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Abstract. There is a remarkable formula for the principal specialization of a type
A Schubert polynomial as a weighted sum over reduced words. Taking appropriate
limits transforms this to an identity for the backstable Schubert polynomials recently
introduced by Lam, Lee, and Shimozono. We prove some analogues of the latter
formula for principal specializations of Schubert polynomials in classical types B, C,
and D. We also derive some more general identities for Grothendieck polynomials.
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1 Introduction

There is a remarkable formula for the principal specialization Sw(1, q, q2, . . . , qn−1) of
a (type A) Schubert polynomial as a weighted sum over reduced words. Originally a
conjecture of Macdonald [9], this identity was first proved algebraically by Fomin and
Stanley [6]. Billey, Holroyd, and Young [2, 13] have recently found the first bijective
proof of Macdonald’s conjecture.

Here, we identify some apparently new analogues of Macdonald’s identity for the
principal specializations of Schubert polynomials in other classical types. Our methods
are based on the algebraic techniques of Fomin and Stanley [6].

To state our main theorems we need to recall a few definitions. Throughout, we let xi
for i ∈ Z be commuting indeterminates. We use the term word to mean a finite sequence
a1a2 · · · ap whose letters belong to some totally ordered alphabet. This alphabet will
usually consist of the integers Z with their usual ordering.

Definition 1.1. A bounded compatible sequence for a word a = a1a2 · · · ap is a weakly
increasing sequence of integers i = (i1 ≤ i2 ≤ · · · ≤ ip) with the property that

ij < ij+1 whenever aj ≤ aj+1 and ij ≤ aj whenever 0 < ij.

eric.marberg@gmail.com. Eric Marberg was partially supported by RGC Grant ECS 26305218.
br.pawlowski@gmail.com.

mailto:eric.marberg@gmail.com
mailto:br.pawlowski@gmail.com


2 Eric Marberg and Brendan Pawlowski

Let Compatible(a) denote the set of all such sequences. Given i = (i1 ≤ · · · ≤ ip) ∈
Compatible(a), define xi = xi1 · · · xip and write 0 < i if i1, . . . , ip are all positive.

Let si = (i, i+ 1) denote the permutation of Z interchanging i and i+ 1. Fix a positive
integer n and let Sn := 〈s1, s2, . . . , sn−1〉 ⊂ SZ := 〈si : i ∈ Z〉. Both Sn and SZ are Coxeter
groups with respect to the generating sets just given. A reduced word for w ∈ SZ is a
word a1a2 · · · ap of shortest possible length such that w = sa1sa2 · · · sap . Let Reduced(w)
denote the set of all such words.

Definition 1.2. The Schubert polynomial of w ∈ Sn is

Sw := ∑
a∈Reduced(w)

∑
0<i∈Compatible(a)

xi ∈ Z[x1, x2, . . . , xn−1].

Schubert polynomials are often defined inductively using divided difference opera-
tors, following the approach of Lascoux and Schützenberger. The formula that we have
given is [3, Thm. 1.1]. The identity of Macdonald [9] mentioned above is as follows.

Theorem 1.3 (Fomin and Stanley [6, Thm. 2.4]). If w ∈ Sn then

Sw(1, q, q2, . . . , qn−1) = ∑
a=a1a2···ap∈Reduced(w)

[a1]q[a2]q···[ap]q
[p]q! qcomaj(a).

where comaj(a) := ∑ai<ai+1
i and [a]q := 1−qa

1−q and [p]q! := [p]q · · · [2]q[1]q.

Taking appropriate limits transforms the preceding formula into an identity for the
backstable Schubert polynomials, which may be defined as follows.

Definition 1.4. The backstable Schubert polynomial of w ∈ Sn is
←−
Sw := ∑

a∈Reduced(w)
∑

i∈Compatible(a)
xi ∈ Z[[. . . , x−1, x0, x1, . . . , xn−1]].

