal{X} is independent of the choice of *n*.

Definition 3.4 ([2, Definition 5.14]). Under the above hypothesis, we define

$$jdt_{svin}(\mathbf{T},c) = \mathcal{X}\mathbf{T}.$$
 (3.6)

Theorem 3.5 ([2, Theorem 5.15]). Let $\mathbf{T} = (T_{\ell}, ..., T_1) \in \mathbf{T}_{\mathcal{A}}(\lambda/\mu, \ell)$ be given. There exists a unique $P(\mathbf{T}) \in \mathbf{T}_{\mathcal{A}}(\nu, \ell)$ for some $(\nu, \ell) \in \mathscr{P}(\mathrm{Sp})_{\mathcal{A}}$, which can be obtained from \mathbf{T} by applying $\mathrm{jdt}_{svin}(\cdot, c)$ finitely many times with respect to inner corners *c*.

Example 3.6. Let $\mathbf{T} = [T_3, T_2, T_1]_{(0,1,2)}$ be given as below. Then $P(\mathbf{T})$ can be obtained by

$$\mathtt{P}(\mathbf{T}) = \mathtt{jdt}_{spin}(\mathtt{jdt}_{spin}(\mathtt{jdt}_{spin}(\mathbf{T},c_1),c_2),c_3) = \mathcal{E}_4\mathfrak{F}_3\mathfrak{F}_4\mathcal{E}_2\mathcal{E}_3\mathbf{T}.$$

4 Symplectic RSK correspondence

4.1 Oscillating tableaux and King tableaux

An oscillating tableau is a sequence of partitions $Q = (Q_1, ..., Q_s)$ for some $s \ge 1$ such that each pair (Q_i, Q_{i+1}) differs by one box for $1 \le i \le s - 1$, i.e., $Q_i/Q_{i+1} = \Box$ or $Q_{i+1}/Q_i = \Box$. We say that $Q = (Q_1, ..., Q_s)$ is vertical if $Q_1 \subsetneq \cdots \subsetneq Q_r \supsetneq \cdots \supsetneq Q_s$ for some $1 \le r \le s$ and Q_r/Q_1 and Q_r/Q_s is a skew diagram of vertical strip. Here $A \subsetneq B \iff A \subseteq B$ and $A \ne B$. We denote by |Q| = s the length of $Q = (Q_1, ..., Q_s)$.

Definition 4.1 ([2, Section 6.1]). Let $(\lambda, \ell) \in \mathscr{P}(Sp)$ be given. For $n \ge \lambda_1$, define $O(\lambda, \ell; n)$ to be a set of sequences of oscillating tableaux $Q = (Q^{(1)} : \cdots : Q^{(\ell)})$ such that

- Q is itself an oscillating tableau,
- $Q^{(i)} = (Q_{i,1}, \dots, Q_{i,s_i})$ is a vertical oscillating tableau for $1 \le i \le \ell$,
- $\ell(Q_{i,j}) \leq n$ for $1 \leq i \leq \ell$ and $1 \leq j \leq s_i$,
- $Q_{1,1} = \Box$ and $Q_{\ell,s_{\ell}} = \rho_n(\lambda, \ell)$.

For $Q = (Q^{(1)} : \cdots : Q^{(\ell)}) \in \mathbf{O}(\lambda, \ell; n)$ with $|Q^{(i)}| = s_i$, let $\sigma(Q) = (\widehat{Q}^{(1)} : \cdots : \widehat{Q}^{(\ell)})$ be a sequence of oscillating tableaux $\widehat{Q}^{(i)}$ given as follows;

$$\widehat{Q}^{(i)} = ((i) \cup Q_{i-1,s_{i-1}}, (i) \cup Q_{i,1}, \dots, (i) \cup Q_{i,s_i}) \quad (1 \le i \le \ell)$$

Here we denote by $(i) \cup Q_{i,k}$ the partition obtained by adding *i* to $Q_{i,k}$ as its first part. Then we show $\sigma(Q) \in \mathbf{O}(\lambda, \ell; n + 1)$. Indeed, $\sigma : \mathbf{O}(\lambda, \ell; n) \longrightarrow \mathbf{O}(\lambda, \ell; n + 1)$ is a bijection for $n \ge \lambda_1$, and induces an equivalence relation on $\bigsqcup_{n\ge\lambda_1}\mathbf{O}(\lambda, \ell; n) \times \{n\}$, where $(Q', m) \sim (Q, n)$ if and only if $\sigma^{m-n}(Q) = Q'$ for $Q' \in \mathbf{O}(\lambda, \ell; m)$ and $Q \in \mathbf{O}(\lambda, \ell; n)$ with $m \ge n$. We define

$$\mathbf{O}(\lambda,\ell) = \{ [Q,n] \mid Q \in \mathbf{O}(\lambda,\ell;n) \ (n \ge \lambda_1) \},\$$

where [Q, n] is the equivalence class of $Q \in \mathbf{O}(\lambda, \ell; n)$ with respect to \sim . We call [Q, n] an oscillating tableau of shape (λ, ℓ) .

