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Minkowski summands of Cubes
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Abstract. In pioneering works of Meyer and of McMullen in the early 1970s, the set
of Minkowski summands of a polytope was shown to be a polyhedral cone called the
type cone. Explicit computations of type cones are in general intractable. Nevertheless,
we show that the type cone of the product of simplices is simplicial. This remarkably
simple result derives from insights about rainbow point configurations and the work
of McMullen.
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1 Introduction

A fundamental operation on polytopes is Minkowski addition. In this paper, we consider
the reverse of this operation. Our motivating question is “Given a polytope P, what can
we say about the set of its Minkowski summands?”

It is convenient to modify this question and consider the set TMink(P) of weak
Minkowski summands, polytopes that are summands of some positive dilate of P, up to
translation equivalence. With this perspective, there are multiple equivalent definitions
that provide tools to answer the motivating question. We briefly describe three existing
techniques to parametrize the set TMink(P) as pointed polyhedral cone, which we refer
to as the type cone of P.

The starting point is a theorem of Shephard [10, Section 15] characterizing the weak
Minkowski summands in terms of their support functions. In [16], Meyer used this
connection to give a parametrization of TMink(P) using one parameter for each facet,
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so we refer to this construction as the facet parametrization. In the context of algebraic
geometry, the type cone is the nef cone of the toric variety associated to P, when P is a
rational polytope. For instance, the definition of the nef cone in [7, Chapter 6] implicitly
uses the facet parametrization. This technique has been used recently to compute type
cones; see, e.g., [3, 5, 6, 17]. Notably, the type cone of the regular permutohedron is the
cone of submodular functions [8].

Shephard’s aforementioned theorem provides another characterization: Q is a weak
Minkowski summand of P if and only if we can obtain Q by moving the vertices of
P while preserving edge directions, also allowing contraction of edges to points. It
follows that we can parametrize weak Minkowski summands by the edge lengths. This
parametrization is called the edge deformation space in [18] and is equal to the set of
nonnegative 1-Minkowski weights. The set of r-Minkowski weights, as defined in [15,
Section 5] and further explored on [13], is crucial for the understanding of McMullen’s
polytope algebra.

Finally, in [12] McMullen used a different description, using the support function as
in [16], but expressing the whole set as an intersection of cones, one for each cofacet.
McMullen calls these sets type cones, since the interior of such a cone parametrizes
polytopes of a strong combinatorial type1. Abusing notation, in this paper we use the
term type cone to refer to the closure of what [12] calls type cone.

We prove two main results, the first about polygons and the second about cubes.
The former is proved using the edge parametrization and the latter using McMullen’s
methods.

Polygons are perhaps the easiest nontrivial polytopes to understand. However, their
type cones are as general as possible within the dimension and facet count constraints.

Theorem 1.1. Any d-cone with d + 2 facets is the type cone of a polygon with d + 2 vertices.

The second result is a description of type cones for cubes2. Cubes can have quite
nontrivial geometry. For instance, Klee and Minty in [11] famously constructed cubes
for which Dantzing’s simplex method takes exponentially many steps. Surprisingly,
cubes have elementary type cones.

Theorem 1.2. The type cone of any combinatorial d-cube is a d-simplicial cone.

Combined, our two central results give an indication that the complexity of comput-
ing the type cone of a polytope cannot be easily determined from the complexity of the
polytope itself.

Recently Adiprasito, Kalmanovich, and Nevo proved that the realization space of the
cube is contractible in [1]. Realization spaces parametrize the set of combinatorially iso-
morphic polytopes, whereas the interiors of type cones parametrize the set of polytopes
with identical normal fans.

1McMullen [13, Section 2] uses “strongly isomorphic” to refer to polytopes with the same normal fan.
2By cubes, we mean any polytope combinatorially isomorphic to [0, 1]d.
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When P has a simplicial type cone, [17, Corollary 1.11] shows an explicit isomorphism
between the type cone of P and the positive orthant. This isomorphism appears in
the construction of Arkani-Hamed, Bai, He, and Yan [4, Section 3.2] of the kinematic
associahedron in the context of scattering amplitudes. Motivated by this connection with
theoretical physics, Padrol, Palu, Pilaud, and Plamondon [17] analyzed the type cones
of several families of polytopes to determine when they are simplicial. Also, Albertin,
Pilaud, and Ritter in [2] classified which permutrees have simplicial type cones.