This is the same as the formula for Sw except now i = (i1 ≤ i2 · · · ≤ ip) may
contain non-positive integers. If w ∈ Sn then

←−
Sw(. . . , 0, 0, x1, x2, . . . , xn−1) = Sw, while

←−
Sw(. . . , x−2, x−1, x0, 0, 0, . . . , 0) is the Stanley symmetric function of w in the variables xi
for i ≤ 0 [8, Thm. 3.2].

Note that
←−
Sw is usually not a polynomial. These power series were introduced

by Lam, Lee, and Shimozono [8] in connection with Schubert calculus on infinite flag
varieties. They also arise as cohomology classes of degeneracy loci in products of flag
varieties [12].

If F ∈ Z[[. . . , x−1, x0, x1, . . . , xn−1]] is homogeneous then the formal power series
F(xi 7→ qi−1) obtained by setting xi = qi−1 for all integers i < n is well-defined. The fol-
lowing result is easy to derive from Theorem 1.3 and is also a special case of Theorem 3.3.
In this statement, for a word a = a1a2 · · · ap we write ∑ a := ∑

p
i=1 ai and `(a) := p.
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Theorem 1.5. If w ∈ Sn then
←−
Sw(xi 7→ qi−1) = ∑a∈Reduced(w)

q∑ a+comaj(a)

(q−1)(q2−1)···(q`(a)−1)
where

the right hand expression is interpreted as a Laurent series in q−1.

Example 1.6. Setting xi = qi−1 in
←−
Sw gives another formula for

←−
Sw(xi 7→ qi−1) as a sum

over the reduced words for w. The corresponding terms in these two summations need
not agree, however: for a given word a = a1a2 · · · ap ∈ Reduced(w), it can happen that

∑
i∈Compatible(a)

q(i1−1)+(i2−1)+···+(ip−1) 6= q∑ a+comaj(a)

(q−1)(q2−1)···(qp−1) .

If w = (1, 2)(3, 4) and a = a1a2 = 1, 3 then ∑i∈Compatible(a) q(i1−1)+···+(ip−1) is

∑
1≥i1<i2≤3

q(i1−1)+(i2−1) ∈ q2 + 2q + 2 + q−1Z[[q−1]]

while q∑ a+comaj(a)

(q−1)(q2−1)···(qp−1) =
q5

(q−1)(q2−1) expands into the Laurent series

q5(q−1 + q−2 + q−3 + . . . )(q−2 + q−4 + . . . ) ∈ q2 + q + 2 + q−1Z[[q−1]].

For w = (1, 2)(3, 4) there are only two reduced words and one has

←−
S(1,2)(3,4) =

←−e 2
1 + (2x1 + x2 + x3)

←−e 1 + x2
1 + x1x2 + x1x3

where←−e d is the symmetric function ∑i1<i2<···<id≤0 xi1 xi2 · · · xid . One computes

←−
S(1,2)(3,4)(xi 7→ qi−1) = q4

(q−1)2 = · · ·+ 7q−4 + 6q−3 + 5q−2 + 4q−1 + 3 + 2q + q2

using either Theorem 1.5 or the formula←−e d(q−1, q−2, . . .) = 1
(q−1)(q2−1)···(qd−1) .

Our first new results are versions of the preceding theorem for other classical types.
We begin with type B/C. Given 0 < i < n, define ti = t−i := (i, i + 1)(−i,−i− 1) and
t0 := (−1, 1). Define WBC

n := 〈t0, t1, . . . , tn−1〉 to be the Coxeter group consisting of the
permutations w of Z with w(i) = i for |i| > n and w(−i) = −w(i) for all i ∈ Z.

