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Perfect models and Gelfand W-graphs

Eric Marberg∗1 and Yifeng Zhang†1
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Abstract. A Gelfand model for an algebra is a module isomorphic to a direct sum of
irreducible modules, with every isomorphism class of irreducible modules represented
exactly once. We introduce and study the notion of a perfect model for a finite Coxeter
group; such a model is a certain set of discrete data parametrizing a Gelfand model
for the associated Iwahori–Hecke algebra. We classify which Coxeter groups have per-
fect models, and then describe explicit Gelfand models for the classical finite Coxeter
groups. This generalizes separate constructions of Adin, Postnikov, and Roichman
and of Araujo and Bratten. Our Gelfand models have interesting “canonical bases”
that give rise to associated W-graphs. We classify the molecules in these W-graphs
when W is a symmetric group, and conjecture that in type A every molecule is a cell.

Keywords: Coxeter systems, Iwahori–Hecke algebras, W-graphs, Gelfand models, per-
fect involutions, quasiparabolic sets

1 Introduction

In this article we study certain uniform ways of constructing multiplicity-free repre-
sentations of Iwahori–Hecke algebras that are also instances of W-graphs. We begin by
explaining the definition of the models that are our primary subject.

Let (W, S) be a Coxeter system with length function ` : W → N := {0, 1, 2, . . . }.
Define Aut(W, S) to be the group of Coxeter automorphisms of W, that is, group automor-
phisms ϕ ∈ Aut(W) with ϕ(S) = S. Let W+ = W oAut(W, S) be the semidirect product
whose elements are the pairs (w, ϕ) with w ∈W and ϕ ∈ Aut(W, S), with multiplication

(v, α)(w, β) := (v · α(w), αβ).

Extend the length function of W to W+ by setting `((w, ϕ)) = `(w). We view W as a
subgroup of W+ by identifying w ∈W with (w, idW) ∈W+.

Let z = (w, ϕ) ∈ W+. Following [21], we define z to be a perfect involution if z2 =
(zt)4 = 1 for all reflections t ∈ {vsv−1 : v ∈ W, s ∈ S}. Let I = I (W, S) be the set of
perfect involutions in W+. The group W acts on I by conjugation

v : (w, ϕ) 7→ v(w, ϕ)v−1 = (v · w · ϕ(v)−1, ϕ).
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As in [21], we say an element z ∈ I is W-minimal if `(szs) ≥ `(z) for all s ∈ S, and
W-maximal if `(szs) ≤ `(z) for all s ∈ S. Each W-conjugacy class in I contains a unique
W-minimal element (and a unique W-maximal element when |W| < ∞) [21, Cor. 2.10].

If CW(θ) := {w ∈ W : wz = zw} where z ∈ I is W-minimal, then CW(z) is a
quasiparabolic subgroup of W in the sense of Rains and Vazirani [21, Thm. 4.6]. Among
other consequences, this implies that the permutation representation of W acting on
W/CW(z) naturally deforms to a representation of the Iwahori–Hecke algebra of (W, S).

Example 1.1. The sets I (W, S) for classical Coxeter systems are described in [21, §9]:

(A) The symmetric group Sn of permutations of [n] := {1, 2, . . . , n} is a Coxeter group
relative to the generating set {s1, s2, . . . , sn−1} where si := (i, i + 1). The only non-
identity element of Aut(Sn, {s1, s2, . . . , sn−1}) is the inner automorphism Ad(w0)
induced by w0 = n · · · 321. When n is odd every perfect involution in S+

n is central.
When n is even there are three Sn-minimal elements in S+

n : the identity element
1 ∈ Sn, the fixed-point-free involution s1s3s5 · · · sn−1 ∈ Sn, and (1, Ad(w0)) ∈ S+

n .

