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Abstract. We give a representation-theoretic interpretation of the Young row-strict
quasisymmetric Schur basis of quasisymmetric functions by constructing modules of
the 0-Hecke algebra whose quasisymmetric characteristics are the Young row-strict
quasisymmetric Schur functions. Additionally, we classify when these modules are
indecomposable.
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1 Introduction

The Schur functions form a basis of the algebra Sym of symmetric functions that is
of particular interest in algebraic combinatorics. One feature among many of these
functions is their realization as the images of irreducible characters of the symmetric
group under the Frobenius characteristic map.

The algebra QSym of quasisymmetric functions contains Sym as a subalgebra. It is
therefore of interest to find bases of QSym that are Schur-like, i.e., that reflect properties of
the Schur functions. Several such bases have been introduced and studied including the
fundamental quasisymmetric functions [8], the dual immaculate quasisymmetric func-
tions [3], the quasisymmetric Schur functions [9], the row-strict quasisymmetric Schur
functions [12], and the extended Schur functions [1].

The algebra QSym has an interpretation in terms of representations of 0-Hecke al-
gebras, a certain deformation of group algebras of symmetric groups. In [7] an iso-
morphism of algebras between the Grothendieck group of representations of 0-Hecke
algebras and QSym was established. This isomorphism is known as the quasisymmetric
characteristic. Under the quasisymmetric characteristic map, the images of the irreducible
representations of 0-Hecke algebras are exactly the fundamental quasisymmetric func-
tions. This is analogous to the role Schur functions play for the representation theory
of symmetric groups, illustrating one sense in which the fundamental quasisymmetric
basis is Schur-like.
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The row-strict quasisymmetric Schur functions are the images of the well-studied
quasiymmetric Schur functions under an extension of the famous ω involution on Sym to
QSym. Similarly to the quasisymmetric Schur functions, they provide a particularly nice
refinement of Schur functions. These functions expand positively in the fundamental
basis of QSym and thus it is natural to ask for an interpretation in terms of 0-Hecke
representations. Indeed, dual immaculate, quasisymmetric Schur and extended Schur
functions have all been realized as quasisymmetric characteristics of certain 0-Hecke
modules ([4], [16], [15] respectively), and Mason and Niese raised the question of doing
so for (Young) row-strict quasisymmetric Schur functions in [13]. Moreover, there has
been significant recent interest in the structure of such 0-Hecke modules, especially the
modules whose quasisymmetric characteristics are the quasisymmetric Schur functions
or closely related functions, and particularly surrounding indecomposability. See, for
example, [11], [17], [6], [5].

In this extended abstract, we provide an outline of how in [2] we answer the question
of Mason and Niese by constructing 0-Hecke modules whose quasisymmetric character-
istics are the Young row-strict quasisymmetric Schur functions. We also classify when
these modules are indecomposable, which turns out to be more involved that the in-
decomposability classifications for modules for dual immaculate, quasisymmetric Schur
and extended Schur functions in [4], [16], [15] respectively.

2 Background

2.1 Young row-strict quasisymmetric Schur functions

A composition α = (α1, . . . , αk) of n is a finite sequence of positive integers that sum to
n; we write α � n. For each composition α, define a subset S(α) of {1, . . . n − 1} by
S(α) = {α1, α1 + α2, . . . α1 + α2 + · · ·+ αk−1}. The map α 7→ S(α) is a bijection between
compositions of n and subsets of {1, . . . , n− 1}. The inverse is denoted by compn, i.e.,
compn(S(α)) = α.

Let C[[x1, x2, . . .]] denote the algebra of formal power series of bounded degree in
commuting variables x1, x2, . . .. The algebra QSym of quasisymmetric functions is a sub-
algebra of C[[x1, x2, . . .]]. Bases of QSym are indexed by compositions; two important
bases are the monomial quasisymmetric functions {Mα} and the fundamental quasisymmetric
functions {Fα} [8]. These are defined by

Mα = ∑
i1<i2<···<ik

xα1
i1
· · · xαk

ik
and Fα = ∑

β refines α

Mβ,

where β refines α if α can be obtained from β by summing consecutive entries.
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Example 2.1. Let α = (1, 2, 2). We have

M(2,2,1) = ∑
i<j<k

x2
i x2

j xk

and
F(2,2,1) = M(2,2,1) + M(1,1,2,1) + M(2,1,1,1) + M(1,1,1,1,1).

