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Abstract. We previously generalized P. Johnson’s proof of D. Armstrong’s conjecture
for the expected number of boxes in a simultaneous core to simply-laced type. After
recalling combinatorial core-like models for coroot lattices in the classical types, our
main result is a generalization of this theorem to all affine Weyl groups.
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1 Introduction

1.1 Motivation

An a-core is an integer partition with no hook of length a. An (a, b)-core is a partition
that is simultaneously an a-core and a b-core. For a and b relatively prime, it turns out
that there are only finitely many (a, b)-cores:∣∣core(a, b)

∣∣ = 1
a + b

(
a + b

b

)
.

For λ a partition, write λᵀ for its conjugate and size(λ) for the number of its boxes. The
starting point for a number of recent investigations has been Armstrong’s conjecture on
the average number of boxes in an (a, b)-core, and in a self-conjugate (a, b)-core [1, 2].

Theorem 1.1 ([5]). For gcd(a, b) = 1,

E
λ∈core(a,b)

(size(λ)) =
(a− 1)(b− 1)(a + b + 1)

24
= E

λ∈core(a,b)
λ=λᵀ

(size(λ)).

Both equalities in Theorem 1.1 were proven by Johnson using weighted Ehrhart the-
ory [5]. In [7], we generalized Armstrong’s conjecture and Johnson’s proof (of the first
equality) to all simply-laced affine Weyl groups. In this extended abstract, we complete
the generalization to all affine Weyl groups.
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1.2 Combinatorial Models of Coroot Lattices

The set of a-cores under the action of the affine symmetric group S̃a is a well-studied
combinatorial model for the coroot lattice Q ‹

a of type Aa−1. Indeed, for all affine Weyl
groups W̃ = W̃(Xn), there is a well-known W̃-equivariant map from the group to the
coroot lattice W̃ = W nQ ‹

Xn
→ Q ‹

Xn

w̃ = w · t−q 7→ w̃−1(0) = tq · w−1(0) = tq(0) = q,

which restricts to a W̃-equivariant bijection on the cosets W\W̃.1 Thus, combinatorial
models for Q ‹

Xn
also give models for W\W̃, representatives usually taken to be dominant

affine elements. In type Aa−1, these correspondences give S̃a-equivariant bijections

core(a)↔ Q ‹
a ↔ Sa\S̃a

λ↔ qλ ↔ w̃λ.
(1.1)

It is an easy exercise to produce similar combinatorial models for the quotients W\W̃
of other classical types (Xn ∈ {An, Bn, Cn, Dn}) by embedding Q ‹

Xn
into an appropriate

type A coroot lattice. These, as well as a model for Xn = G2, are illustrated for rank two
root systems in Figure 1.

∅ ∅ ∅

Figure 1: 3-cores in types A2 and G2, and self-conjugate 4-cores in type C2.

Under the correspondence between a-cores and Q ‹

a of Equation (1.1), the set of (a, b)-
cores are exactly those coroot points that sit inside of a certain b-fold dilation of the
fundamental alcove called the b-Sommers region (see Definition 4.1). The natural gen-
eralization of core(a, b) to any affine Weyl group is the intersection of the coroot lattice
Q ‹

Xn
with the b-Sommers region, so that core(a, b) = core(Aa−1, b), where

core(Xn, b) := Q ‹

Xn
∩ S(b). (1.2)

1Where ṽ ∈ W̃ acts on the right for w̃ ∈W\W̃ by w̃ · ṽ, and on the left for q ∈ Q ‹

Xn
by ṽ−1(q).
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1.3 Size Statistics

Under the bijections of Equation (1.1), we noticed in [7] that the number of boxes in λ

could be computed from the coroot qλ as described above, or the inversion set of w̃−1
λ ,

where inv(w̃) = Φ̃+ ∩ w̃(−Φ̃+). More precisely:

Proposition 1.2 ([7, Proposition 6.4 & Corollary 6.7]). Let λ be an a-core and ρ ‹ be the sum
of the fundamental coweights in type Aa−1. Then

size(λ) = ∑
α+kδ∈inv(w̃−1

λ )

k =
〈 a

2
qλ − ρ ‹ , qλ

〉
.