(BC) The group WBC
n of permutations of {−n, . . . ,−1, 0, 1, . . . , n} that commute with the

negation map is a Coxeter group relative to the generators {s0, s1, . . . , sn−1} with
s0 := (−1, 1) and si := (−i− 1,−i)(i, i + 1) for i > 0. The one-line representation
of w ∈ WBC

n is the word w(1)w(2) · · ·w(n) where we write ī in place of −i. When
n > 2 there are only trivial Coxeter automorphisms and the perfect involutions in
WBC

n are the elements w = w−1 such that |w| : i 7→ |w(i)| is the identity map or a
fixed-point-free permutation of [n]. The WBC

n -minimal perfect involutions consist
of the n + 1 elements θi := 1̄2̄ · · · ī(i + 1) · · · n plus s1s3s5 · · · sn−1 if n is even.

(D) The subgroup WD
n of w ∈ WBC

n such that |{i ∈ [n] : w(i) < 0}| is even is a Coxeter
group relative to the generators {s−1, s1, s2, . . . , sn−1} where s−1 := (−2, 1)(−1, 2)
and si for i ≥ 0 is as in (BC). For n > 4 there is just one nontrivial Coxeter
automorphism w 7→ w∗ := s0ws0. The perfect involutions in (WD

n )
+ are the pairs

(w, ϕ) with ϕ ∈ {1, ∗} and w−1 = ϕ(w) such that |w| ∈ Sn is 1 or fixed-point-free.
The WD

n -minimal perfect involutions are θi for i even, θ̃i := (12̄3̄ · · · ī(i + 1) · · · n, ∗)
for i odd, plus both s1s3s5 · · · sn−1 and s−1s3s5 · · · sn−1 if n is even.

Given J ⊂ S, let WJ := 〈s ∈ J〉. Then (WJ , J) is a Coxeter system whose length
function is `|WJ . Write IJ := I (WJ , J) for the set of perfect involutions in (WJ)

+.

Definition 1.2. A model triple (J, zmin, σ) for a finite Coxeter group W consists of a set
J ⊂ S, a WJ-minimal element zmin ∈ IJ , and a linear character σ : WJ → {±1}. A set

P of model triples for W is a perfect model if ∑(J,zmin,σ)∈P IndW
CWJ (zmin)

ResWJ
CWJ (zmin)

(σ) =

∑χ∈Irr(W) χ, where Irr(W) is the set of complex irreducible characters of W and IndG
H and

ResG
H denote the usual operations of induction and restriction for groups H ⊂ G.



Perfect models and Gelfand W-graphs 3

Our first objective is to classify which finite Coxeter groups have perfect models. We
will then investigate how to use such models to construct some interesting represen-
tations of the Iwahori–Hecke algebras of finite classical Coxter systems. Since space is
limited, we have omitted all proofs in this extended abstract; for these details, see [20].

2 Classification of perfect models

A Coxeter system (W, S) is irreducible if the only disjoint decomposition S = S′ t S′′ in
which every s′ ∈ S′ commutes with every s′′ ∈ S′′ has either S′ = ∅ 6= S′′ or S′ 6= ∅ = S′′.
An irreducible factor of (W, S) is a parabolic subsystem (WJ , J) that is irreducible.

Theorem 2.1. A finite Coxeter group W has a perfect model if and only if each of its
irreducible factors has a perfect model. The irreducible Coxeter systems with perfect
models are those of type An−1, BCn, D2n+1, H3, and I2(n) for all n ≥ 2. The irreducible
Coxeter systems without perfect models are those of type D2n, E6, E7, E8, F4, and H4.

Perfect models for the finite classical Coxeter groups are given below. The model for
type An−1 is well-known; see [1, 13, 15]. What we describe for type BCn (respectively,
Dn) is a coarser version of the models in [2, 4, 18] (respectively, [8, 9, 10, 17]).

Definition 2.2. Let W ∈ {Sn, WBC
n , WD

n } be a classical Weyl group. Write 11 = 11W : w 7→ 1
and sgn = sgnW : w 7→ (−1)`(w) for the trivial and sign representations.

(A) Assume W = Sn with n ≥ 1. For each integer 0 ≤ k ≤ bn
2 c, form a triple (J, zmin, σ)

by taking J = {s1, s2, . . . , sn−1} \ {s2k} so that 〈J〉 = S2k × Sn−2k, and then setting

zmin = s1s3s5 · · · s2k−1 and σ = 11S2k × sgnSn−2k
.