The diagram D(α) of a composition α is the array of boxes having αi boxes in row i, let-
justified. We use French notation for composition diagrams, i.e., the rows are numbered
from bottom to top. Let (c, r) denote the box in row r and column c. We say the box
(c+ 1, r) ∈ D(α) is right-adjacent to the box (c, r), and that (c, r) is left-adjacent to (c+ 1, r).

Example 2.2. Let α = (2, 4). Then D(α) = .

We now describe the combinatorial objects needed to define Young row-strict qua-
sisymmetric Schur functions. Let α � n. A standard Young row-strict composition tableau
[13] of shape α is a filling T of D(α) with the integers 1, 2, . . . , n, each used once, satisfy-
ing the following conditions:

(R1) Entries increase from left to right along every row

(R2) Entries increase from bottom to top in the leftmost column

(R3) If boxes (c, r) and (c + 1, r′) for r′ < r are in D(α) and T(c, r) < T(c + 1, r′), then
T(c + 1, r) < T(c + 1, r′), where we define T(c + 1, r) = ∞ if (c + 1, r) /∈ D(α).

Condition (R3), sometimes referred to as the triple condition, states that for any three
boxes arranged as below, if a < c then b < c.

a b
...
c

Denote by SYRT(α) the set of all standard Young row-strict composition tableaux of
shape α. Given T ∈ SYRT(α), if a box with entry i is left-adjacent to a box with entry j
in T, we say i is left-adjacent to j (and j is right-adjacent to i).

Example 2.3. Illustrating (R3), the two tableaux of shape (3, 2, 2) below fail (R3), with
entries from a triple that cause the failure underlined. In the tableau on the right we
have a = 3, c = 5 and b = ∞.

3 6

2 7
1 4 5

6 7
2 3

1 4 5
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Define the descent set of T ∈ SYRT(α), denoted Des(T), to be the set of entries i such
that i + 1 appears strictly to the right of i in T.

Example 2.4. Let α = (2, 4). The tableaux in SYRT(α), along with their descent sets, are
shown below.

3 4 5 6
1 2

2 3 5 6
1 4

2 3 4 6
1 5

2 3 4 5
1 6

{1, 3, 4, 5} {2, 4, 5} {2, 3, 5} {2, 3, 4}

For α � n, the Young row-strict quasisymmetric Schur function Rα [13] is defined by

Rα = ∑
T∈SYRT(α)

Fcompn(Des(T)).

Example 2.5. By Example 2.4 above, we have

R(2,4) = F(1,2,1,1,1) + F(2,2,1,1) + F(2,1,2,1) + F(2,1,1,2).

Remark 2.6. The term row-strict comes from a semistandard variant of the SYRTs, which
index the monomial expansion of Rα as opposed to the fundamental quasisymmetric
expansion. In a semistandard Young row-strict tableau, entries are required to strictly
increase along rows, but may be repeated in columns; see [13]. We do not need the
semistandard variant for our purposes.

2.2 0-Hecke algebras and quasisymmetric characteristic

The 0-Hecke algebra Hn(0) is the C-algebra having n− 1 generators T1, . . . , Tn−1 subject
to the relations

T2
i = Ti for all 1 ≤ i ≤ n− 1

TiTj = TjTi for all 1 ≤ i, j ≤ n− 1 such that |i− j| ≥ 2

TiTi+1Ti = Ti+1TiTi+1 for all 1 ≤ i ≤ n− 2.

Given a permutation σ ∈ Sn, one can define Tσ ∈ Hn(0) by Tσ = Ti1 Ti2 · · · Tir where
si1si2 · · · sir is any reduced word for σ. This is well-defined since the Ti satisfy the same
braid and commutativity relations as the generators si of Sn. Then {Tσ : σ ∈ Sn} is an
additive basis for Hn(0).