A signed reduced word of type B for w ∈ WBC
n is a word a1a2 · · · ap with letters in the

set {−n + 1, . . . ,−1, 0, 1, . . . , n− 1} of shortest possible length such that w = ta1ta2 · · · tap .
Let −0 denote a formal symbol distinct from 0 that satisfies −1 < −0 < 0 < 1 and set
t−0 := t0. A signed reduced word of type C for w ∈WBC

n is a word a1a2 · · · ap with letters in
{−n+ 1, . . . ,−1,−0, 0, 1, . . . , n− 1} of shortest possible length such that w = ta1ta2 · · · tap .
Let Reduced±B (w) and Reduced

±
C (w) denote these sets of signed reduced words for w.
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Definition 1.7. The type B/C Schubert polynomials of w ∈WBC
n are

SB
w := ∑

a∈Reduced±B (w)
i∈Compatible(a)

xi and SC
w := ∑

a∈Reduced±C (w)
i∈Compatible(a)

xi = 2`0(w)SB
w

where `0(w) := |{i ∈ Z : w(i) < 0 < i}|.

Both SB
w and SC

w are formal power series in Z[[. . . , x−1, x0, x1, . . . , xn−1]]. If we sub-
stitute xi 7→ zi for i > 0 and xi 7→ x1−i for i ≤ 0, then SB

w and SC
w specialize to the

Schubert polynomials of types B and C defined by Billey and Haiman in [1]; compare
our definition with [1, Thm. 3].

Let ReducedC(w) for w ∈ WBC
n denote the subset of words in Reduced

±
C (w) whose

letters all belong to {0, 1, . . . , n− 1}. In Section 2.2 we sketch a proof the following:

Theorem 1.8. If w ∈WBC
n then

SC
w(xi 7→ qi−1) = ∑

a=a1a2···ap∈ReducedC(w)

(qa1+1)(qa2+1)···(qap+1)
(q−1)(q2−1)···(qp−1) qcomaj(a)

where the right hand expression is interpreted as a Laurent series in q−1.

Example 1.9. If w = (1,−2)(2,−1) ∈ WBC
n then the set Reduced

±
C (w) has 8 elements,

formed by adding arbitrary signs to the letters in a1a2a3 = 0, 1, 0. One can compute that

SC

(1,−2)(2,−1) = 4←−e 2
←−e 1 − 4←−e 3

where←−e d := ∑i1<i2<···<id≤0 xi1 xi2 · · · xid as in Example 1.6. It follows that

SC

(1,−2)(2,−1)(xi 7→ qi−1) = 4q
(q−1)2(q3−1) = · · ·+ 28q−8 + 20q−7 + 12q−6 + 8q−5 + 4q−4.

We turn to type D. For 1 < i < n, let ri = r−i := (i, i + 1)(−i,−i− 1) = ti but define

r1 := (1, 2)(−1,−2) = t1 and r−1 := (1,−2)(−1, 2) = t0t1t0.

Let WD
n := 〈r−1, r1, r2, . . . , rn−1〉 be the Coxeter group of permutations w ∈ WBC

n for
which the number of integers i > 0 with w(i) < 0 is even. A signed reduced word
for w ∈ WD

n is a word a1a2 · · · ap with letters in {−n + 1, . . . ,−2,−1, 1, 2, . . . , n − 1} of
shortest possible length with w = ra1ra2 · · · rap . Let Reduced±D(w) be the set of such words.

Definition 1.10. The type D Schubert polynomial of w ∈WD
n is

SD
w = ∑

a∈Reduced±D(w)
i∈Compatible(a)

xi ∈ Z[[. . . , x−1, x0, x1, . . . , xn−1]].
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If we again substitute xi 7→ zi for i > 0 and xi 7→ x1−i for i ≤ 0, then our definition
of the power series SD

w specializes to Billey and Haiman’s formula for the Schubert
polynomial of type D given in [1, Thm. 4].

Suppose a = a1a2 · · · ap is a sequence where ai ∈ {±1,±2,±3, . . . ,±(n− 1)}. Define

comajD(a) := |{i : ai > 0}|+ ∑
ai≺ai+1

2i (1.1)

where ≺ is the order −1 ≺ −2 ≺ · · · ≺ −n ≺ 1 ≺ 2 ≺ · · · ≺ n. For example, if
a = a1a2a3a4 = −1,−2, 3, 1 then comajD(a) = 2 + (2 + 4) = 8.