It was natural to consider the corresponding statistic in any affine Weyl group W̃(Xn)
acting on V, restricting to a certain finite set of coroots core(Xn, b) (defined below in Equa-
tion (1.2), in analogy with simultaneous (a, b)-cores) . For simply-laced Weyl groups, our
result mirrored Theorem 1.1.

Theorem 1.3 ([7, Theorem 1.10]). Let Xn be a simply-laced Cartan type with Coxeter number
h, and let b be coprime to h. Then

E
q∈core(Xn,b)

(size(q)) =
n(b− 1)(h + b + 1)

24
.

When applied to Xn = Aa−1 (so that n = a− 1 and h = a), our result gives a proof
of the left equality of Theorem 1.1 for the expected size of simultaneous (a, b)-cores.
But since self-conjugate cores are a combinatorial model for coroots in the non-simply-
laced type Cn, we were unable to similarly specialize Theorem 1.3 to conclude the right
equality of Theorem 1.1 for the expected size of a self-conjugate simultaneous core.

Our mistake was to take Theorem 1.3 as evidence that we had determined the “cor-
rect” generalization of the number of boxes of an a-core to all affine Weyl groups—the
trouble is that we were unable to apply the Ehrhart-theoretic techniques of Section 4.2
using this definition outside of simply-laced type. To be able to apply these techniques, it
turns out that we must modify the above definitions to incorporate different root lengths.

1.4 Expected Size

Normalize root systems so that the highest root has length 2, and write r for the ratio of
the length of a long to a short root. We define a new statistic on coroots that recovers
our old definition of size in simply-laced type, but disagrees in non-simply-laced type.
For w̃ = w · t−q ∈W\W̃, define (the second equality is proven in Theorem 3.9)

size ‹(w̃) :=

 ∑
α+kδ∈inv(w̃−1)

α long

k

+ r

 ∑
α+kδ∈inv(w̃−1)

α short

k

 =

〈
h
2

q− ρ ‹ , q
〉

. (1.3)
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We interpret size ‹ as statistics on the combinatorial models of Section 3, showing (for
example) that size ‹ in type Cn corresponds to the number of boxes in the corresponding
self-conjugate 2n-core (see Figure 1).

Following the same strategy as in [7], we find an affine Weyl group element that maps
S(b) to a b-fold dilation of the fundamental alcove (correctly modifying the size ‹ statistic),
and then apply Ehrhart theory to compute the expected value of size ‹ on core(Xn, b).

Theorem 1.4. For Xn an irreducible rank n Cartan type with root system Φ,

E
λ∈core(Xn,b)

(size ‹(λ)) =
rg ‹

h
n(b− 1)(h + b + 1)

24
,

where h is the Coxeter number of Xn, g ‹ is the dual Coxeter number for Φ ‹, and r is the ratio of
the length of a long root to the length of a short root in Φ.

The extra factor of rg ‹

h is invisible in the simply-laced case, where Φ ‹ = Φ, g ‹ = h, and
r = 1. As an immediate application of Theorem 1.4, we conclude both equalities in The-
orem 1.1 by specializing to these types. Interestingly, although the expected number of
boxes in a simultaneous core and in a self-conjugate simultaneous core happen to be the
same, the formulas have quite different interpretations: the factor of a− 1 corresponds
to the dimension n for ordinary simultaneous cores, but to g ‹ in the self-conjugate case.