The Grothendieck group G0(Hn(0)) is the linear span of the isomorphism classes of
the finite-dimensional representations of Hn(0), subject to the relation [Y] = [X] + [Z]
whenever there is a short exact sequence 0→ X → Y → Z → 0 of Hn(0)-representations
X, Y, Z.
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The irreducible representations of Hn(0) can be indexed by the 2n−1 compositions of
n. Given a composition α, let Fα denote the corresponding irreducible representation.
By [14], Fα is one-dimensional; let {vα} be a basis of Fα. The structure of Fα as a Hn(0)-
representation is given by the following action of the Ti:

Ti(vα) =

{
vα if i /∈ S(α)

0 if i ∈ S(α).
(2.1)

Now define
G =

⊕
n≥0
G0(Hn(0)).

The set {[Fα]} as α ranges over all compositions is a basis of G. There is an isomorphism
of algebras ch : G → QSym, given by setting ch([Fα]) = Fα [7]. For X an Hn(0)-module,
the image ch([X]) is called the quasisymmetric characteristic of X.

3 Modules for Young row-strict quasisymmetric Schur func-
tions

In this section, for any composition α of n we construct an Hn(0)-module Rα whose
quasisymmetric characteristic is the Young row-strict quasisymmetric Schur function
Rα. This answers a question of Mason and Niese [13].

Let α � n. Given T ∈ SYRT(α), let si(T) denote the filling of D(α) obtained by
swapping the entries i and i + 1 of T. Then for any T ∈ SYRT(α) and any 1 ≤ i ≤ n− 1,
we define

πi(T) =


T if i+1 is weakly left of i in T
0 if i+1 is right-adjacent of i in T
si(T) otherwise.

Example 3.1. Let α = (2, 4), and let

T = 2 3 4 6
1 5

∈ SYRT(α).

Then π1(T) = π4(T) = T, π2(T) = π3(T) = 0 and

π5(T) = s5(T) = 2 3 4 5
1 6

∈ SYRT(α).

Let Rα denote the complex vector space with basis SYRT(α). The following theorem
is proved via case-checking.
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Theorem 3.2. The operators πi define an Hn(0)-action on Rα.

Thus Rα is an Hn(0)-module. To show it has quasisymmetric characteristic Rα, we
define a relation � on SYRT(α) by T � S if S can be obtained from T via applying a
(possibly empty) sequence of the πi operators.

Lemma 3.3. The relation � defines a partial order on SYRT(α).

Fix a total order �? on SYRT(α) that extends the partial order �. We may assume the
elements of SYRT(α) are ordered Tm �? Tm−1 �? · · · �? T1. For each 1 ≤ j ≤ m, define
Xj = span{T1, . . . , Tj}. Then for all 1 ≤ j ≤ m, Xj is a Hn(0)-submodule of Rα, and we
have the filtration

0 := X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xm = Rα

of Rα. Each quotient module Xj/Xj−1 is, by definition, one-dimensional with basis {Tj}.
Lemma 3.4. For each 1 ≤ i ≤ n− 1 and each 1 ≤ j ≤ m, in Xj/Xj−1 we have

πi(Tj) =

{
Tj if i + 1 is weakly left of i in Tj

0 otherwise.

Theorem 3.5. Let α � n. Then ch([Rα]) = Rα.

Proof. Each of the Hn(0)-modules Xj/Xj−1 is one-dimensional and thus irreducible. By
Lemma 3.4 we have

πi(Tj) =

{
Tj if i /∈ Des(Tj)

0 if i ∈ Des(Tj).

By (2.1), this implies that Xj/Xj−1 is isomorphic as Hn(0)-modules to Fcompn(Des(Tj))
,

hence [Xj/Xj−1] = [Fcompn(Des(Tj))
]. It follows that

ch([Rα]) =
m

∑
j=1

ch([Xj/Xj−1]) =
m

∑
j=1

ch([Fcompn(Des(Tj))
]) = ∑

T∈SYRT(α)
Fcompn(Des(T)) = Rα.