Theorem 1.11. If w ∈WD
n then

SD
w(xi 7→ qi−1) = ∑

a=a1a2···ap∈Reduced±D(w)

(q|a1|+1)(q|a2|+1)···(q|ap |+1)
(q2−1)(q4−1)···(q2p−1) qcomajD(a)

where the right hand expression is interpreted as a Laurent series in q−1.

Example 1.12. If w = (1,−1)(4,−4) ∈ WD
n then the set Reduced±D(w) has 32 elements,

formed by adding signs to the letters in a1a2a3a4a5a6 = 3, 2, 1, 1, 2, 3 in all ways that give
opposite signs to the two entries with absolute value one. One can compute that

SD

(1,−1)(4,−4) = x1x2x3
←−
P 3 + (x1x2 + x1x3 + x2x3)

←−
P 4 + (x1 + x2 + x3)

←−
P 5 +

←−
P 6

where
←−
P d for d > 0 is the Schur P-function 1

2 ∑d
a=0 ea(x0, x−1, . . . )hd−a(x0, x−1, . . . ). Us-

ing the formula
←−
P d(q−1, q−2, . . .) = (q+1)(q2+1)···(qd−1+1)

(q−1)(q2−1)···(qd−1) one can check that

SD

(1,−1)(4,−4)(xi 7→ qi−1) = q12(q2+1)
(q−1)3(q3−1)(q5−1) = · · ·+ 27q−4 + 15q−3 + 7q−2 + 3q−1 + 1,

which agrees with Theorem 1.11.

Setting q = 1 in Theorem 1.5 leads to surprising enumerative formulas involving
reduced words, compatible sequences, and plane partitions [5]. By contrast, the power
series

←−
Sw, SB

w, SC
w, and SD

w do not converge upon specializing xi 7→ 1 for all i. It would
be interesting to find variations of our formulas with clearer enumerative content.

The second half of this abstract contains a few other related results. In Section 3,
we extend Theorems 1.5, 1.8, and 1.11 to Grothendieck polynomials. We originally derived
these formulas by adapting the algebraic methods in [6, 7]. It would be interesting to
find bijective proofs of these identities along the lines of [2].

This extended abstract is an abridged version of [11]. To save space, we have omitted
the proofs of most propositions, while retaining proof sketches for the main theorems.
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2 Principal specializations of Schubert polynomials

This section contains our proofs of Theorems 1.8 and 1.11. Throughout, we fix a positive
integer n and let R be a commutative ring containing Z[[xi : i < n]].

2.1 Nil-Coxeter algebras

The nil-Coxeter algebra introduced in this section figures prominently in [6]. Let (W, S) be
a Coxeter system with length function `. Let NilCox = NilCox(W) be the R-module of all
formal R-linear combinations of the symbols uw for w ∈ W. This module has a unique
R-algebra structure with bilinear multiplication satisfying

uvuw =

{
uvw if `(vw) = `(v) + `(w)

0 if `(vw) < `(v) + `(w)
for v, w ∈W.

Choose x, y ∈ R. Given s ∈ S, define hs(x) := 1+ xus ∈ NilCox. One checks that if s, t ∈ S
and st = ts then hs(x)hs(y) = hs(x + y) and hs(x)ht(y) = ht(y)hs(x).

We will refer back several times to the following general identity, which is equivalent
to [6, Lem. 5.4] after some minor changes of variables:

Lemma 2.1 ([6, Lem. 5.4]). Let t1, t2, . . . , tN be some elements of an R-algebra with iden-
tity 1, and suppose q, z1, z2, . . . zN are formal variables. Then

0

∏
j=−∞

N

∏
i=1

(1 + qj−1ziti) = ∑
p≥0

∑
a1,a2,...,ap

za1 za2 ···zap
(q−1)(q2−1)···(qp−1)qcomaj(a)ta1ta2 · · · tap

where comaj(a) := ∑ai<ai+1
i and the coefficients on the right are viewed as Laurent

series in q−1.