2 Affine Weyl Groups

Let Φ = Φ+ t Φ− be an irreducible crystallographic root system of Cartan type Xn
with ambient space V. Let n be its rank, h its Coxeter number, ∆ be its set of simple
roots, and Q ‹ be its coroot lattice. Write ω ‹

i for the fundamental coweights, and also set
ω ‹

0 := 0. Normalize the inner product on V so that 〈β, β〉 = 2 for β a long root and
define r := 〈β,β〉

〈α,α〉 for β a long root and α a short root.
Recall that the corresponding Weyl group W = W(Xn) is generated by the reflections

sα(x) := x− 2 〈α,x〉
〈α,α〉α for α ∈ ∆. There is a unique highest root α̃ ∈ Φ+ for which α̃+ α 6∈ Φ+

for any α ∈ ∆. The corresponding affine Weyl group W̃ = W nQ ‹ is generated by the
sα for α ∈ ∆ along with the additional affine simple reflection sα̃,1 := x − (〈α̃, x〉 − 1)α̃.
More generally, reflections act by sα,k(x) = x− (〈α, x〉 − k)α ‹ = sα(x) + kα ‹ .

Recall that W̃ acts on the affine roots Φ̃ = {α + kδ : α ∈ Φ, k ∈ Z} by w̃ · (α +
kδ) = w(α) + (k − 〈α, q〉)δ when w̃ = w · tq for w ∈ W and q ∈ Q ‹ Given a reduced
word w̃ = a1a2 · · · a` for w̃ ∈ W̃ (with the ai simple reflections), we associate the affine
roots in the inversion set of w̃ to the letters ai in w̃ by (a1 · · · ai−1)(αai) = βi + kiδ. We
call the ordered sequence inv(w̃) = β1 + k1δ, β2 + k2δ, . . . , β` + k`δ the inversion sequence
corresponding to the word w̃. (These record the affine hyperplanes that separate w(A)
from the fundamental alcove A.)
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Example 2.1. We compute the inversion sequence for the reduced word s0s1s2s1s0s1 for
the element w̃ = s1s2t−2α ‹

2
∈ Ã2 (see also Figure 2):

inv(s0s1s2s1s0s1) = −α̃ + δ,−α2 + δ,−α̃ + 2δ,−α1 + δ,−α̃ + 3δ,−α2 + 2δ.

Theorem 2.2. The W̃-equivariant map W̃ = W nQ ‹ → Q ‹ defined by

w̃ = w · t−q 7→ w̃−1(0) = tq · w−1(0) = tq(0) = q

restricts to a W̃-equivariant bijection on the cosets W\W̃.

3 Combinatorial Models for Coroot Lattices

We explain the a-core model for the type Aa−1 coroot lattice Q ‹

a. Similar combinatorial
models for affine Weyl groups of classical type can be produced using coroot lattice
embeddings, as in [4]. We illustrate this is type G2, interpreting the statistics size ‹

i and
size ‹ on the model.

3.1 Partitions, Abaci, and the Coroot Lattice in Type A

An integer partition λ (in English notation) can be characterized by its boundary word—
the bi-infinite sequence of •s and ◦s (with •s representing steps up and ◦s representing
steps right) that begins with an infinite sequence of only •s and ends with an infinite
sequence of only ◦s, encoding the boundary of λ when read from bottom left to top right.
Partitioning this sequence into consecutive subsequences of length a and stacking them
vertically gives an a-abacus representation of λ. Finally, an a-abacus is called balanced if
we can draw a horizontal line between two rows with as many ◦s above the line as •s
below; every partition has a unique representation as a balanced a-abacus.

An integer partition λ is an a-core if and only if its a-abacus representation is flush—
that is, if each of the vertical “runners” of the abacus consists of an infinite sequence of
only •s followed by an infinite sequence of only ◦s. A flush, balanced a-abacus can be
encoded as the a-tuple of signed distances from the lowest • in each runner to the line
witnessing the balanced condition—the balanced condition ensures that these distances
sum to zero. See Figure 2 for an illustration.