For $(\lambda, \ell) \in \mathscr{P}(\mathrm{Sp})$, let $\mathbf{K}(\lambda, \ell)$ be the set of tableaux of shape λ with letters in $\{1 < \overline{1} < \cdots < \ell < \overline{\ell}\}$, whose letters are of degree 0, such that all entries in the *i*th row are larger than or equal to *i*. It is known as the set of King tableaux of shape λ [8]. Based on [15], we construct a bijection between King tableaux and oscillating tableaux.

Theorem 4.2 ([15, Theorem 2.7], [2, Corollary 6.8]). For $\lambda \subseteq (n^{\ell})$, we have an explicit bijection

$$\mathbf{K}(\lambda,\ell) \longrightarrow \mathbf{O}(\lambda,\ell). \tag{4.1}$$

4.2 Symplectic RSK correspondence

For $\mathbf{a} = (a_1, \ldots, a_\ell) \in \mathbb{Z}_+^{\ell}$, let $\mathbf{T}_A(\mathbf{a}) = \mathbf{T}_A(a_\ell) \times \cdots \times \mathbf{T}_A(a_1)$, and $\mathbb{Z}/(\mathbf{a}+\mathbf{1})\mathbb{Z} = \mathbb{Z}/(a_\ell+1)\mathbb{Z} \times \cdots \times \mathbb{Z}/(a_1+1)\mathbb{Z}$, where $\mathbb{Z}/(a+1)\mathbb{Z}$ is understood as the set $\{0, 1, \ldots, a\}$ for $a \in \mathbb{Z}_+$, and let $\mathbf{F}_A^{\ell} = \mathbf{E}_A^{2\ell}$.

Lemma 4.3 ([2, Corollary 7.5]). We have a bijection

$$F_{\mathcal{A}}^{\ell} \longrightarrow \bigsqcup_{\mathbf{a}} \mathbf{T}_{\mathcal{A}}(\mathbf{a}) \times \mathbb{Z}/(\mathbf{a}+1)\mathbb{Z}, \qquad (4.2)$$
$$\mathbf{T} \longmapsto (\mathfrak{F}^{\max}\mathbf{T}, \varphi(\mathbf{T}))$$

where

$$\mathcal{F}^{\max} \mathbf{T} = (\mathcal{F}^{\max}(U_{2\ell}, U_{2\ell-1}), \dots, \mathcal{F}^{\max}(U_2, U_1)), \\ \varphi(\mathbf{T}) = (\varphi(U_{2\ell}, U_{2\ell-1}), \dots, \varphi(U_2, U_1)),$$

for $\mathbf{T} = (U_{2\ell}, \dots, U_1) \in \mathbf{F}_{\mathcal{A}}^{\ell}$ and the union is over $\mathbf{a} \in \mathbb{Z}_+^{\ell}$ such that $\mathbf{T}_{\mathcal{A}}(\mathbf{a}) \neq \emptyset$.

Let $\mathbf{T} = (T_{\ell}, ..., T_1) \in \mathbf{T}_{\mathcal{A}}(\mathbf{a})$ be given. Let us define a recording tableau for $P(\mathbf{T})$ (see Theorem 3.5). We assume that $\mathbf{T} \in \mathbf{T}_{\mathcal{A}}(\lambda/\mu, \ell)$ for some skew shape λ/μ . Let $\overline{\mathbf{T}}$ be the *n*-conjugate of \mathbf{T} for a sufficiently large *n*. Then $\overline{\mathbf{T}}^{\mathrm{ad}}$ is a KN tableau of shape $\rho_{n+\mu_1}(\lambda, \ell)/\rho_{\mu_1}(\mu, \ell)$.

By using an analog of Robinson-Schensted correspondence for KN tableaux of type C [14, Theorem 5.2.2] and given $(c_1, \ldots, c_\ell) \in \mathbb{Z}/(\mathbf{a} + \mathbf{1})\mathbb{Z}$, we obtain an oscillating tableaux $Q(\mathbf{T}; n)$ from $\overline{\mathbf{T}}^{ad}$ such that $Q(\mathbf{T}; n) \in \mathbf{O}(\lambda, \ell; n)$ and $\sigma(Q(\mathbf{T}; n)) = Q(\mathbf{T}; n + 1)$ [2, Lemma 6.2]. Then we define

