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Abstract. We initiate the study of affine oriented matroids (AOMs) on arbitrary
ground sets, extending classical structural features of Oriented Matroids and a natural
embedding into the framework of Complexes of Oriented Matroids. The restriction to
the finitary case (FAOMs) allows us to study tope graphs and covector posets, as well
as to view FAOMs as oriented finitary semimatroids. We show shellability of FAOMs
and single out the FAOMs that are affinely homeomorphic to Rn. Finally, we study
group actions on AOMs, whose quotients in the case of FAOMs are a stepping stone
towards a general theory of affine and toric pseudoarrangements. Our results include
applications of the multiplicity Tutte polynomial of group actions of semimatroids,
generalizing properties of arithmetic Tutte polynomials of toric arrangements.

Keywords: Oriented matroids, group actions, cell complexes, poset topology, arrange-
ments of submanifolds, arithmetic matroids.

Figure 1: On the left-hand side: a non-stretchable line arrangement with an action of
Z2 defined by letting a lattice basis act as translations by the two sides of the shaded
rectangle. Any orientation of it gives rise to a FAOM. The (categorical) quotient of the
poset of covectors is the face category of a pseudoarrangement in the 2-dimensional
torus (picture on the right-hand side), whose cells are counted by the (arithmetic) Tutte
polynomial of the group action on the underlying semimatroid, see Example 4.12.
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1 Introduction

We establish a natural generalization of finite affine oriented matroids to arbitrary ground
sets and derive several results about their axiomatics, topology and geometry. Our moti-
vation is twofold: on the one hand we pursue the structural theory of oriented matroids
and arithmetic matroids, on the other hand we aim at applications to linear and toric
arrangements, as well as to general manifold arrangements (see Remark 1.1).

1.1 Two motivating examples

1.1.1 Arrangements in Euclidean space

Let A :“ tHeuePE be an arrangement of hyperplanes, i.e., a family of codimension 1 affine
subspaces of the Euclidean space Rd. We call such an arrangement “oriented” if for
every e P E we are given a labeling by H`

e and H´
e of the two connected components of

RdzHe. Now, for every x P Rd we obtain a sign vector Σx P t`, 0,´uE as follows.

Σxpeq :“

$

&

%

` if x P H`
e

0 if x P He
´ if x P H´

e

Let then L pA q :“ tΣx | x P Rdu.
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Figure 2: An affine arrangement of hyperplanes in R2 with some cells labeled by the
respective sign vector.

The covector axioms of oriented matroids (OMs) abstract some properties of L pA q in
the case where A is finite and XA ‰ H. While not all oriented matroids arise from an
arrangement of hyperplanes, the “Topological representation theorem" of Folkman and
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Lawrence asserts that the set of covectors of any oriented matroid is the set of sign vectors
determined by an arrangement of oriented pseudospheres in the sphere (obtained as the
boundary of the order complex of the covector poset, see [5, Chapter 5]).

If A is finite, but XA is not necessarily non-empty, then L pA q is the set of covectors
of a finite affine oriented matroid. Finite affine oriented matroids can be defined either in-
trinsically or as subsets of covector sets of oriented matroids, see [4, 13]. The latter point
of view allows us to interpret every finite affine oriented matroid as an arrangement of
pseudoplanes in Euclidean space, via the order complex of its covector poset. It is open
which arrangements arise from finite affine oriented matroids, see [12] and §5.1 .

More generally, if A is only assumed to be finitary, meaning that every x P Rd

has a neighborhood meeting finitely many Hi, then every element of L pA q indexes an
open cell in Rd. These open cells are the relative interiors of the faces of the polyhedral
subdivision of Rd induced by A . The faces are naturally ordered by inclusion, and this
partial order corresponds to the (abstract) natural order among sign vectors.

• Our “Finitary Affine Oriented Matroids" axiomatize properties of the polyhedral
stratification of Euclidean space induced by finitary hyperplane arrangements. Not
every FAOM is realizable as L pA q for a finitary arrangement. Still, some familiar
geometric and topological features generalize nicely to the non-realizable case.

• Our topological representation of FAOMs is a step towards the currently open
problem of a topological characterization of affine pseudoarrangements (see §5.1).