From the results in [2] and [17], it seems that having a simplicial type cone is a
rare property. Moreover, these results depend on particular realizations, whereas our
Theorem 5.6 shows that all realizations of products of simplices have simplicial type
cones. Are these the only polytopes with this property?
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2 Background

Let Rd be the d-dimensional Euclidean space with the usual inner product 〈·, ·〉 : Rd ×
Rd → R. An n-point configuration is a d× n matrix MA. We think of it via its multiset
of columns A = {a1, . . . , an} ⊂ Rd. Abusing notation, we identify a point ai with its
label i. A face of a point configuration A is a subset S ⊂ A such that for some c ∈ Rd,
we have 〈c, x〉 ≤ 〈c, y〉 for every x ∈ A and every y ∈ S and 〈c, x〉 = 〈c, y〉 if and only
if x ∈ S. We further include the empty set as a face of A, and note that the empty set
and A itself are called improper faces. The dimension of a face is the dimension of its
affine hull. The set of all k-dimensional faces of A is denoted Fk(A). A vertex is a face
of dimension 0, an edge is a face of dimension 1, and a facet is a face of codimension 1.
A coface is a set of points S ⊂ A such that A \ S is a face, and a cofacet is the coface of
a facet. If dim(A) = d, the vector f (A) := ( f0(A), . . . , fd(A)), where fk(A) := |Fk(A)|,
is called the f-vector of A. The set of faces of A forms a partially ordered set under
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inclusion called the face lattice F (A). Two point configurations A1 and A2 are said to
be combinatorially isomorphic if their face lattices are isomorphic.

The polytope P = PA obtained from a point configuration A is the convex hull
PA := Conv(A). Given a polytope P, we may treat it as a point configuration V(P)
whose points are the vertices of P in some order. A cone is simplicial if it has a linearly
independent system of generators. Equivalently, a simplicial cone is the cone over a
simplex.

The polytope ∆d := Conv{e0, . . . , ed} ⊂ Rd+1, where the ei are the standard basis
vectors, is called the standard simplex of dimension d. Its face lattice is the boolean
lattice Bd+1 since every subset of the vertices forms a face. Any polytope combinato-
rially isomorphic to ∆d is called a d-simplex, or simply a simplex if we do not specify
dimension.

Given a polytope P ⊂ Rd with dim P < d, we can restrict to its affine hull, where
it is full dimensional. Also, after some translation, any d-dimensional polytope P in Rd

contains the origin in the interior. In the present paper there is no harm in assuming
that P is full dimensional and contains the origin in the interior, in which case we define
the polar polytope P◦ := {c ∈ Rd : 〈c, x〉 ≤ 1 for all x ∈ P}. On the level of face lattices,
the face lattice of P◦ is isomorphic to the face lattice of P with the order reversed.

By the Weyl–Minkowski Theorem [19, Theorem 1.1], a polytope P can be alternatively
described as the solution set to a finite system of linear inequalities, i.e., a d-dimensional
polytope P = {x ∈ Rd : Ux ≤ z} where U is a m× d matrix and z ∈ Rm. If deleting any
row of U changes P, we call the system irredundant or facet-defining, since in this case
each set {x ∈ P : 〈ui, x〉 = zi} defines a facet of P.

Remark 2.1. Any d-polytope P with the origin in the interior can be presented as

P = {x ∈ Rd : Ux ≤ 1} (2.1)

for some matrix U with d columns and we allow the system to be redundant. From the
system we can read the polar polytope as P◦ = Conv{u : u ∈ Rows(U)}.
Definition 2.2. For our purposes we need a slightly more general notion of polarity.
Given a system of inequalities of the form given in Equation (2.1), we define the D(P)
as the point configuration of the row vectors of the system. The convex hull of D(P) is
P◦. A point ui is a vertex if and only if 〈ui, x〉 = 1 defines a facet of P.

Let Q ⊂ Rc, R ⊂ Rd be two polytopes. Their (Cartesian) product is

Q× R := {(q, r) ∈ Rc+d : q ∈ Q, r ∈ R}.
The Cartesian product of two polytopes is a polytope and dim(Q × R) = dim(Q) +
dim(R). Furthermore every pair of nonempty faces F1 ⊂ Q, F2 ⊂ R induces a nonempty
face F := F1× F2 of Q× R of dimension dim(F1)+dim(F2). All nonempty faces of Q× R
arise in this way. A d-cube is a polytope combinatorially isomorphic to the product of d
segments ∆1.
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2.1 Gale diagrams

We now come to a central tool for our results.