(BC) Assume W = WBC
n with n ≥ 2. For each 0 ≤ k ≤ bn

2 c, form a triple (J, zmin, σ) by
taking J = {s0, s1, s2, . . . , sn−1} \ {s2k} so that 〈J〉 = WBC

2k × Sn−2k, and then setting

zmin = s1s3s5 · · · s2k−1 and σ = 11WBC
2k
× sgnSn−2k

.

(D) Assume W = WD
n with n ≥ 3. For each 0 < k ≤ bn

2 c, form a triple (J, zmin, σ) by
taking J = {s−1, s1, s2, . . . , sn−1} \ {s2k} so that 〈J〉 = WD

2k × Sn−2k, and then setting

zmin = s1s3s5 · · · s2k−1 and σ = 11WD
2k
× sgnSn−2k

.

Also include one additional triple (J, zmin, σ) = ({s1, s2, . . . , sn−1}, 1, sgnSn
).

Let P = P(W) be the set of 1 + bn
2 c triples (J, zmin, σ) listed in each case.
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Theorem 2.3. Assume W is one of the classical Weyl groups Sn−1, WBC
n , or WD

2n+1 for an
integer n ≥ 2. Then the set P(W) given in Definition 2.2 is a perfect model.

Let G be a finite group. Choose representatives for the distinct conjugacy classes of
involutions g = g−1 ∈ G. For each representative involution g, form the centralizer
H = CG(g) = {x ∈ G : xg = gx} and choose a linear character λ : H → C. The
resulting set of pairs (H, λ) is an involution model for G if ∑(H,λ) IndG

H(λ) = ∑χ∈Irr(G) χ.
The existence of an involution model implies that |{g ∈ G : g = g−1}| = ∑χ∈Irr(G) deg χ,
which holds if and only if all representations of G are realizable over R (see [7, §2]).

The involution models for finite Coxeter groups are classified in [5, 23]. Surprisingly,
although we do not know of any general procedure for converting involution models to
perfect models or vice versa, this classification is identical to the one in Theorem 2.1:

Corollary 2.4. A finite Coxeter group has a perfect model if and only if it has an involu-
tion model.

3 Gelfand models for Iwahori–Hecke algebras

Let x be an indeterminate. The (single-parameter) Iwahori–Hecke algebra of a Coxeter
system (W, S) is the free Q[x, x−1]-module H = H(W) with basis {Hw : w ∈ W},
equipped with the unique algebra structure in which HwHs = Hsw if `(sw) > `(w) and
HwHs = Hsw + (x− x−1)Hw if `(sw) < `(w) for all s ∈ S and w ∈W.

A Gelfand model for H is an H-module isomorphic to the direct sum of all irreducible
H-modules. Any perfect model for W gives rise to a Gelfand model for H. Our results
in this section are formal consequences of this fact and Theorem 2.3.

For integers i > 0, define permutations si := (−i− 1,−i)(i, i + 1), s0 := (−1, 1), and
s−i = (−i − 1, i)(−i, i + 1). We realize the Coxeter groups of type An−1, BCn, and Dn
as Sn := 〈s1, s2, . . . , sn−1〉 ⊂ WD

n := 〈s−1, s1, s2, . . . , sn−1〉 ⊂ WBC
n := 〈s0, s1, s2, . . . , sn−1〉.

Assume below that W is one of these groups with S the set of simple generators just
listed. Then the length function of W is determined by the following properties:

• If w ∈W and i > 0 then `(wsi) < `(w) if and only if w(i) > w(i + 1).

• If w ∈W = WBC
n then `(ws0) < `(w) if and only if w(1) < 0.

• If w ∈W = WD
n then `(ws−1) < `(w) if and only if −w(2) > w(1).

Let F2n :=
{

z ∈WBC
2n : z = z−1 and |z(i)| 6= i for all i ∈ [2n]

}
⊂ WD

2n. We say that an in-
teger i > 0 is a visible descent of z ∈ F2n if z(i + 1) < min{i, z(i)} or z(i) < −i. Next:

• Define KBC
n to be the set of z ∈ F2n with no visible descents greater than n.