1.1.2 Toric arrangements

Let now A be a finite family of level sets of characters of the compact torus T “ pS1qd.
Such toric arrangements have been in the focus of recent research motivated by work of De
Concini, Procesi and Vergne on partition functions and splines. For further background
see, e.g., [6, 7, Introduction]. A toric arrangement defines a polyhedral CW-structure
KpA q on the torus. The face category of this cell complex is central in the study of the
topology of the associated arrangement in the complex torus [7, §2] and of arrangements
in products of elliptic curves [9]. It can be regarded as the “toric" counterpart of the poset
of faces of a linear arrangement1.

Notice that, by passing to the universal cover of the torus, a toric arrangement can be
seen as a quotient of an infinite, periodic arrangement of hyperplanes by the action of
the deck transformation group.

The current impulse towards the combinatorial study of toric arrangements already
led to substantial algebraic-combinatorial developments such as arithmetic Tutte polyno-
mials and arithmetic matroids [6]. However, the only available results about the structure

1The broadening from face posets to face categories is necessary since the CW-complex KpA q is not
necessarily regular, see [8, Appendix].
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of face categories to date are an explicit description in the case of toric Weyl arrange-
ments by means of “labeled necklaces" [1].

• We obtain an abstract characterization of the face category of toric arrangements
as the quotient of the poset of covectors of an infinite affine oriented matroid by
a suitable class of group actions. This can be seen as an “oriented" version of the
theory of group actions on semimatroids [10].

• We obtain a notion of pseudoarrangements in the torus whose topology and ge-
ometry is amenable to treatment via the existing combinatorial toolkit. We leave
the relation to Pagaria’s orientable arithmetic matroids to future research, see §5.2.

1.2 Results and structure

• We present axiom systems for covectors of Affine Oriented Matroids (AOMs) over
arbitrary ground sets (Section 2). These support canonical operations such as reori-
entation and taking minors. In particular our axiomatization, derived from results
of Baum and Zhu [4], allows us to see AOMs as part of the theory of Complexes
of Oriented Matroids (COMs) – a recent generalization of oriented matroids [3].

• To obtain a theory that more closely encapsulates geometric features of finitary
affine hyperplane arrangements, in Section 3 we state axioms for Finitary Affine
Oriented Matroids (FAOMs), i.e., AOMs with local cardinality restrictions. A main
theoretical feature of this setting is that FAOMs are “orientations of finitary semi-
matroids”, i.e.: the zero sets of covectors of an FAOM constitute the geometric
semilattice of flats of a finitary semimatroid (see Wachs and Walker [16], Ardila
[2] and Kawahara [14], and [10] for the infinite setting). After a basic study of
tope graphs and covector posets of FAOMs we focus on topological properties.
We prove that order complexes of covector posets of FAOMs are shellable, describe
their homeomorphism type, and introduce a geometric parallelism relation. This
allows us to single out a class of FAOMs whose covector poset is affinely homeo-
morphic to Euclidean space.

• In Section 4 we take FAOMs as a stepping stone in order to extend the theory of ar-
rangements of pseudospheres (and -planes) beyond the Euclidean setting, towards
pseudoarrangements in the torus. See §1.1 below for some motivating context. A
main ingredient are group actions on AOMs and, in particular, a class of group
actions for which the quotient of the covector poset is homeomorphic to a torus.
In this torus, the one-element contractions of the FAOM determine an arrange-
ment of tamely embedded tori. Such “toric pseudoarrangements” are strictly more
general than toric arrangements defined by level sets of characters, (which we call
“stretchable" extrapolating the Euclidean terminology), see Figure 1. The faces of



Finitary affine oriented matroids 5

the corresponding dissection of the torus are enumerated by the Tutte polynomial
associated to the induced group action on the underlying semimatroid [10], gen-
eralizing enumerative results by Moci on arithmetic Tutte polynomials associated
to toric arrangements [6]. Pagaria [15] proposes a notion of orientable arithmetic
matroid, asking for an interpretation in terms of pseudoarrangements on the torus.