Definition 2.3. Let A = {a1, . . . , an} ⊂ Rd be a point configuration affinely spanning Rd,
and let M1,A be the matrix where the i-th column is (1, ai) ∈ Rd+1. A Gale transform of
A is an n-point configuration Gale(A) = {b1, . . . , bn} ⊂ Rn−d−1 such that the row span
of M1,A is orthogonal to the row span of MGale(A).

The importance of Gale transforms stems from the fact that F (A) can be read directly
from Gale(A). More precisely [14, Chapter 3, Theorem 1] states that

{ai! , . . . , aik} ⊂ A is a coface ⇐⇒ 0 ∈ relint
(
Conv

(
{bi! , . . . , bik}

))
. (2.2)

Definition 2.4. We call two point configurations A1 and A2 Gale equivalent if there
exists a bijection ψ between them such that

0 ∈ relint(Conv (Z))⇐⇒ 0 ∈ relint(Conv (ψ(Z)))

for any subset Z ⊂ A1. Any point configuration that is Gale equivalent to a Gale
transform of A is called a Gale diagram of A.

If A is an n-point configuration in Rd, then a Gale diagram of A is an n-point con-
figuration in Rn−d−1. Thus Gale diagrams are particularly helpful when the number of
vertices is small. Gale diagrams have also found uses in algebraic geometry; see, e.g.,
[9].

Example 2.5. Let A = {(0, 0, 0), (2, 0, 0), (0, 2, 0), (2, 2, 0), (1, 1, 1), (1, 1,−1)} be a point
configuration in R3. The convex hull of A is an octahedron. Since the matrices MA and
MGale(A) below have orthogonal row spaces, the point configuration
Gale(A) = {(1, 0), (−1,−1), (−1,−1), (1, 0), (0, 1), (0, 1)} is a Gale transform of A.

MA =


1 1 1 1 1 1
0 2 0 2 1 1
0 0 2 2 1 1
0 0 0 0 1 −1

 , MGale(A) =

[
1 −1 −1 1 0 0
0 −1 −1 0 1 1

]

The set {a1, a2, a5} is a coface of A, and Conv(b1, b2, b5) is a triangle that contains the
origin in the interior, illustrating Equation (2.2).

3 Minkowski Summands

Let Q, R ⊂ Rn be two polytopes. We define their Minkowski sum to be

Q + R := {q + r : q ∈ Q, r ∈ R}.
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Point configuration A A Gale transform A A Gale diagram of A

1 2

3 4

5

6

1,4

2,3

5,6

O
1

2
3

4

5
6

O

Figure 1: The main objects of interest in Example 2.5.

The Minkoswki sum of two polytopes is a polytope. We call Q a weak Minkowski
summand of P, denoted Q � P, if there exist a polytope R and a positive scalar λ so
that Q + R = λP. Given a polytope P, we are interested in the set of all its Minkowski
summands.

Definition 3.1. Let P be a polytope. Let ∼T be the equivalence relation P1 ∼T P2 ⇐⇒
P1 = P2 +~v for some vector ~v. Let ∼D+T be the equivalence relation P1 ∼D+T P2 ⇐⇒
P1 = λP2 +~v for some scalar λ and some vector ~v. We define

Mink(P) := {Q a polytope : Q � P}, (3.1)
TMink(P) := Mink(P)/ ∼T, (3.2)
DMink(P) := Mink(P)/ ∼D+T . (3.3)

In the following sections we will study two different ways to parameterize these
sets as polyhedral sets. For this we need some classical results characterizing (weak)
Minkowski summands. We use the characterization given in [10, Chapter 15], written by
G. Shephard, which we restate in the form we need for the present paper.

Theorem 3.2 (Shephard [10]). Let P = {x ∈ Rd : Ux ≤ z} be an irredundant inequality
description for a polytope with m facets. For any polytope Q ⊂ Rd the following are equivalent.

(i) Q is a weak Minkoswki summand of P.

(ii) There exists a map φ : F0(P) → F0(Q) such that for vi, vj ∈ F0(P) with {vi, vj} ∈
F1(P) we have φ(vi)− φ(vj) = λi,j(vi − vj), for some λi,j ∈ R≥0.

(iii) There exists η ∈ Rm such that Q = {x ∈ Rd : Ux ≤ η} and for any subset of rows S
such that the linear system {〈ui, x〉 = zi, ∀i ∈ S} defines a vertex of P, the linear system
{〈ui, x〉 = ηi, ∀i ∈ S} defines a vertex in Q.



Minkowski summands of Cubes 7

Remark 3.3. In the description given in Theorem 3.2(iii) the vector η is unique. In fact
we have ηi = maxx∈Q〈ui, x〉.