• Define KA
n−1 := KBC

n ∩ S2n.
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• Define KD
n to be the subset of z ∈ KBC

n for which |{i ∈ [n] : z(i) < −i}| is even.

Define K = K(W) to be KA
n−1, KBC

n , or KD
n according to whether W is Sn, WBC

n , or WD
n .

When evaluating `(z) for z ∈ K, we consider KA
n−1 ⊂ S2n, KBC

n ⊂WBC
2n , and KD

n ⊂WD
2n.

Remark 3.1. One can characterize the elements of K more explicitly. Namely, z ∈ F2n
belongs to KBC

n if and only if there is an integer 0 ≤ i ≤ n with i ≡ n (mod 2) such that

−n ≤ z(n + 1) < z(n + 2) < · · · < z(n + i) ≤ n and z(n + i + 2j) = n + i + 2j− 1

for each integer j > 0 with n+ i+ 2j ≤ 2n. This suggests the following notation. Suppose
w = w−1 ∈ WBC

n . Let a1 > a2 > · · · > ap (respectively, b1 < b2 < · · · < bq) be the
numbers a ∈ [n] with w(a) = −a (respectively, b ∈ [n] with w(b) = b). Define w ∈ KBC

n
to be the unique element mapping ai 7→ −n− i and bi 7→ n + p + i and c 7→ w(c) for
c ∈ [n] \ {a1, a2, . . . , ap, b1, b2, . . . , bq}. For example, we would have

2134 = 21563487 ∈ KA
3 and 3̄21̄4̄5̄ = 3̄, 8, 1̄, 7̄, 6̄, 5̄, 4̄, 2, 10, 9 ∈ KBC

5

When W ∈ {Sn, WBC
n }, the map w 7→ w is a bijection {w = w−1 ∈ W} → K. In type D,

if we set e(w) := |{i ∈ [n] : w(i) < −i}| for w ∈ WBC
n , then the same map is a bijection

{w = w−1 ∈WD
n : e(w) is even} t {w = w−1 ∈WBC

n \WD
n : e(w) is odd} → KD

n .

Fix z ∈ K. Let Des(z) := {s ∈ S : `(zs) < `(z)} and Asc(z) := {s ∈ S : `(zs) > `(z)}
where ` is the length function of S2n, WBC

2n , or WD
2n, according to whether the Coxeter

group W is Sn, WBC
n , or WD

n , respectively. Next let

Des=(z) := {s ∈ S : sz = zs} and Asc=(z) := {s ∈ S : zsz ∈ {si : i > n}},

and define Des<(z) and Asc<(z) to be the complements of Des=(z)tAsc=(z) in Des(z)
and Asc(z), respectively.

Finally, define M = M(W) and N = N (W) to be the free Q[x, x−1]-modules with
respective bases {Mz : z ∈ K} and {Nz : z ∈ K}. Our third main result is the following:

Theorem 3.2. Assume (W, S) is a classical finite Coxeter system of type An−1, BCn, or Dn
for some n ≥ 2. Then there is a unique H-module structure onM in which

HsMz =


Mszs if s ∈ Asc<(z)
Mszs + (x− x−1)Mz if s ∈ Des<(z)
xMz if s ∈ Des=(z)
−x−1Mz if s ∈ Asc=(z)

for all s ∈ S and z ∈ K,

and there is a unique H-module structure on N in which

HsNz =


Nszs if s ∈ Asc<(z)
Nszs + (x− x−1)Nz if s ∈ Des<(z)
−x−1Nz if s ∈ Des=(z)
xNz if s ∈ Asc=(z)

for all s ∈ S and z ∈ K.
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These H-modules are multiplicity-free direct sums of irreducible submodules. If (W, S)
is not of type Dn with n even, thenM and N are both Gelfand models for H.