Remark 1.1. Ehrenborg and Readdy ask in [11] for a natural class of submani-
fold arrangements where an “arithmetic" Tutte polynomial can be meaningfully
defined. Our first answer to this question is the class of arrangements in Euclidean
space or in tori obtained from (possibly trivial) “sliding” group actions on FAOMs
(Definition 4.2). Theorem 4.11 shows that the Tutte polynomial of the group action
induced on the underlying semimatroid provides the desired topological enumera-
tion (see Example 4.12), together with the structural properties studied in [10]. For
“standard” toric arrangements we recover the arithmetic Tutte polynomial, see [6].

Infinite affine oriented matroids are at the crossroads of several topics in structural,
algebraic and topological combinatorics. Thus AOMs offer new tools for existing open
problems, and create some new ones in their own right, which we outline in Section 5.

2 Affine oriented matroids (AOM)

In the non-finite context it is essential to view AOMs with an intrinsic axiomatization
instead of as halfspaces of oriented matroids as described in §1.1.1. The covector axiom-
atization of finite AOMs is due to Karlander [13], whose proof was corrected recently
by Baum and Zhu [4]. We present a simplified equivalent form, which puts AOMs into
the context of (complexes) of oriented matroids, (C)OMs [3]. Notions of minors and
parallelism generalize to the infinite setting. For the purpose of the present section no
assumption on the ground set E is made.

We introduce some notations, see e.g. [3, 4, 5]. A system of sign vectors is a subset L Ď

t`,´, 0uE. Every system of sign vectors carries a natural partial order, defined by X ď

Y if and only if Xpeq ď Ypeq for all e P E where 0 ă `, 0 ă ´, ` and ´ incomparable.
The poset pL ,ďq will be denoted by F pL q. The support of a sign vector X is X :“ te P
E | Xpeq ‰ 0u and its zero set is zepXq :“ te P E | Xpeq “ 0u. The separator of two sign
vectors X, Y is SpX, Yq :“ te P X XY | Xpeq ‰ Ypequ, and their composition is

X ˝Ypeq :“
"

Xpeq if e P X
Ypeq otherwise.

for all e P E.

Let X, Y be sign vectors on E, let e P E, and let L be a given system of sign vectors
on E. Define IepX, Y; L q :“ tZ P L | Zpeq “ 0, @ f R SpX, Yq : Zp f q “ Xp f q ˝Yp f qu and set
IpX, Y; L q :“

Ť

ePSpX,Yq IepX, Y; L q.
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Moreover, let X ‘Y be the sign vector:

X ‘Ypeq :“
"

0 if e P SpX, Yq
X ˝Ypeq otherwise.

for all e P E.

and set PpL q :“ tX ‘ p´Yq | X, Y P L , IpX,´Y; L q “ Ip´X, Y; L q “ Hu.

Definition 2.1 (AOM). A system of sign vectors L is an affine oriented matroid if and
only if

(FS) L ˝ p´L q Ď L ,

(SE) X, Y P L ùñ @e P SpX, Yq : IepX, Y; L q ‰ H,

(P) PpL q ˝L Ď L .

Remark 2.2. This axiomatization is stated in [8, Proposition 2.4], where it is proved that
for finite E it is equivalent to Karlander’s axiomatization as reviewed by Baum and Zhu,
see [8, Definition 2.2]. In particular, by [4, Theorem 1.2], finite AOMs are exactly affine
oriented matroids in the sense, e.g., of [5].

Following [3] a COM is a system of sign vectors on finite E satisfying (FS) and (SE)
and an OM is a COM that has the all-zeroes vector 0 P L . This yields:

Corollary 2.3 ([8, Corollary 2.5 and 2.6]). Every OM is an AOM and every AOM is a COM.

2.1 Reorientations and minors

The notions of reorientations, and minors are crucial in the study of OMs, finite AOMs,
and COMs. We establish these operations for (possibly infinite) AOMs.