4 Parametrizing Mink(P): Minkowski weights

We split this section into two parts. In the first, we describe some of the theory of
Minkowski weights. In the second part, we use this theory to study the case of polygons.

4.1 Minkowski weights

Definition 4.1. A 1-Minkowski weight on P is a function ω : F1(P) → R such that for
each F ∈ F2(P) choosing a cyclic orientation vE of its edge vectors gives

∑
E∈F

vE ·ω(E) = 0. (4.1)

Equation (4.1) is called the balancing condition. The set of all 1-Minkowski weights on
P is denoted Ω1(P). See [13] for general information about Minkowski weights.

Definition 4.2. Let P be a polytope. We define

TC(P) := {ω ∈ Ω1(P) : ω(E) ≥ 0, ∀E ∈ F1(P)} , (4.2)

TP(P) :=
{

ω ∈ TC(P) : ∑
E∈F1(P)

ω(E) = f1(P)
}

. (4.3)

The type cone is the pointed polyhedral cone TC(P). We note that TC(P) is a cone
over the type polytope TP(P), so they easily determine one another.

The polyhedron TC(P) parametrizes TMink(P). Indeed, Theorem 3.2(ii) guarantees
the existence of a 1-Minkowski weight for Q and conversely, [18, Theorem 15.5] describes
how to reconstruct Q from a 1-Minkowski weight, up to translation. The polytope TP(P)
parametrizes the set DMink(P).

Definition 4.3. Let P be a polytope and S ⊂ F1(P) a subset of its edges. If there exists
ω ∈ TC(P) such that ω(E) = 0 if and only if E ∈ S, then S is a vanishing set. The faces
of the type cone are in bijection with vanishing sets of edges.

When P is a simple d-dimensional polytope we have

dim (TC(P)) = fd−1(P)− d, (4.4)

by [12, Theorem 11]. Hence dim (TP(P)) = fd−1(P)− d− 1. The dimension of TC(P) is
hard to compute in general. When dim(TC(P)) = 1 we say that P is an indecomposable
polytope, since its only weak Minkowski summands are, up to translation, dilations of
P.



8 Federico Castillo, Joseph Doolittle, Bennet Goeckner, Michael S. Ross, and Li Ying

4.2 Application: Polygons

We now focus on two-dimensional polytopes, better known as polygons. Let P be a
polygon. Each edge Ei of P gives an inequality ω(Ei) ≥ 0 which could be a facet of
TP(P). For each edge Ei of P, let ni be the unit outer-pointing normal. We use the
notation N (P) ⊂ S1 to indicate the point configuration consisting of all these outer
normals.

Example 4.4. In Figure 2 we depict a polygon P together with its associated point con-
figuration N (P).

P

E1

E2

E3

E4
E5

E6

N (P)

n2

n3
n4

n5

n6

n1

Figure 2: A polygon P and its associated N (P).

Proposition 4.5. Let P be a polygon with edges F1(P) = {E1, . . . , En}. A subset S ⊂ F1(P)
is a vanishing set if and only if 0 ∈ relint (Conv{ni : Ei /∈ S}) .

Proof. Denote the vertices of P by vi so that the indices increase counterclockwise. To
the edge Ei := conv(vi, vi+1), we associate the vector vEi = vi+1 − vi. Let {λj} be a
set of non-negative Minkowski weights for P, that is, ∑ λivEi = 0. Let T be the linear
transformation defined by 90-degree clockwise rotation, so T(vEi) =

∣∣vEi

∣∣ni and thus
∑ λi

∣∣vEi

∣∣ni = 0. This is simply a non-negative linear combination of the ni. Therefore,
any choice of 1-Minkowski weights with vanishing set S corresponds exactly with a
strictly positive combination of {ni}i/∈S that sums to 0.

With some more work, this proposition can be modified to the following corollary.

Corollary 4.6. Let P be a polygon. Then N (P) is a Gale diagram for the configuration A(P).

This corollary allows us to read off the face lattice of A(P) (and hence TP(P)) from
N (P).

Proposition 4.7 (Theorem 1.1). Let Q be a d-dimensional polytope with d + 3 facets. Then for
some (d + 3)-gon P, Q is combinatorially equivalent to TP(P).
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Proof. Simple inspection shows that the assumptions imply that d ≥ 2, and Q has at least
5 facets. Since Q◦ is d-dimensional and has d + 3 vertices, Gale(Q◦) is in R2. Scaling
each point to be distance 1 from the origin, we get a Gale diagram for Q in S1. Any point
configuration with at least 5 points on S1 with the origin in its relative interior is equal
to N (P) for some polygon P. One such polygon for Gale(Q◦) is obtained by drawing
the tangents to S1 at each of the (d + 3) points.