In type Aa−1, the simple roots are αi := ei− ei+1 for 1 ≤ i < a, the highest root is α̃ :=
e1 − ea, and the coroot lattice2 is Q ‹

a = Q ‹

Aa−1
:= {q = (q1, q2 . . . , qa) ∈ Za : ∑a

i=1 qi = 0} .
By the discussion above, Q ‹

a is in bijection with the set of a-cores core(a). For q ∈ Q ‹

a, we
write λq for the corresponding a-core; for λ ∈ core(a), we write qλ for the corresponding

2For safety—even though roots and coroots can be identified in type A—we already throw in the
distinguishing check.
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Coroot point q = (0, 2,−2), abacus and 3-core λ =

0 1 2 0 1
2 0 1
1
0

Figure 2: An example of the bijection between a-core, abaci, and Q ‹

Aa−1
(for a = 3).

coroot. The action of the affine symmetric group S̃a = W̃(Aa−1) on Q ‹

a is generated by
the usual simple reflections along with an additional affine simple reflection:

si(q1, . . . , qi, qi+1, . . . , qa) = (q1, . . . , qi+1, qi, . . . , qa), and
s0(q1, . . . , qa) = (qa + 1, . . . , q1 − 1).

It is elegant to rephrase this action of S̃a in the language of a-cores. We think of an
a-core as an order ideal in N×N, where each (i, j) ∈ N×N is indexed by its content
(i− j)mod a. For 0 ≤ i < a, the action of a simple reflection si is then to add or remove
all possible boxes indexed by i. The following theorem now follows immediately.

Theorem 3.1. The map λ → qλ is an S̃a-equivariant bijection between core(a) and Q ‹

a, with
inverse given by q→ λq.

3.2 The statistic size in type A

We interpret the size statistic for the number of boxes in an a-core in terms of the affine
symmetric group S̃a). Recall that in type Aa−1 (up to the usual normalization that the
sum of the entries ought to be zero, which we will safely ignore), we have

ω ‹

i =
i

∑
j=1

ei = (1, 1, . . . , 1︸ ︷︷ ︸
i ones

, 0, 0, . . . , 0) and ρ ‹ =
a−1

∑
i=1

ω ‹

i = (a− 1, a− 2, . . . , 1, 0),

where we use the convention that ω0 = 0. For λ a partition, write λᵀ for its conjugate,
sizei(λ) for the the number of boxes in λ with content i mod a, and size(λ) for the total
number of its boxes. For q = (q1, . . . , qa) ∈ Q ‹

a, write qᵀ := (−qa, . . . ,−q1) and define

size ‹

i (q) :=
〈

1
2

q−ω ‹

i , q
〉

and size ‹(q) =
a−1

∑
i=1

size ‹

i (q) :=
〈 a

2
q− ρ ‹ , q

〉
.
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Example 3.2. Continuing Example 2.1, the element w̃ = s1s2t−2α ‹

2
∈ Ã2 corresponds to

the coroot q = 2α ‹

2 = (0, 2,−2) and the 3-core λ =
0 1 2 0 1
2 0 1
1
0

. This λ has four boxes

with content 0 mod 3, four with content 1 mod 3, and two with content 2 mod 3. We
compute (again, safely ignoring normalization)

size ‹

0(q) =
〈

1
2
(0, 2,−2), (0, 2,−2)

〉
= 4 = size0(λ),

size ‹

1(q) =
〈

1
2
(0, 2,−2)− (1, 0, 0), (0, 2,−2)

〉
= 4 = size1(λ),

size ‹

2(q) =
〈

1
2
(0, 2,−2)− (1, 1, 0), (0, 2,−2)

〉
= 2 = size2(λ).

Proposition 3.3. For q ∈ Q ‹

a, λqᵀ = λᵀ
q and size ‹(q) = size(λq)). Furthermore, for any

0 ≤ i ≤ a− 1, sizei(λ) = size ‹

i (qλ).