4 Structure of the modules

The goal for the remainder of this abstract is to classify for which α the Hn(0)-module Rα

is indecomposable. In this section we give a formula decomposing Rα into a direct sum
of nonzero submodules, show that each of these submodules is generated by a single
SYRT, and classify for which α this formula has only a single term. The results in this
section, which will be needed for the classification of indecomposability, are similar to
those obtained in [16] for the modules for quasisymmetric Schur functions.

Define an equivalence relation ∼ on SYRT(α) by declaring T ∼ T′ if for every 1 ≤
k ≤ max(α), the relative order of the entries of the kth column of T is the same as the
relative order of the entries in the kth column of T′.
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Example 4.1. In Example 2.4, the first SYRT forms one equivalence class, and the re-
maining three SYRTs form a second equivalence class.

Suppose that ∼ decomposes SYRT(α) into equivalence classes E0, E1, . . . , Er, where
E0 denotes the class of all T ∈ SYRT(α) such that entries increase from bottom to top in
every column of T.

Denote by R
Ej
α the subspace of Rα given by the complex span of Ej.

Proposition 4.2. Let α � n. Then for each j, the vector space R
Ej
α is an Hn(0)-submodule of Rα.

As a result, we have

Corollary 4.3. Let α � n. Then Rα is isomorphic as Hn(0)-modules to
⊕r

j=0 R
Ej
α .

We now show that each Ej contains a unique element that generates R
Ej
α . Following

the nomenclature of [16, 11], we call T ∈ Ej a source tableau if there is no T′ ∈ Ej such
that T′ 6= T and πi(T′) = T for some i. Existence of source tableaux is immediate from
the partial order (Lemma 3.3) on SYRT(α) restricted to Ej.

Lemma 4.4. Let α � n. There is at least one source tableau in any equivalence class Ej ⊂
SYRT(α).

In fact, each equivalence class Ej contains exactly one source tableau.

Proposition 4.5. Let α � n. The submodule R
Ej
α is cyclic, generated by the unique source tableau

in Ej.

The fact that R
Ej
α is cyclic follows from the uniqueness of the source tableaux: every

tableau in Ej can be obtained by applying a sequence of 0-Hecke operators to the source
tableau. The proof of uniqueness of source tableaux is somewhat technical, and involves
showing that any two source tableaux in Ej must have the entry n in the same box, then
arguing by induction that their entries must agree in every box.

We now characterise the compositions that give rise to only a single equivalence class
of SYRT’s. Following nomenclature of [16], we define a composition α to be simple if
whenever αj ≥ αi ≥ 2 for some 1 ≤ i < j ≤ α, there is some k such that i ≤ k ≤ j and
αk = αi − 1. Pictorially, given a pair of rows in D(α) where the lower row is weakly
shorter (and of length at least 2), there is another row between this pair of rows that is
one box shorter than the lower one.

Example 4.6. The compositions (4, 1, 1, 2) and (3, 2, 1, 4) (on the left) are simple, whereas
(3, 1, 1, 3) and (3, 2, 2, 1) (on the right) are not.
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Proposition 4.7. Let α � n be a composition. Then α is simple if and only if for every T ∈
SYRT(α), entries increase from bottom to top in each column of T.

Remark 4.8. This definition of simple composition is the same (up to reversal) of that
in [16]. This is due to similarity between the definition (R1) – (R3) of SYRTs and the
definition of the standard composition tableaux that index the fundamental expansion
of quasisymmetric Schur functions. However, these two families of tableaux have quite
a different notion of descent, which leads to the difference in the 0-Hecke action and the
arguments needed to classify indecomposability for the corresponding modules.

5 Classification of indecomposability

We devote this section to sketching the proof of the following classification of indecom-
posability of the 0-Hecke modules for Young row-strict quasisymmetric Schur functions.

Theorem 5.1. Let α � n. Then the Hn(0)-module Rα is indecomposable if and only if α is
simple.

By Corollary 4.3, Rα is decomposable whenever SYRT(α) has more than one equiva-
lence class. It is also straightforward to confirm that the class E0 of SYRTs that increase
up each column is nonempty for every α. Therefore by Proposition 4.7, if α is not simple,
then Rα is decomposable.