$$Q(\mathbf{T}) = [Q(\mathbf{T}; n), n] \in \mathbf{O}(\lambda, \ell)$$

Theorem 4.4 ([2, Proposition 6.4, Theorem 7.2]). We have a bijection

$$\bigsqcup_{\mathbf{a}\in\mathbb{Z}_{+}^{\ell}} \mathbf{T}_{\mathcal{A}}(\mathbf{a})\times\mathbb{Z}/(\mathbf{a}+\mathbf{1})\mathbb{Z}\longrightarrow \bigsqcup_{(\lambda,\ell)\in\mathscr{P}(\operatorname{Sp})_{\mathcal{A}}} \mathbf{T}_{\mathcal{A}}(\lambda,\ell)\times\mathbf{O}(\lambda,\ell). \quad (4.3)$$

$$(\mathbf{T}_{\mathcal{A}}(c_{1},\ldots,c_{\ell}))\longmapsto (\mathbf{P}(\mathbf{T}),Q(\mathbf{T}))$$

Now we consider the composition of the following sequence of bijections (4.2), (4.3), and (4.1)

$$\begin{array}{ccc} \mathbf{F}_{\mathcal{A}}^{\ell} \xrightarrow{(4.2)} & \bigsqcup_{\mathbf{a}} \mathbf{T}_{\mathcal{A}}(\mathbf{a}) \times \mathbb{Z}/(\mathbf{a}+1)\mathbb{Z} \\ & \stackrel{(4.3)}{\longrightarrow} & \bigsqcup_{(\lambda,\ell)} \mathbf{T}_{\mathcal{A}}(\lambda,\ell) \times \mathbf{O}(\lambda,\ell) & \stackrel{(4.1)}{\longrightarrow} & \bigsqcup_{(\lambda,\ell)} \mathbf{T}_{\mathcal{A}}(\lambda,\ell) \times \mathbf{K}(\lambda,\ell) \end{array}$$

and denote by $(P(\mathbf{T}), Q(\mathbf{T}))$ the image of $\mathbf{T} \in \mathbf{F}_{\mathcal{A}}^{\ell}$ under the above composition. **Theorem 4.5** ([2, Theorem 7.7]). *The map* $\mathbf{T} \mapsto (P(\mathbf{T}), Q(\mathbf{T}))$ *gives a bijection*

$$\mathbf{F}^{\ell}_{\mathcal{A}} \longrightarrow \bigsqcup_{(\lambda,\ell) \in \mathscr{P}(\operatorname{Sp})_{\mathcal{A}}} \mathbf{T}_{\mathcal{A}}(\lambda,\ell) \times \mathbf{K}(\lambda,\ell).$$

4.3 Cauchy identity

Let $\mathbf{z} = \{z_1, \ldots, z_\ell\}$ be formal commuting variables, which commutes with $\mathbf{x} = \mathbf{x}_A$. Let $(\lambda, \ell) \in \mathscr{P}(\mathrm{Sp})$ be given. For $K \in \mathbf{K}(\lambda, \ell)$, let $\mathbf{z}^K = \prod_{i=1}^{\ell} z_i^{m_i - m_{\overline{i}}}$, where m_i (resp. $m_{\overline{i}}$) is the number of occurrences of *i* (resp. \overline{i}) in *K*. Then put

$$sp_{\lambda}(\mathbf{z}) = \sum_{K \in \mathbf{K}(\lambda, \ell)} \mathbf{z}^{K}.$$

It is well-known that $sp_{\lambda}(\mathbf{z})$ is the character of the irreducible highest weight module of $Sp_{2\ell}$ with highest weight corresponding to λ [8].

Let $\mathbf{U} = (U_{2\ell}, \ldots, U_1) \in \mathbf{F}_{\mathcal{A}}^{\ell}$ be given with the $ht(U_i) = u_i$. Let $\mathbf{x}^{\mathbf{U}} = \prod_{i=1}^{2\ell} \mathbf{x}^{U_i}$ and $\mathbf{z}^{\mathbf{U}} = \prod_{i=1}^{\ell} z_i^{u_{2i}-u_{2i-1}}$. Then we have

$$ch \mathbf{F}_{\mathcal{A}}^{\ell} := \sum_{\mathbf{U}} \mathbf{x}^{\mathbf{U}} \mathbf{z}^{\mathbf{U}} = \prod_{j=1}^{\ell} \frac{\prod_{a \in \mathcal{A}_0} (1 + x_a z_j) (1 + x_a z_j^{-1})}{\prod_{a \in \mathcal{A}_1} (1 - x_a z_j) (1 - x_a z_j^{-1})}.$$