Proof. We compute directly that the number of boxes in the a-core λq is given by

∑
•∈λq

# {◦ to the left of •} = ∑
1≤i<j≤n

(xi − xj − 1)(xi − xj)

2
=
〈 a

2
q− ρ ‹ , q

〉
,

where the first equality comes from counting the number of inversions coming from •s
and ◦s between runner i and runner j, while the second equality comes from rearrang-
ing and using ρ ‹ = (a, a − 1, . . . , 1) − a+1

2 (1, 1, . . . , 1). The statement about conjugation
follows by observing that the boundary path of a partition and its conjugate are related
by reversing and interchanging • ↔ ◦. The remaining statement about sizei will follow
from the more general Theorem 3.8 below.

3.3 The statistic size in general type

We now turn to the general definition of the size statistic for affine Weyl groups. In
fact, we generalize the refined statistic sizei (keeping track of the number of boxes with
content i mod a in type A) for both models of Xn-cores: first for W\W̃, and then for Q ‹

Xn
.

Definition 3.4. Fix w̃ ∈ W̃ and a reduced word w̃ = a1 · · · a` for w̃, with inversion
sequence inv(w̃) = β1 + k1δ, β2 + k2δ, . . . , β` + k`δ. For any i ∈ {0, 1, . . . , n} with corre-
sponding simple reflection si and simple root αi, define

size ‹

i (w̃) =
2

〈αi, αi〉 ∑
1≤j≤`
aj=si

k j.
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Example 3.5. Continuing Examples 2.1 and 3.2, we recall that the inversion sequence for
W̃ = Ã2 and w̃ = s0s1s2s1s0s1 is

inv(w̃) = −α̃ + 1 · δ,−α2 + 1 · δ,−α̃ + 2 · δ,−α1 + 1 · δ,−α̃ + 3 · δ,−α2 + 2 · δ,

and we compute size0(w̃) = 1 + 3 = 4, size1(w̃) = 1 + 1 + 2 = 4, and size2(w̃) = 2.

Proposition 3.6. For any two reduced words w̃ and w̃′ representing the same group element
w̃ ∈ W̃, we have size ‹

i (w̃) = size ‹
i (w̃
′).

Definition 3.7. For q ∈ Q ‹

Xn
, define size ‹

i (q) =
〈

ci
2 q − ω ‹

i , q
〉

, where the highest root α̃

is expressed in terms of the simple roots as α̃ = ∑n
i=1 ciαi (so that

〈
ω ‹

i , α̃
〉
= ci), with

c0 := 1.

Theorem 3.8. Under the bijection of Theorem 2.2 sending a dominant affine element w̃ =
wt−q ∈W\W̃ to the coroot q ∈ Q ‹

Xn
, we have size ‹

i (w̃) = size ‹

i (q).

Proof. Let j 6= 0 and let i ∈ {0, 1, . . . , n}. We compute size ‹

i (sj(q)):

size ‹

i (sj(q)) =
〈 ci

2
sj(q)−ω ‹

i , sj(q)
〉

=
〈 ci

2

[
q− 〈α ‹

j , q〉αj

]
−ω ‹

i ,
[
q− 〈α ‹

j , q〉αj

]〉
=
〈 ci

2
q−ω ‹

i , q
〉
+
〈

α ‹

j , q
〉
·
〈
ω ‹

i , αj
〉

= size ‹

i (q) +

{〈
α ‹

j , q
〉

if i = j

0 if i 6= j
.

Similarly, we compute size ‹

i (s0(q)) = size ‹

i (q) +

{
1− 〈α̃, q〉 if i = 0
0 if i 6= 0

.

We now argue by induction on the length of the dominant affine element w̃, with
base case coming from the identity e ↔ 0 giving size ‹

i (e) = size ‹

i (0) = 0. Consider now
w̃ = a1a2 · · · a`−1 = w · t−q with (right) ascent sj so that w̃sj is still dominant. We can
compare the root −(w̃sj)(αj) = −w̃(−αj) = w̃(αj) with the previous computations to
conclude the result by induction: for j 6= 0, we have w̃(αj) = w(αj) + 〈αj, q〉δ, while
if j = 0, then w̃(−α̃ + δ) = w(−α̃) + (1− 〈α̃, q〉)δ. The result follows by observing that
size ‹

i (w̃) picks off the coefficient of δ for this last inversion, recording the correction factor
of r if αj was a short root.