Let pE, L q be any system of sign vectors. A reorientation of L is a set L phq :“ th ¨ X |

X P L u for a given τ P t`1,´1uE, where pτ ¨ Xqpeq :“ τpeqXpeq. Moreover, for any
A Ď E define the contraction of A in L as L {A :“ tX|EzA | X P L , XpAq “ t0uu, and the
deletion of A from L as L zA :“ tX|EzA | X P L u. Moreover, we call restriction to A the set
L rAs :“ L zpEzAq. A system of sign vectors pE1, L 1q is a minor of another system of sign
vectors pE, L q if there are disjoint sets A, B Ď E such that pE1, L 1q “ pEzAzB, L zA{Bq.

Theorem 2.4 ([8, §2.1]). AOMs are closed under reorientation and under taking minors. In
particular finite restrictions of AOMs are finite AOMs.
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2.2 Parallelism

We introduce a “geometric” parallelism relation that is inspired by the intuitive notion
in the case of pseudoarrangements (e.g., the pseudoline arrangement on the l.-h. s. of
Figure 1 has 5 parallelism classes).

Definition 2.5. Given two elements e, f P E, we say that e and f are parallel, written
e ‖ f , if there is no X P L with e, f P zepXq.

This should not be confused with the standard matroid-theoretical definition lead-
ing to simplicity, see [8, §2.2]. An AOM is simple if tXpeq | X P L u “ t`, 0,´u and
tXpeqXp f q | X P L u “ t`, 0,´u for all e ‰ f P E.

Proposition 2.6 (See [8, Corollary 2.27]). In every simple AOM with ground set E, the
reflexive closure of parallelism is an equivalence relation on E. We call πpeq the parallelism
class of e P E.

On every parallelism class π Ď E there is a total order ăπ and a reorientation of π, such that

for all x, y P π, x ăπ y if and only if Xp f q “ Yp f q “ 0 ñ Xpeq “ Ypeq “ ` for all X, Y P L .

The (order-)isomorphism type of ăπ does not depend on the reorientation.

Write 1π (0π) for the unique maximal (minimal) element of ăπ if they exist. Assume
after possibly reversing ăπ, that if an 1π exists, then 0π exists. Proposition 2.6 allows us
to define a partition of the ground set of an AOM, invariant under reorientation.

Definition 2.7. Let pE, L q be an AOM and define the following partition of E.

E01 :“te P E | both 1πpeq and 0πpeq existu,

E0˚ :“te P E | 0πpeq existsuzE01,

E˚˚ :“EzpE01
Y E0˚

q.

3 Finitary affine oriented matroids (FAOM)

We move to a more restrictive definition, towards a topological study of covector posets
and a closer connection to semimatroid theory.

Definition 3.1 (FAOM). A pair pE, L q is a Finitary Affine Oriented Matroid if ((FS), (SE)
and (P) hold and if, moreover,

(S) X, Y P L ùñ |SpX, Yq| ă 8 (finite separators),

(Z) X P L ùñ |zepXq| ă 8 (finite zero sets),
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(I) |F pL qďX| ă 8 (finite intervals).

An analysis of topes and tope graphs of FAOMs can be carried out – see [8, §3.1],
where in particular the following corollary is proved.

Corollary 3.2 ([8, Corollary 3.12 and 3.14]). If L is the set of covectors of a FAOM, then
it has countable cardinality, and the poset F pL q augmented by a minimum and maximum is
graded of finite length.

3.1 Topology of covector posets

We study the topology of the order complexes of posets of covectors of FAOMs. This is
an extension of the known results about OMs and finite AOMs.

Lemma 3.3 ([8, Lemma 3.18]). Let L be the set of covectors of an FAOM. Let ω be a maximal
chain in F pL q, let X P ω and write ω1 :“ ωztXu. Let Y be the set of all Y P L such that
ω1 Y tYu is a chain in F pL q. Then

(1) |Y | ď 2, and

(2) the boundary of }F pL q} is generated by all chains of the form ω1 with |Y | “ 1.

Theorem 3.4 ([8, Theorem 3.19]). Let L be the set of covectors of an FAOM. Then }F pL q} is
a shellable, contractible PL d-manifold whose boundary is described in Lemma 3.3.(2). Moreover,

(1) If L is finite, then }F pL q} is a PL-ball.

(2) If }F pL q} has no boundary, then it is PL-homeomorphic to Rrk L .