2.2 Type B/C

Here, let NilCox = NilCox(WBC
n ) denote the nil-Coxeter algebra of type B/C Coxeter sys-

tem (W, S) = (WBC
n , {t0, t1, . . . , tn−1}) and define hi(x) := 1 + xuti ∈ NilCox for integers

−n < i < n and x ∈ R. Recall that ti = t−i so we always have hi(x) = h−i(x). Let

Ai(x) := hn−1(x)hn−2(x) · · · hi(x),
B(x) := hn−1(x) · · · h1(x)h0(x)h−1(x) · · · h−n+1(x),
C(x) := hn−1(x) · · · h1(x)h0(x)h0(x)h−1(x) · · · h−n+1(x),

(2.1)
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so that h0(x)h0(x) = h0(2x). Finally consider the infinite products in NilCox given by

SB :=
0

∏
i=−∞

B(xi)
n−1

∏
i=1

Ai(xi) and SC :=
0

∏
i=−∞

C(xi)
n−1

∏
i=1

Ai(xi). (2.2)

It is straightforward to see that SB = ∑w∈WBC
n

SB
w · uw and SC = ∑w∈WBC

n
SC

w · uw.

Proposition 2.2. It holds that

SB =
0

∏
j=−∞

(
h0(xj)

n−1

∏
i=1

hi(xi+j + xj)

)
and SC =

0

∏
j=−∞

n−1

∏
i=0

hi(xi+j + xj).

Proof of Theorem 1.8. Set xi = qi−1 in Proposition 2.2, apply Lemma 2.1 with N = n,
zi = 1 + qi−1, and ti = uti−1 , and then extract the coefficient of uw.

2.3 Type D

Let NilCox = NilCox(WD
n ) be the nil-Coxeter algebra of (W, S) = (WD

n , {r−1, r1, . . . , rn−1})
and define hi(x) := 1 + xuti ∈ NilCox for all i ∈ {±1,±2, . . . ,±(n− 1)} and x ∈ R. Let

Ai(x) := hn−1(x)hn−2(x) · · · hi(x),

Ãi(x) := hi(x)hi+1(x) · · · hn−1(x),
D(x) := hn−1(x) · · · h1(x)h−1(x) · · · h−n+1(x).

(2.3)

The Coxeter group WD
n has a unique automorphism w 7→ w∗ that maps ri 7→ r−i for

1 ≤ i < n. This map extends by linearity to an R-algebra automorphism of NilCox

with u∗w := uw∗ . We have Ai(x)∗ = Ai(x) for 1 < i < n and D(x)∗ = D(x), while
A1(x)∗ = hn−1(x)hn−2(x) · · · h2(x)h−1(x). Consider the infinite products

SD :=
0

∏
i=−∞

D(xi)
n−1

∏
i=1

Ai(xi) and (SD)∗ :=
0

∏
i=−∞

D(xi)
n−1

∏
i=1

Ai(xi)
∗. (2.4)

It is easy to see that SD = ∑w∈WD
n
SD

w · uw and (SD)∗ = ∑w∈WD
n
SD

w · uw∗ . In addition:

Proposition 2.3. One has

SD =
0

∏
j=−∞

(
n−1

∏
i=1

h−i(xi+2j−1 + x2j−1)
n−1

∏
i=1

hi(xi+2j + x2j)

)
.

Proof of Theorem 1.11. By Proposition 2.3 we have

SD(xi 7→ qi−1) =
0

∏
j=−∞

(
n−1

∏
i=1

(
1 + q2(j−1) · (1 + qi) · ur−i

)
·

n−1

∏
i=1

(
1 + q2(j−1) · q(1 + qi) · uri

))
.

Apply Lemma 2.1 with q replaced by q2 and N = 2n− 2 to the right side of the preceding
identity, using the parameters zi = 1 + qi, zn−1+i = q(1 + qi), ti = ur−i , and tn−1+i = uri

for 1 ≤ i < n. Then extract the coefficient of uw.
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3 Principal specializations of Grothendieck polynomials

In this section we describe some extensions of Theorems 1.5, 1.8, and 1.11 for Grothendieck
polynomials in classical types.