Because 2
〈αi,αi〉

= 1 if αi is long, and is r if αi is short, and because ∑n
i=0 ci = h and

∑n
i=0 ω ‹

i = ρ ‹ , we conclude the following theorem.
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Theorem 3.9. For w̃ ∈W\W̃, define

size ‹(w̃) =
n

∑
i=0

size ‹

i (w̃) =

 ∑
α+kδ∈inv(w̃−1)

α long

k

+ r

 ∑
α+kδ∈inv(w̃−1)

α short

k

 .

For q ∈ Q ‹

Xn
, define size ‹(q) = ∑n

i=0 size

‹

i (q) =
〈

h
2 q− ρ ‹ , q

〉
. Then if w̃ = wt−q ∈ W\W̃

corresponds to the coroot q ∈ Q ‹

Xn
, we have size ‹(w̃) = size ‹(q).

3.4 Other Types

It is easy to embed coroot lattices QXn for the classical types into appropriate coroot
lattices of type A. In so doing we find combinatorial models for their coroot lattices. and
in so doing give combinatorial interpretations of size ‹ . We illustrate this method here
for the exceptional type G2—we do not know of a similar method for finding reasonable
combinatorial models for the remaining types F4, E6, E7, or E8.

As usual, we wish to think of G2 as acting on the orthogonal complement of R(1, 1, 1)
in R3. The simple roots for G2 can be taken to be α1 := (1,−1, 0) and α2 := 1

3(−1, 2,−1).
With these conventions, the type G2 coroot lattice Q ‹

G2
coincides with the coroot lattice

for S̃3. The map q 7→ λq therefore gives a bijection between Q ‹

G2
and 3-cores. It remains

to determine the action of G̃2 on 3-cores. The action of the affine Weyl group G̃2 =
〈sG

0 , sG
1 , sG

2 : (sG
0 sG

1 )
3 = (sG

1 sG
2 )

6 = (s0s2)
2 = e〉 on Q ‹

G2
is given explicitly by

sG
1 (q1, q2, q3) = (q2, q1, q3),

sG
2 (q1, q2, q3) = (−q3,−q2,−q1), and

sG
0 (q1, q2, q3) = (q3 + 1, q2, q1 − 1).

We emulate the action of G̃2 by sG
1 (λq) = s1(λq), sG

2 (λq) = λᵀ
q , and sG

0 (λq) = s0(λq). For
λ a 3-core, define size ‹

G(λ) := λ0 + λ1 + 4λ2. We obtain a combinatorial model for Q ‹

G2
.

Theorem 3.10. The map q 7→ λq is a G̃2-equivariant bijection between the G2 coroot lattice and
3-cores: sG

1 acts on a 3-core by adding or removing all boxes of content 1, sG
0 acts similarly on

boxes of content 0, and sG
2 acts by conjugation. For q ∈ Q ‹

G2
, size ‹

G(λq) = size ‹(q).

4 Expected Size of Simultaneous Cores

Johnson [5] showed that (a, b)-cores satisfy certain inequalities; when considering them
as elements of Q ‹

Aa−1
, these place them inside a particular simplex that had previously
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been considered by Sommers [6]. Recall that Φ is a root system with an irreducible
Cartan type Xn, Coxeter number h. For 1 ≤ i < h, write Φi to denote the set of positive
roots of height i.

Definition 4.1. For b coprime to h, write b = qbh + rb with t, r ∈ Z≥0 and 0 < rb < h. We
define the b-Sommers region

SXn(b) :=
{

x ∈ V :
〈x, α〉 ≥ −qb for all α ∈ Φrb and
〈x, α〉 ≤ qb + 1 for all α ∈ Φh−rb

}
.

As in Equation (1.2), a natural generalization of core(a, b) to any affine Weyl group is
the intersection of the coroot lattice Q ‹

Xn
with SXn(b), so that core(a, b) = core(Aa−1, b).