The module M(Sn) can be identified with the Gelfand model for H(Sn) that Adin,
Postnikov, and Roichman study in [1]. On the other hand, N (W) for each group W ∈
{Sn, WBC

n , WD
n } is a deformation of the W-representation described by Araujo and Bratten

in [3]. Theorem 3.2 implies thatM(Sn) and N (Sn) are both abstractly isomorphic to the
type An−1 version of theH-module studied by Lusztig and Vogan in [16]; see [16, §5.3]. It
is not clear how to write down these isomorphisms in a concrete way. Our construction
for types BCn and D2n+1 partly resolves an open problem mentioned in [2, §7].

4 Gelfand W-graphs

Let p 7→ p denote the ring automorphism of Q[x, x−1] sending x 7→ x−1. A map φ :
A → B between Q[x, x−1]-modules is antilinear if φ(pa) = p · φ(a) for all a ∈ A. For
the Iwahori–Hecke algebra H of any Coxeter system (W, S), there is a unique antilinear
map H → H, written H 7→ H and called the bar operator, such that Hw = (Hw−1)−1 for
all w ∈W. This map is a ring involution.

The famous Kazhdan–Lusztig basis of H [14] consists of the unique elements Hw for
w ∈ W satisfying Hw = Hw ∈ Hw + ∑`(y)<`(w) x−1Z[x−1]Hy. Our third main result
constructs analogous “canonical bases” for the modules M and N from Theorem 3.2.
An H-compatible bar operator on an H-module A is an antilinear map A 7→ A with
HA = H · A for all H ∈ H and A ∈ A. For the rest of this section, assume (W, S)
is a classical finite Coxeter system and define K,M, and N as in Theorem 3.2.

Theorem 4.1. There are uniqueH-compatible bar operators onM and N with Mz = Mz
and Nz = Nz for all z ∈ K with Des<(z) = ∅. Each of these bar operators is an
involution. Additionally, the module M has a unique basis {Mz : z ∈ K} satisfying
Mz = Mz ∈ Mz + ∑`(y)<`(z) x−1Z[x−1]My. The module N likewise has a unique basis
{Nz : z ∈ K} satisfying Nz = Nz ∈ Nz + ∑`(y)<`(z) x−1Z[x−1]Ny.

The structure constants for multiplication H ×M → M and H ×N → N in the
bases {Mz} and {Nz} may be encoded using Kazhdan and Lusztig’s notion of a W-
graph from [14]. We review the definition below, following the conventions in [22].

Definition 4.2. An S-labeled graph Γ = (V, ω, I) is a set V with maps ω : V × V →
Z[x, x−1] and I : V → { subsets of S }. We often think of this structure as a weighted

directed graph on V with edges u
ω(u,v)−−−→ v for each u, v ∈ V with ω(u, v) 6= 0.

Definition 4.3. An S-labeled graph Γ = (V, ω, I) is a W-graph if the free Q[x, x−1]-module
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Y(Γ) with basis {Yv : v ∈ V} has an H-module structure where

HsYu =


xYu if s /∈ I(u)
−x−1Yu + ∑

v∈V
s/∈I(v)

ω(u, v)Yv if s ∈ I(u) for all s ∈ S and u ∈ V. (4.1)

Definition 4.4. A W-graph Γ = (V, ω, I) is quasi-admissible if (1) the corresponding di-
rected graph is bipartite, (2) we always have ω(u, v) ∈ Z, (3) we have ω(u, v) = 0
whenever I(u) ⊂ I(v), and (4) we have ω(u, v) = ω(v, u) whenever I(u) 6⊂ I(v) 6⊂ I(u).
A quasi-admissible W-graph is admissible if we always have ω(u, v) ∈N.

Define myz, nyz ∈ Z[x−1] for y, z ∈ K to be the polynomials with Mz = ∑y∈KmyzMy

and Nz = ∑y∈K nyzNy. Write µm
yz := [x−1]myz and µn

yz := [x−1]nyz for the coefficients of
x−1 in these polynomials. For z ∈ K, define

Ascm(z) := Asc<(z) tAsc=(z) and Ascn(z) := Asc<(z) tDes=(z).

Let ωm(y, z) := µm
yz + µm

zy if Ascm(y) 6⊂ Ascm(z) and ωm(y, z) := 0 otherwise for y, z ∈ K.
Likewise define ωn(y, z) := µn

yz + µn
zy if Ascn(y) 6⊂ Ascn(z) and ωn(y, z) := 0 otherwise.