If L is the set of covectors of an oriented matroid (cf. Corollary 2.3), the classical
associated PL-sphere is the boundary of the PL ball from part (1) of the theorem.

3.2 The underlying semimatroid

We show that zero sets of covectors of an FAOM define a semimatroid on the same
ground set. Given a system of sign vectors pE, L q define

LpL q :“ tzepXq | X P L u KpL q :“
ď

APLpL q

2A.

Elements of LpL q are called flats, elements of KpL q “central sets” of L . For A, B P LpL q,
let A ď B :ô A Ď B and define FpL q :“ pLpL q,ďq.

Theorem 3.5 ([8, Theorem 3.22]). Let pE, L q be an AOM satisfying (Z). Then FpL q Ď 2E is
the geometric semilattice of flats of a finitary semimatroid S pL q, unique up to isomorphism.
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Note that X ď Y implies zepXq Ě zepYq, where ď is the partial order of F . Hence,
taking zero sets induces an order reversing poset map zep¨q : F pL q Ñ FpL q that can
be shown to be rank-preserving. Thus, for any FAOM L we write rk for both the rank
function of F pL q and for the rank function of its underlying semimatroid. We write
rkpL q “ rkpS pL qq for the rank of either (i.e., the length of F pL q and FpL q).

4 Group actions

If a group G acts on a set E by permutations, for every g P G and e P E we write gpeq for
the image of e under the action of g. Moreover, for every X P t`,´, 0uE we define a sign
vector g.X by setting g.Xpeq :“ Xpg´1peqq for all e P E. This extends the action of G on E
to an action on the set of sign vectors. For X Ď t`,´, 0uE write g.X :“ tg.X | X P X u.

Remark 4.1. If L is an oriented matroid, then requiring g.L “ L for all g P G amounts
to saying that G acts on L by strong maps, see [5, Proposition 7.7.1]

Definition 4.2. A group G acts on an AOM pE, L q if G acts by permutations on E and
g.L “ L for all g P G. An action of G on L will be denoted by α : G œ L . The action
of G is called sliding if gpeq P πpeq for all e P E.

A group action on an AOM L induces a natural group action on reorientations and
minors of L . If the given action is sliding, then so are the induced ones.

Lemma 4.3 ([8, Lemma 5.5]). Any group action on an FAOM pE, L q induces an action on the
underlying semimatroid S pL q. If the action is sliding, the action on S pL q is translative.

Every action α : G œ L induces an action α : G œ F pL q by poset automorphisms.
We view posets as acyclic categories to define the following:

Definition 4.4. Let α : G œ L be a group action on an AOM. Let

qα : F pL q Ñ F pL q� G

be the quotient functor in the category of acyclic categories (see [8, §A.1.4]). 2

2Since, by Corollary 3.2, F pL q is ranked, the category F pL q � G can be described explicitly via [9,
Lemma A.18]. It has object set ObpF pL q� Gq “ ObpF pL qq{G, the set of orbits of objects. The morphisms
of F pL q� G are orbits of morphisms of F pL q: the orbit of φ : X Ñ Y is a morphism Gφ : GX Ñ GY and
composition between orbits Gφ and Gψ is defined as the orbit of the composition of φ and ψ, if it exists.
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4.1 Topological aspects

We consider the topology of quotients of covector posets of AOMs under a group action.

Definition 4.5. If a group G acts on an FAOM pE, L q, let

Qα : }F pL q} Ñ }F pL q}{G

denote the topological quotient map.

Definition 4.6. Call an action α : G œ L free if the induced action on L is free.

If α is free, then Qα is a (topological) covering map. Moreover, the following holds.

Theorem 4.7 ([8, Theorem 5.16]). Let pE, L q be a nonempty FAOM with a distinguished
basis B Ď E˚,˚, and let a free abelian group G – Z|B| act freely on pE, L q. If the action is
sliding, then }F pL q � G} is homeomorphic to the |B|-torus pS1q|B| and, for every A P KpL q,
Qαp}F pL {Aq}q is homeomorphic to the p|B| ´ rkpAqq-torus.