From Proposition 4.7 we see that there are many combinatorially different type poly-
topes of combinatorially equivalent polygons. This phenomenon is illustrated in Exam-
ple 4.9.

We now compute the type cone for the particular case of regular 2n-gons, since they
are the Coxeter submodular cones of type In defined in [3].

Proposition 4.8. The f -vector of T2m := TC(P) where P is a regular 2m-gon is

f0 = 1, (4.5)

f1(T2m) =

(
2m
3

)
− 2m

(
m
2

)
+ m, (4.6)

fk(T2m) =

(
2m

k + 3

)
− 2m

(
m

k + 2

)
, 2 ≤ k ≤ 2m− 2. (4.7)

Since different m-gons can have different type cones, it is natural to ask which poly-
gon maximizes the f -vector of its type cone. Comparing Proposition 4.8 with the Upper
Bound Theorem [14, Chapter 4.2], we see that for even m at least 4, the regular m-gons
do not maximize the f -vector over all type polytopes of m-gons. Polygons that do max-
imize the f -vector are instead slight perturbations of regular m-gons as shown in (i) in
Figure 3. For m odd, the regular realizations do maximize the f -vector.

If we wish to minimize the f -vector instead, there is no f -vector smaller than that of
a simplex. For all m, there is an m-gon whose type cone is a simplex.

Example 4.9. Figure 3 shows the point configurationN (P) for three hexagons with three
different type polytopes.

5 Parametrizing Mink(P): Intersections in the Gale dia-
gram

In [12] McMullen gave a different technique to analyze type polytopes. In this section,
we first discuss this technique and then apply it to compute the type polytope of the
product of simplices.
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1

2

3456
O

(iii)
f -vector = (1, 4, 6, 4)

1

23

4

5 6

O

(ii)
f -vector = (1, 5, 9, 6)

1

3

5

2

4

6

O

(i)
f -vector = (1, 8, 12, 6)

Figure 3: Three hexagons with combinatorially different type polytopes with their
f -vectors.

Theorem 5.1 (McMullen [12]). Let P be a polytope, A = {a1, . . . , am} be the vertex set of its
polar P◦, and Gale(A) = {b1, . . . , bm} be a Gale transform for A. Then

TP(P) ∼=
⋂
S

Conv{bi : bi ∈ S},

where the intersection is over all cofacets S of A.

Theorem 5.1 follows from the results of [12], see in particular his comments on Page
88 at the end of Section 2.

5.1 Application: products of simplices

Using this theorem of McMullen, we are able to compute the type cone of the product
of arbitrary simplices. We start with a lemma describing the cofacets.

Lemma 5.2. Let P a product of k + 1 simplices, then the cofacets of P◦ are of size k + 1, and the
vertices of P◦ can be colored with k + 1 colors such that every cofacet contains a vertex of each
color.

Taking the Gale dual of this motivates the definition of a rainbow configuration,
defined by example in the following illustration.

Example 5.3. Figure 4 shows an example of a rainbow configuration in R2.

Proposition 5.4. Let P ⊂ Rd be combinatorially isomorphic to a product of k + 1 simplices.
Then every Gale transform G of P◦ is a rainbow configuration in Rk.

In Figure 4, the intersection of all the rainbow triangles is again a triangle. We make
this explicit in general.

Theorem 5.5. Let T be the intersection of all rainbow simplices of some rainbow configuration
R(d) in Rk. Then T is a simplex.
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x1

x2

y1

y2

z1

z2 z3

Figure 4: A rainbow configuration in the plane with three colors.

We preface our final theorem with a comment on TP(P) for P a d-cube. In the param-
eterization of TP(P) by 1-Minkowski weights using Equation (4.2), TP(P) is embedded
in Rd2d−1

given by exponentially many inequalities. It turns out that it has only d + 1
facets.

Theorem 5.6. For any P combinatorially isomorphic to a product of k + 1 simplices, TP(P) is
a simplex of dimension k. In particular, the type cone of any combinatorial cube is simplicial of
the same dimension.

Proof. Theorem 5.1 and Proposition 5.4 together show that TP(P) is the intersection of all
rainbow simplices in a rainbow configuration, and Theorem 5.5 shows this intersection
is a simplex.
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