Now let Γm = Γm(W) := (K, ωm, Ascm) and Γn = Γn(W) := (K, ωn, Ascn).

Theorem 4.5. The S-labeled graphs Γm and Γn are quasi-admissible W-graphs. The
linear maps Yz 7→ Mz and Yz 7→ Nz are isomorphisms Y(Γm) ∼=M and Y(Γn) ∼= N .

These W-graphs are not usually admissible. Define a Gelfand W-graph to be a W-
graph Γ such that Y(Γ) is a Gelfand model for H(W). Theorem 4.5 constructs a pair of
Gelfand W-graphs Γm and Γn for the groups W ∈ {Sn, WBC

n , WD
2n+1}. In the next section,

we explain a precise sense in which these Gelfand W-graphs should be considered as
the canonical ones for classical types.

5 Model equivalence

Let T = (J, zmin, σ) be a model triple for a finite Coxeter system (W, S). Each map α ∈
Aut(W, S) extends to an automorphism of W+ that preserves I (W, S) by the formula
α : (w, ϕ) 7→ (α(w), αϕα−1). Using this convention, we define

Tα := (α(J), α(zmin), σα−1) for α ∈ Aut(W, S) and T := (J, zmin, σ · sgn).

Both Tα and T are again model triples for (W, S). Write wJ for the longest element in
WJ and set w0 := wS. If z = (y, θ) ∈ IJ for y ∈WJ and θ ∈ Aut(WJ , J) then we set

z∨ := (y∨, θ∨) where

{
y∨ := w0 · wJ · y · w0,
θ∨ := Ad(w0) ◦Ad(wJ) ◦ θ ◦Ad(w0),

(5.1)
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writing Ad(g) : w 7→ gwg−1 for the inner automorphism induced by g ∈ W. One can
check that z∨ ∈ Iw0 Jw0 and that if z is WJ-maximal then z∨ is Ww0 Jw0-minimal. Thus, if
zmax is the unique WJ-maximal element in the WJ-orbit of zmin, then

T∨ := (w0 Jw0, z∨max, σ ◦Ad(w0)) (5.2)

is another model triple. Finally, if T′ = (J′, z′min, σ′) is a model triple such that J = J′,
CWJ (zmin) = CWJ (z

′
min), and ResWJ

CWJ (zmin)
(σ) = ResWJ

CWJ (zmin)
(σ′), then we write T ≡ T′.

Definition 5.1. Let ∼ be the transitive closure of the relation on model triples that has
T ∼ T ∼ T∨, T ∼ Tα for all α ∈ Aut(W, S), and T ∼ T′ whenever T ≡ T′. Two
perfect models P and P ′ for the same finite Coxeter group W are equivalent if there is a
bijection P →P ′ such that if (J, zmin, σ) 7→ (J′, z′min, σ′) then (J, zmin, σ) ∼ (J′, z′min, σ′).

Let us explain what makes this is a sensible definition. Results in [19, 21] associate
to any model triple T = (J, zmin, σ) a pair of WJ-graphs with vertex set WJ/CWJ (zmin).
Howlett and Yin’s method of W-graph induction [11, 12] transforms these structures into
certain W-graphs, which we call Γm(T) and Γn(T), with vertex set W J ×WJ/CWJ (zmin).
Here W J is the set of minimal length left coset representatives of WJ in W.

We do not have room here to fully explain these constructions (see [20]). We com-
ment, however, that the W-graphs in Theorem 4.5 can be identified with the disjoint
unions of Γm(T) and Γn(T) as T ranges over the model triples in Theorem 2.3, and our
notion of equivalence for model triples interacts nicely with these smaller W-graphs:

• Replacing T by Tα corresponds to applying α to the vertices of Γm(T) and Γn(T).

• It holds that Γm(T) = Γn(T) and Γn(T) = Γm(T).

• If T ≡ T′ then Γm(T) ∼= Γm(T′) and Γn(T) ∼= Γn(T′).