4.1 The Sommers Region and the Fundamental Alcove

We would like to perform the size ‹-weighted enumeration of core(Xn, b) using Ehrhart
theory. Unfortunately, the family {SXn(b) : gcd(b, h) = 1} does not consist of dilations
of a fixed polytope—but this difficulty can be circumvented. Define, for any x ∈ V, the
statistic

size(b)(x) :=
h
2

(∥∥∥∥x− bρ ‹

h

∥∥∥∥2

−
∥∥∥ρ ‹

h

∥∥∥2
)

. (4.1)

Notice that when q ∈ Q ‹

Xn
and b = 1, we have size(1)(q) = size ‹(q) (cf. Theorem 3.9).

We recall from [7, §4] that there is a unique element w̃b ∈ W̃ such that b
h ρ ‹ = w̃b(

ρ ‹

h ),
and that left-multiplication by this element maps SXn(b) onto the b-fold dilation of the
fundamental alcove A.

Theorem 4.2. For b coprime to h, the following equality of multisets holds:{
size ‹(q) : q ∈ core(Xn, b)

}
=
{
size(b)(q) : q ∈ bA∩Q ‹

Xn

}
.

Proof. We first note that since w̃b maps SXn(b) onto bA, and also w̃b ∈ W̃ and thus
is a Q ‹

Xn
-preserving bijection, it restricts to a bijection core(W̃, b) → bA ∩ Q ‹ . Write

w̃b = tq0w; then w̃b = t bρ ‹

h
wt− ρ ‹

h
. Since ‖ · ‖ is W-invariant, for q ∈ core(W̃, b):

size(b)(w̃b(q)) =
h
2

(∥∥∥∥t b
h ρ ‹wt 1

h ρ ‹(q)−
bρ ‹

h

∥∥∥∥2

−
∥∥∥−ρ ‹

h

∥∥∥2
)

=
h
2

(∥∥∥w
(

q− ρ ‹

h

)∥∥∥2
−
∥∥∥ρ ‹

h

∥∥∥2
)
= size ‹(q).
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4.2 Proof Sketch

We are now ready to sketch a proof of Theorem 1.4:

Theorem 1.4. For Xn an irreducible rank n Cartan type with root system Φ,

E
λ∈core(Xn,b)

(size ‹(λ)) =
rg ‹

h
n(b− 1)(h + b + 1)

24
,

where h is the Coxeter number of Xn, g ‹ is the dual Coxeter number for Φ ‹, and r is the ratio of
the length of a long root to the length of a short root in Φ.

We do this by computing the left-hand side explicitly for each type Xn, which by
Theorem 4.2 is

E
q∈core(Xn,b)

(size ‹(q)) =
1

|core(Xn, b)| ∑
q∈core(Xn,b)

size ‹(q) =
1

|bA∩Q ‹

Xn
| ∑

q∈bA∩Q ‹

Xn

size(b)(q).

The denominator was explicitly (and uniformly) calculated by Haiman [3]. To compute
the sum, we first record the vertices of the fundamental alcove A: they are Γ := {0} ∪{

ω ‹

i
ci

: 1 ≤ i ≤ n
}

, where and ci are defined by α̃ = ∑n
i=1 ciαi. As in [7], we proceed by

translating the problem to the coweight lattice. Define the extended affine Weyl group of
type Xn by W̃ex := W n Λ ‹

Xn
, and write the group of automorphisms for bA as bΩ :=

{w̃ ∈ W̃ex : w̃(bA) = bA}. These groups are isomorphic for all b, and in particular have
constant order f .

Proposition 4.3 ([7, Theorem 2.5 & Lemma 6.11]). For any b coprime to h:

(a) The action of bΩ on bA∩Λ ‹

Xn
is free.

(b) Each bΩ orbit of bA∩Λ ‹

Xn
contains exactly one element of bA∩Q ‹

Xn
= core(Xn, b).