3.1 Id-Coxeter algebras

Again let (W, S) be an arbitrary Coxeter system with length function `. We will work in
a generalization of the algebra NilCox(W). Fix an element β ∈ R. Let IdCoxβ = IdCoxβ(W)
be the R-module of all formal R-linear combinations of the symbols πw for w ∈W. This
module has a unique R-algebra structure with bilinear multiplication satisfying

πvπw = πvw if `(vw) = `(v) + `(w) and π2
s = βπs

for v, w ∈W, s ∈ S [7, Def. 1], which we call the id-Coxeter algebra of (W, S). For x, y ∈ R
and s ∈ S, define x ⊕ y := x + y + βxy and h(β)

s (x) := 1 + xπs. Then h(β)
s (x)h(β)

s (y) =

h(β)
s (x⊕ y), and if st = ts then h(β)

s (x)h(β)
t (y) = h(β)

t (y)h(β)
s (x) [7, Lem. 1].

3.2 Type A

Let
←−
S n := 〈si : i < n〉 be the Coxeter group of permutations w ∈ SZ with w(i) = i for

all i > n. In this section we write IdCoxβ = IdCoxβ(
←−
S n) and set πi := πsi ∈ IdCoxβ for

integers i < n. Define Hecke(w) for w ∈ ←−S n to be the set of words a1a2 · · · aN such that
πw = βN−`(w)πa1πa2 · · ·πaN . Recall the set Compatible(a) from Definition 1.1.

Definition 3.1. The backstable Grothendieck polynomial of w ∈ Sn (
←−
S n is

←−
Gw := ∑

a∈Hecke(w)
∑

i∈Compatible(a)
β`(i)−`(w)xi ∈ Z[β][[. . . , x−1, x0, x1, . . . , xn−1]].

The function Gw :=
←−
Gw(. . . , 0, 0, x1, x2, . . . , xn−1) is the ordinary Grothendieck polyno-

mial of w ∈ Sn. The power series Gw :=
←−
Gw(. . . , x3, x2, x1, 0, 0, . . . , 0) given by setting

xi 7→ 0 for i > 0 and xi 7→ x1−i for i ≤ 0 is a symmetric function in the xi variables,
which is usually called the stable Grothendieck polynomial of w ∈ Sn. Specializing β 7→ 0
transforms

←−
Gw 7→

←−
Sw from Section 1. The Grothendieck polynomials Gw are closely

related to the K-theory of flag varieties and Grassmannians [4, 10].
For i < n, let h(β)

i (x) := 1 + xπi and A(β)
i (x) := h(β)

n−1(x)h(β)
n−2(x) · · · h(β)

i (x). Define

←−
G := · · · A(β)

n−3(xn−3)A(β)
n−2(xn−2)A(β)

n−1(xn−1) =
n−1

∏
i=−∞

A(β)
i (xi) ∈ IdCoxβ. (3.1)

If w ∈ Sn then the coefficient of πw in this expression is
←−
Gw.
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Proposition 3.2. It holds that
←−
G = ∏0

j=−∞ ∏n−1
i=−∞ h(β)

i (xi+j).

Theorem 3.3. If w ∈ Sn (
←−
S n then

←−
Gw(xi 7→ qi−1) = ∑

a∈Hecke(w)

β`(a)−`(w)

(q−1)(q2−1)···(q`(a)−1)
q∑ a+comaj(a)

where the right hand expression is interpreted as a Laurent series in q−1.

Proof. For w ∈ Sn, the coefficient of πw in
←−
G is the same as the coefficient of πw in

the product ∏0
j=−∞ ∏n−1

i=1 h(β)
i (xi+j). This coefficient is

←−
Gw, and the theorem follows by

applying Lemma 2.1 with N = n− 1 and ziti = qiπsi to the latter expression.

There are Grothendieck polynomials in the other classical types [7] which generalize
SB

w, SC
w, and SD

w. We discuss these formal power series next.

3.3 Type B/C

In this section let IdCoxβ = IdCoxβ(WBC
n ) and write πi := πti ∈ IdCoxβ for −n < i < n.