• The W-graph Γm(T∨) is dual to Γn(T), and Γn(T∨) is dual to Γm(T).

There is a precise notion of duality for W-graphs [22, Prop. 1.2], but here it suffices to
define this as meaning that the underlying directed graphs are anti-isomorphic, that is,
they are isomorphic after all of the directed edges in one graph are reversed.

The cells of a W-graph Γ = (V, ω, I) are the subsets of V that make up the strongly
connected components in the associated directed graph. If C ⊂ V is a cell then Γ|C :=
(C, ω|C×C, I|C) is itself a W-graph, and so defines a cell representation Y(Γ|C) of the
Iwahori–Hecke algebra H. Identifying the cells in any particular W-graph is a natural
problem of interest. The remarks above imply that if we can describe the cells in Γm(T)
and Γn(T) then we can also describe the cells in Γm(T′) and Γn(T′) when T ∼ T′.

Say that a model triple (J, zmin, σ) is strict if σ(s) = σ(t) whenever s, t ∈ J have st 6= ts.
A perfect model is strict if all of its model triples are strict. This always holds if there are
only odd edges in the Coxeter graph of (W, S), as happens in types An and Dn.
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Theorem 5.2. Suppose (W, S) is an irreducible finite Coxeter system. If |S| 6= 3 then
(W, S) has at most one equivalence class of strict perfect models. Moreover, if (W, S) has
a perfect model and is not of type I2(2n), then (W, S) also has a strict perfect model.

Remark. In type I2(2n) there are no strict perfect models. In type BCn for n 6= 3, there
are only 4 perfect models. Two of these are strict and the others are uninteresting “re-
finements” obtained by replacing a single strict model triple by a pair of non-strict ones.

To sum up, each perfect model gives rise to two Gelfand W-graphs, and for equivalent
models the cells in these W-graphs are essentially the same. The Gelfand W-graphs
for the classical groups in Theorem 4.5 are derived from representatives of a unique
equivalence classes of (strict) perfect models. In types BCn and Dn, there is one more
property that underscores how the Gelfand W-graphs from Theorem 4.5 are canonical:

Theorem 5.3. If W ∈ {WBC
n , WD

n }, then Γm(W) and Γn(W) are dual in the sense of being
anti-isomorphic as directed graphs (via an explicit bijection given in [20]).

The analogous property for Γm(Sn) and Γn(Sn) seems to hold if and only if n ≤ 4.

6 Molecules in type A

It is an interesting open problem to identify the cells in the W-graphs Γm(W) and Γn(W)
for each classical Weyl group W. For W ∈ {WBC

n , WD
n }, it follows by Theorem 5.3 that

the cells in Γm(W) determine the cells in Γn(W and vice-versa. The cell classification
problems for Γm(Sn) and Γn(Sn) are genuinely different.

The molecules in a W-graph Γ = (V, ω, I) are the equivalence classes in V under the
transitive closure of the relation with u ∼ v if ω(u, v) 6= 0 6= ω(v, u). These subset do
not inherit a W-graph structure, but every cell is a disjoint union of molecules.

Computations suggest that there are fewer cells than molecules in Γm(WBC
n ) for all

n ≥ 6 and in Γm(WD
n ) for all n ≥ 4. Moreover, the cell representations for both of these

W-graphs are often reducible. In type A, however, the following holds for at least n ≤ 10:

Conjecture 6.1. Each molecule in Γm(Sn) and Γn(Sn) is a cell, and the cell representations
associated to these Sn-graphs are all irreducible.

As a first step toward proving this conjecture, we describe the molecules in Γm(Sn)
and Γn(Sn). The (Young) diagram of a partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0) is the set
Dλ = {(i, j) ∈ [k]×Z : 1 ≤ j ≤ λi}. For us, a tableau of shape λ is just a map T : Dλ → Z,
which we envision as an assignment of numbers to some set of positions in a matrix. A
tableau is standard if its rows and columns are strictly increasing and its entries are the
numbers 1, 2, 3, . . . , m for some m ≥ 0 without any repetitions.
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Suppose T is a tableau and a ∈ Z. Define T RSK←−− a to be the tableau formed by the
familiar Schensted insertion process. In detail, start by inserting a into the first row of T.
At each stage, a number x is inserted into a row. Let y be the first entry in the row with
x < y. If no such y exists then x is added to the end of the row; otherwise, x replaces y

and y is inserted into the next row. Once this process terminates, the result is T RSK←−− a.