Theorem 4.6 ([2, Theorem 7.9]). We have the following identity

$$t^{\ell} \prod_{j=1}^{\ell} \frac{\prod_{a \in \mathcal{A}_{0}} (1 + x_{a} z_{j})(1 + x_{a} z_{j}^{-1})}{\prod_{a \in \mathcal{A}_{1}} (1 - x_{a} z_{j})(1 - x_{a} z_{j}^{-1})} = \sum_{(\lambda, \ell) \in \mathscr{P}(\mathrm{Sp})_{\mathcal{A}}} S_{(\lambda, \ell)}(\mathbf{x}_{\mathcal{A}}) sp_{\lambda}(\mathbf{z}).$$
(4.4)

We recover well-known identities when A is homogeneous. If $A = A_0$, then (4.4) is the identity [7, (6.19)]. If $A = A_1$ and $\ell \ge n$, then (4.4) and the stability of $\mathbf{T}_A(\lambda, \ell)$ [10, Theorem 6.5] imply the following identity [16, 19]

$$\frac{1}{\prod_{i=1}^{n}\prod_{j=1}^{\ell}(1-x_{i}z_{j})(1-x_{i}z_{j}^{-1})} = \sum_{\ell(\lambda) \le n} sp_{\lambda}(\mathbf{z})s_{\lambda}(\mathbf{x})\prod_{1 \le i < j \le n}(1-x_{i}x_{j})^{-1}, \quad (4.5)$$

where $s_{\lambda}(\mathbf{x})$ is the Schur polynomial in x_1, \ldots, x_n , and $\ell(\lambda)$ is the length of λ .

Acknowledgements

This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) (Grant numbers 2019R1A2C108483311 and 2020R1A5A1016126).

References

- [1] S.-J. Cheng, J.-H. Kwon, and W. Wang. "Kostant homology formulas for oscillator modules of Lie superalgebras". *Advances in Mathematics* **224**.4 (2010), pp. 1548–1588. DOI.
- [2] T. Heo and J.-H. Kwon. "Combinatorial Howe duality of symplectic type". Preprint. 2020. arXiv:2008.05093.
- [3] R. Howe. "Remarks on classical invariant theory". *Transactions of the American Mathematical Society* **313**.2 (1989), pp. 539–570. DOI.
- [4] R. Howe. "Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond". *The Schur lectures (1992)(Tel Aviv)* (1995), pp. 1–182.
- [5] R. Howe, E.-C. Tan, and J. Willenbring. "Stable branching rules for classical symmetric pairs". *Transactions of the American mathematical society* **357**.4 (2005), pp. 1601–1626. DOI.
- [6] M. Kashiwara and T. Nakashima. "Crystal graphs for representations of the q-analogue of classical Lie algebras". *Journal of algebra* **165**.2 (1994), pp. 295–345. DOI.
- [7] R. C. King. "Branching rules for classical Lie groups using tensor and spinor methods". *Journal of Physics A: Mathematical and General* **8**.4 (1975), p. 429. DOI.
- [8] R. C. King. "Weight multiplicities for the classical groups". *Group theoretical methods in physics*. Springer, 1976, pp. 490–499. DOI.

- [9] J.-H. Kwon. "Super duality and crystal bases for quantum ortho-symplectic superalgebras". *International Mathematics Research Notices* **2015**.23 (2015), pp. 12620–12677. DOI.
- [10] J.-H. Kwon. "Combinatorial extension of stable branching rules for classical groups". *Transactions of the American Mathematical Society* **370**.9 (2018), pp. 6125–6152. DOI.
- [11] J.-H. Kwon. "Lusztig data of Kashiwara–Nakashima tableaux in types B and C". *Journal of Algebra* **503** (2018), pp. 222–264. DOI.
- [12] N. Lam and R. Zhang. "Quasi-finite modules for Lie superalgebras of infinite rank". *Transactions of the American Mathematical Society* **358**.1 (2006), pp. 403–439. DOI.
- [13] A. Lascoux. "Double crystal graphs". *Studies in memory of Issai Schur*. Springer, 2003, pp. 95–114. DOI.
- [14] C. Lecouvey. "Schensted-type correspondence, plactic monoid, and jeu de taquin for type C_n ". *Journal of Algebra* **247**.2 (2002), pp. 295–331. DOI.
- [15] S. J. Lee. "Crystal structure on King tableaux and semistandard oscillating tableaux". Preprint. 2019. arXiv:1910.04459.
- [16] D. E. Littlewood. *The theory of group characters and matrix representations of groups*. Vol. 357. American Mathematical Soc., 1977.
- [17] J. Sheats. "A symplectic jeu de taquin bijection between the tableaux of King and of De Concini". *Transactions of the American Mathematical Society* **351**.9 (1999), pp. 3569–3607. DOI.
- [18] W. Wang. "Duality in infinite dimensional Fock representations". *Communications in Contemporary Mathematics* **1**.02 (1999), pp. 155–199. DOI.
- [19] H. Weyl. *The classical groups: their invariants and representations*. Vol. 45. Princeton university press, 1946.