Given a permutation w ∈WBC
n , define Hecke

±
B (w) and Hecke

±
C (w) to be the sets of words

a1a2 · · · aN, with letters in {−n + 1, . . . ,−1, 0, 1, . . . , n− 1} and {−n + 1 < · · · < −1 <
−0 < 0 < 1 < · · · < n− 1}, respectively, such that πw = βN−`(w)πa1πa2 · · ·πaN ∈ IdCoxβ,
where π−0 := π0 ∈ IdCoxβ. Recall that we view −0 as a symbol distinct from 0.

Definition 3.4. The type B/C Grothendieck polynomials of w ∈WBC
n are

GB
w := ∑

a∈Hecke±B (w)
i∈Compatible(a)

β`(i)−`(w)xi and GC
w := ∑

a∈Hecke±C (w)
i∈Compatible(a)

β`(i)−`(w)xi.

We may consider the finite sums

GB := ∑
w∈WBC

n

GB
w · πw ∈ IdCoxβ(WBC

n ) and GC := ∑
w∈WBC

n

GC
w · πw ∈ IdCoxβ(WBC

n ).

Define A(β)
i (x), B(β)(x), and C(β)(x) as in (2.1) but with hi(x) replaced by

h(β)
i (x) := 1 + xπi ∈ IdCoxβ(WBC

n ) for −n < i < n and x ∈ R.

Then GB and GC are given by (2.2) with Ai, B, C replaced by A(β)
i , B(β), C(β). [7, Def.

9] shows that GB
w and GC

w are obtained from Kirillov and Naruse’s double Grothendieck
polynomials GBw(a, b; x) and GCw(a, b; x) by setting ai 7→ xi, bi 7→ 0, and xi 7→ x1−i.
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Proposition 3.5. It holds that

GB =
0

∏
j=−∞

(
h(β)

0 (xj)
n−1

∏
i=1

h(β)
i (xi+j ⊕ xj)

)
and GC =

0

∏
j=−∞

n−1

∏
i=0

h(β)
i (xi+j ⊕ xj).

For a word a = a1a2 · · · ap with ai ∈ {−n + 1 < · · · < −1 < −0 < 0 < 1 < · · · <
n− 1}, let I(a) be the set of indices i ∈ [p] with ai ∈ {1, 2, . . . , n− 1} and define

ΣBC(a) := ∑
i∈I(a)

ai and comajBC(a) := ∑
ai≺ai+1

i (3.2)

where ≺ is the order −0 ≺ 0 ≺ −1 ≺ 1 ≺ −2 ≺ 2 ≺ . . . . For example, if a = −1, 1,−2, 1
then ΣBC(a) = 1 + 1 = 2 and comajBC(a) = 1 + 2 = 3.

Theorem 3.6. If w ∈WBC
n then the following identities hold:

(a) GB
w(xi 7→ qi−1) = ∑a∈Hecke±B (w)

β`(a)−`(w)

(q−1)(q2−1)···(q`(a)−1)
qΣBC(a)+comajBC(a).

(b) GC
w(xi 7→ qi−1) = ∑a∈Hecke±C (w)

β`(a)−`(w)

(q−1)(q2−1)···(q`(a)−1)
qΣBC(a)+comajBC(a).

The right hand expressions in both parts are interpreted as Laurent series in q−1.

One can check that the second identity reduces to Theorem 1.8 when β = 0.

Proof. Part (a) is similar so we just prove (b). As h(β)
i (xi+j ⊕ xj) = h(β)

i (xj)h
(β)
i (xi+j), we

have GC(xi 7→ qi−1) = ∏0
j=−∞ ∏n−1

i=0 (1 + qj−1 · πi)(1 + qj−1 · qi · πi) by Proposition 3.5.
The identity for GC

w follows by extracting the coefficient of πw from the right side after
applying Lemma 2.1 with N = 2n and with z1, z2, . . . , z2n and t1, t2, . . . , t2n replaced by
1, 1, 1, q, 1, q2, . . . , 1, qn−1 and π0, π0, π1, π1, . . . , πn−1, πn−1.