Definition 6.2. Suppose T is a tableau and a ≤ b are integers. Let T m←− (a, b) and
T n←− (a, b) be the tableaux given as follows.

(a) If a = b then T m←− (a, b) := T RSK←−− a. If a < b and (i, j) is the box of T RSK←−− a not

in T, then form T m←− (a, b) from T RSK←−− a by adding b to the end of row i + 1.

(b) If a = b then T n←− (a, b) := T RSK←−− a. If a < b and (i, j) is the box of T RSK←−− a not

in T, then form T n←− (a, b) from T RSK←−− a by adding b to the end of column j + 1.

We refer to the algorithms constructing T m←− a and T n←− a as m-insertion and n-
insertion. Our notion of m-insertion is closely related to what Beissinger describes as [6,
Algorithm 3.1], while n-insertion appears to be new. For example, we have

2 3
4

RSK←−− 2 =
2 3
4

m←− (2, 2) =
2 3
4

n←− (2, 2) =
2 2
3
4

while

2 3
4

m←− (2, 5) =

2 2
3
4
5

and 2 3
4

n←− (2, 5) =
2 2
3 5
4

.

For w = w1w2 · · ·wn ∈ Sn let PRSK(w) = ∅ RSK←−− w1
RSK←−− w2

RSK←−− · · · RSK←−− wn.
The molecules in the Sn-graph associated to the type An−1 Kazhdan–Lusztig basis (see
[14]) are precisely the sets {w ∈ Sn : PRSK(w) = T} as T ranges over all standard
tableaux with n boxes. Each of these molecules turns out to be a cell with irreducible
cell representation [14].

We classify the molecules in Γm(Sn) and Γn(Sn) in a related way. Fix z ∈ KA
n−1. Let

b1 < b2 < · · · < bp (respectively, c1 < c2 < · · · < cq) be the numbers b ∈ [n] with
z(b) < b (respectively, the numbers c ∈ [n] with n < z(c)) and set ai = z(bi). Then define

Pm(z) = ∅ m←− (a1, b1)
m←− · · · m←− (ap, bp)

m←− (c1, c1)
m←− · · · m←− (cq, cq),

Pn(z) = ∅ n←− (a1, b1)
n←− · · · n←− (ap, bp)

n←− (cq, cq)
n←− · · · n←− (c1, c1).

Let λm(z) and λn(z) be the shapes of Pm(z) and Pn(z) for z ∈ KA
n−1. Given a partition λ

of n, define Cm
λ = {z ∈ KA

n−1 : λm(z) = λ} and Cn
λ = {z ∈ KA

n−1 : λn(z) = λ}.
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Example 6.3. Suppose λ = (3, 1). Then, using the notation w from Remark 3.1, we have
Cm

λ = {2134, 3214, 4231} and Cn
λ = {2134, 3214, 1324} since

Pm(2134) = Pn(1324) = 1 3 4
2 , Pm(3214) = Pn(3124) = 1 2 4

3 , Pm(4231) = Pn(2134) = 1 2 3
4 .

A theorem of Beissinger implies the following interesting property of Pm(z):

Proposition 6.4 ([6, Thm. 3.1]). If z = z−1 ∈ Sn is fixed-point-free, then Pm(z) = PRSK(z).

Here is our last main theorem, along with a more precise conjecture:

Theorem 6.5. As λ ranges over all partitions of n, the sets Cm
λ and Cn

λ are all nonempty
and give the distinct molecules in Γm(Sn) and Γn(Sn), respectively.

Conjecture 6.6. If λ is any partition of n then the molecules Cm
λ and Cn

λ in the respective
Sn-graphs Γm(Sn) and Γn(Sn) are cells, and the representations associated to these cells
are both isomorphic to the usual (irreducible) Specht module Sλ of H(Sn).
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