4.2 Toric pseudoarrangements

Throughout this section let α : G œ L be a free and sliding action of a finitely generated
free abelian group G on an FAOM L , and suppose that S pL q has a basis B P E˚,˚.

Definition 4.8. Let He be the subcomplex of of }F pL q} given by all covectors whose
zero set contains e (notice that He is in fact a copy of }F pL {eq}).

Moreover, let T :“ }F pL q}{G and, for every a P E{G, define

Aα :“ tTa | a P E{Gu with Ta :“ Qα pHeq .

where e is a representative of a (this is well-defined by [8, Lemma 5.8]). We call the
arrangement Aα a toric pseudoarrangement, and proper if S pL q has no loops.

Lemma 4.9 ([8, Lemma 5.19]). Every toric pseudoarrangement Aα as in Definition 4.8 defines
a CW-complex structure KpAαq on T, with one cell for every object in qαpF pL qq.

If Aα is proper, the union YAα is the pd´ 1q-skeleton of KpA q, here d “ dim T “ rkpL q.
In particular, the complement of YAα in T is a union of open d-cells.

Lemma 4.9 allows us to apply Zaslavsky’s theory of topological dissections together
with the theory of group actions on semimatroids, in order to enumerate the open cells
constituting the complement of a toric pseudoarrangement Aα. The stepping stone is
determining the poset of connected components of intersections of Aα.

Proposition 4.10 ([8, Proposition 5.20]). The poset of connected components of intersections
of Aα is isomorphic to the quotient poset FpL q{G. Moreover, every intersection is topologically
a torus pS1qd´r where r is the rank of the corresponding element in FpL q{G.
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Theorem 4.11 ([8, Theorem 5.21]). Let α denote the induced G-semimatroid α : G œ S pL q,
and let Tαpx, yq be the associated Tutte polynomial (see [8, §A.2.3] or [10]). Then Tαpx, yq
computes the number of connected components of the arrangement’s complement:

|π0 pTz YAαq| “ Tαp1, 0q.

Example 4.12. The multiplicity Tutte polynomial of the arrangement of Figure 1 is

Tαpx, yq “ 7x2
´ 14x` 24` 5y` 2y2

` y3

and in fact the associated toric pseudoarrangement has Tαp1, 0q “ 17 regions. Note that
in this case the multiplicity function is arithmetic, but this is not true in general – not
even when restricting to (periodic) pseudoline arrangements (see e.g., [10, Figure 11]).

5 Open questions

5.1 Pseudoarrangements in Euclidean space

No topological characterization of arrangements of pseudohyperplanes that appear as
realizations of a (finite) AOM is known [12]. Our work suggests to define pseudoar-
rangement as any collection A “ tHeuePE of pseudohyperplanes of Rn that is an affine
topoplane arrangement (in the sense of [12]) such that every p P Rd has a neighborhood
that intersects only finitely many Hi, chambers have finitely many walls, and parallelism
(Hi}Hj iff Hi X Hj “ H) is an equivalence relation; see [8, §6.1]). An “oriented” pseu-
doarrangement A gives rise to a set L pA q of sign vectors on E as in §1.1.1.

(Q1) Conjecture: For every oriented pseudoarrangement A , L pA q is the set of covec-
tors of a unique simple FAOM. Conversely, every simple FAOM arises this way.

5.2 Toric oriented matroids and pseudoarrangements

Section 4 suggests the categories qαpF pL qq associated to a free and sliding action on an
FAOM L as the counterpart of covector posets for toric arrangements, see Section 1.1.2.

(Q2) Find an intrinsic axiomatic description of the class of acyclic categories that can be
obtained as qαpF pL qq for a free and sliding action on an FAOM L . This frame-
work should include Aguiar and Petersen’s posets of labeled necklaces [1].

Pagaria [15] proposed an algebraic notion of orientable arithmetic matroid and asked whether
it can be interpreted in terms of pseudoarrangements in the torus. Every toric pseudoar-
rangement in the sense of Definition 4.2 has an associated matroid with multiplicity.

(Q3) Does every orientable arithmetic matroid as defined by Pagaria [15] arise from a
toric pseudoarrangement in the sense of §4.2?
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