3.4 Type D

In this section let IdCoxβ = IdCoxβ(WD
n ) and πi := πri ∈ IdCoxβ. Given w ∈ WD

n , let
Hecke

±
D(w) be the set of words a1a2 · · · aN with letters in [±(n− 1)] := {±1,±2, . . . ,±(n−

1)} such that πw = βN−`(w)πa1πa2 · · ·πaN ∈ IdCoxβ.

Definition 3.7. The type D Grothendieck polynomial of w ∈WD
n is

GD
w := ∑

a∈Hecke±D(w)

∑
i∈Compatible(a)

β`(i)−`(w)xi.
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We consider the sum

GD := ∑
w∈WD

n

GD
w · πw ∈ IdCoxβ(WD

n ).

If we define A(β)
i (x) and D(β)(x) as in (2.3) but with hi(x) replaced by

h(β)
i (x) := 1 + xπi ∈ IdCoxβ(WD

n ) for i ∈ [±(n− 1)] and x ∈ R,

then GD is given by the formula in (2.4) with Ai and D replaced by A(β)
i and D(β).

Comparing with [7, Def. 9] shows that GD
w is obtained from Kirillov and Naruse’s double

Grothendieck polynomial GDw(a, b; x) by substituting ai 7→ xi, bi 7→ 0, and xi 7→ x1−i.

Proposition 3.8. It holds that GD =
0

∏
j=−∞

(
n−1

∏
i=1

h(β)
−i (xi+2j−1 ⊕ x2j−1)

n−1

∏
i=1

h(β)
i (xi+2j ⊕ x2j)

)
.

To state an analogue of Theorem 1.11 for GD
w, we must consider the ordered alphabet

{−1′ ≺ −1 ≺ −2′ ≺ −2 ≺ · · · ≺ −n′ ≺ −n ≺ 1′ ≺ 1 ≺ 2′ ≺ 2 ≺ · · · ≺ n′ ≺ n}. If
w ∈WD

n then let PrimedHecke
±
D(w) denote the set of words in this alphabet which become

elements of Hecke±D(w) when all primes are removed. Given such a word a = a1a2 · · · ap,
let J(a) be the set of indices i ∈ [p] for which ai is unprimed, and define ΣD(a) :=
∑i∈J(a) |ai| and comajD(a) := |{i : ai ∈ {1′, 1, 2′, 2, . . . }}| + ∑ai≺ai+1

2i. For example, if
a = 2′,−1′,−1,−3, 2 then ΣD(a) = 6 and comajD(a) = 20.

Theorem 3.9. If w ∈WD
n then

GD
w(xi 7→ qi−1) = ∑

a∈PrimedHecke±D(w)

β`(a)−`(w)

(q2−1)(q4−1)···(q2`(a)−1)
qΣD(a)+comajD(a)

where the right hand expression is interpreted as a Laurent series in q−1.

As with Theorem 3.6, this identity reduces to Theorem 1.11 when β = 0.

Proof. Proposition 3.8 implies that GD(xi 7→ qi−1) is

0

∏
j=−∞

(
n−1

∏
i=1

(1 + q2(j−1) · π−i)(1 + q2(j−1) · qi · π−i)·

n−1

∏
i=1

(1 + q2(j−1) · q · πi)(1 + q2(j−1) · qi+1 · πi)

)
.

The identity for GD
w follows by extracting the coefficient of πw from this expression, using

Lemma 2.1 with q replaced by q2 and with N = 4n− 4. When applying the lemma, we
set z1, z2, . . . , z2n−2 (respectively, z2n−1, z2n, . . . , z4n−4) to 1, q, 1, q2, 1, q3 . . . (respectively,
q, q2, q, q3, q, q4 . . . ), while taking t1, t2, . . . , t2n−2 (respectively, t2n−1, t2n, . . . , t4n−4) to be
π−1, π−1, π−2, π−2, . . . (respectively, π1, π1, π2, π2, . . . ).
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