(c) For any w̃ ∈ bΩ any any ω ∈ Λ ‹

Xn
, size ‹

b(ω) = size ‹

b(w̃ ·ω)

Using this, we finish the translation from Q ‹

Xn
to Λ ‹

Xn
:

E
q∈core(Xn,b)

(size ‹(q)) =
1

|bA∩Q ‹

Xn
| ·

1
f ∑

q∈bA∩Λ ‹

Xn

size(b)(q).

Let us now recall the relevant Ehrhart-theoretic tools. For any degree-r polynomial
F : Rn → R, its weighted lattice point enumerator is AF(b) := ∑

q∈bA∩Λ ‹

Xn

F(q) over Λ ‹

Xn
. This

AF(b) is a quasipolynomial in b, of degree n + r and period c := lcm(c1, . . . , cn), where
the ci are again the denominators of the vertices of A. As size(b) changes with b, Ehrhart
theory appears to be inapplicable—however, a judicious rewriting shows that this is not
the case.
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Proposition 4.4. The weighted lattice point enumerator A
size(b)

(b) is a quasipolynomial in b of
degree n + 2 and period cXn := lcm(c1, . . . , cn).

Proof. Notice that size ‹

b(x) = h
2 ‖x‖

2 − b〈x, ρ ‹〉+ (b2 − 1) ‖ρ̌‖
2

2h . Thus we find that

A
size(b)

(b) = h
2A‖·‖2(b)− bA〈·,ρ ‹〉(b) + (b2 − 1)A ‖ρ ‹‖2

2h

(b)

is a quasipolynomial in b of degree n + 2 and period cXn .

Therefore, to complete the proof of Theorem 1.4, we may compute the quasipolyno-
mial on for all components that contain a residue b mod cXn that is coprime to h. For the
exceptional types, this is already a finite and computationally feasible calculation. For
classical types, we use Ehrhart reciprocity to see that −ei is a root of A

size(b)
(b) for all ex-

ponents ei; when working through the details, this reduces the problem to interpolating
a factor that is at worst quadratic (in type Dn). Thus, by explicitly computing the lattice
points contained in several dilates of A, we complete the missing factor and recover the
desired formula.

Acknowledgements

We thank Benjamin Cotton for help drawing Figure 1. The second author was partially
supported by Simons grant 585380.

References

[1] Armstrong, D. “Rational Catalan Combinatorics”. 2012 (accessed 12 May, 2015). Link.

[2] Armstrong, D. and Hanusa, C. and Jones, B. “Results and conjectures on simultaneous core
partitions”. European Journal of Combinatorics 41 (2014), pp. 205–220.

[3] Haiman, M. “Conjectures on the quotient ring by diagonal invariants”. Journal of Algebraic
Combinatorics 3.1 (1994), pp. 17–76.

[4] Hanusa, C. and Jones, B. “Abacus models for parabolic quotients of affine Weyl groups”.
Journal of Algebra 361 (2012), pp. 134–162.

[5] Johnson, P. “Lattice points and simultaneous core partitions”. 2015. arXiv:1502.07934.

[6] Sommers, E. “B-Stable Ideals in the Nilradical of a Borel Subalgebra”. Canadian mathematical
bulletin 48.3 (2005), pp. 460–472.

[7] Thiel, M. and Williams, N. “Strange expectations and simultaneous cores”. Journal of Alge-
braic Combinatorics (2017), pp. 1–43.

http://www.math.miami.edu/~armstrong/Talks/RCCinDC.pdf
https://arxiv.org/abs/1502.07934

	Introduction
	Motivation
	Combinatorial Models of Coroot Lattices
	Size Statistics
	Expected Size

	Affine Weyl Groups
	Combinatorial Models for Coroot Lattices
	Partitions, Abaci, and the Coroot Lattice in Type A
	The statistic size in type A
	The statistic size in general type
	Other Types

	Expected Size of Simultaneous Cores
	The Sommers Region and the Fundamental Alcove
	Proof Sketch