For the converse, the approach is to show that the submodule RE0
α of Rα is inde-

composable. Then by Proposition 4.7, it follows that when α is simple, Rα = RE0
α is

indecomposable.
We start by establishing a concrete description of the source tableau for E0, which we

will need in order to prove that RE0
α is indecomposable. We call a box in D(α) a boundary

box if it is in the first column, or if it has no box strictly above it in the same column or in
the column immediately to the left. Order the boundary boxes by (a, b) < (c, d) if either
a = c = 1 and b < d, or a < c.

To each boundary box we associate a collection of boxes in D(α) called a thread. The
thread of the first boundary box (1, 1) is the box (1, 1) itself. Assuming threads have
been associated to the first k − 1 boundary boxes, the thread of the kth boundary box
consists of the kth boundary box b, the highest unthreaded box strictly below b in the
column immediately to the right of b, the highest unthreaded box strictly below that in
the next column to the right, etc. The thread terminates when there is no unthreaded
box strictly below in the next column to the right. See Example 5.4 below.

In this way, each thread is a sequence of boxes in consecutive columns, proceeding
strictly northwest to southeast in D(α), and each box belongs to at most one thread. It is
not hard to show that every box in D(α) belongs to some thread, thus D(α) is partitioned
by the threads.
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We use the thread decomposition to define a standard filling Tsup of D(α). Suppose
D(α) has threads L1, . . . , Lm, in order. Define Tsup by filling thread Lk with integers |L1|+
. . .+ |Lk− 1|+ 1, |L1|+ . . .+ |Lk− 1|+ 2, . . . |L1|+ . . .+ |Lk− 1|+ |Lk| consecutively from
right to left.

Proposition 5.2. Let α � n. Then Tsup is the source tableau of E0.

The proof of Proposition 5.2, and of later results, depend on the following lemma.

Lemma 5.3. Let α � n. During the threading process, there is never an unthreaded box weakly
southwest of a threaded box.

In particular, Lemma 5.3 establishes that entries increase along each row and up each
column of Tsup.

Example 5.4. Let α = (2, 4, 1, 2). The thread decomposition of D(α) is on the left, where
the boxes are labelled by the number of the thread they belong to. The boundary boxes
are the leftmost box in each thread. On the right is Tsup.

4 5
3
2 3 5 6
1 2

6 8
5
3 4 7 9
1 2

It is well-known (see e.g. [10]) that a module is indecomposable if and only if the
only idempotent endomorphisms of that module are 0 and 1.

Any Hn(0)-module morphism f : RE0
α → RE0

α is determined by f (Tsup), since Tsup

generates RE0
α . Let

f (Tsup) = ∑
T∈E0

aTT.

The goal is to show that aT = 0 for all T 6= Tsup. (It then follows from idempotence of f
that aTsup is either 0 or 1, and thus f = 0 or f = 1). The following lemma, whose proof is
short and straightforward, eliminates a large family of SYRTs in E0 from consideration.

Lemma 5.5. Let T ∈ SYRT(α) such that there exists an i satisfying i ∈ Des(T) but i /∈
Des(Tsup). Then aT = 0.

Remark 5.6. The appropriate analogues of Lemma 5.5 actually immediately characterise
indecomposability for the modules associated to dual immaculate quasisymmetric func-
tions [3], quasisymmetric Schur functions [16], and extended Schur functions [15]. In
all of these cases, the source tableau of the relevant cyclic 0-Hecke (sub)module has an
especially simple form, and in fact every non-source tableau has some descent that is
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not a descent of the source tableau. However for RE0
α the source tableau is more compli-

cated, and moreover not every T ∈ E0 has a descent that is not a descent of the source
tableau, even if α is simple. Therefore establishing indecomposability of RE0

α requires
more analysis.

From now on, let T̂ denote an element of E0 such that T̂ 6= Tsup and Des(T̂) ⊆
Des(Tsup). It remains to show that aT̂ = 0. To achieve this we make use of a technique
of König, applied in [11] to determine indecomposability for certain submodules of the
0-Hecke modules for quasisymmetric Schur functions. This requires establishing the
existence of a sequence of operators that sends Tsup to 0 but does not send T̂ to 0, such
that each operator in the sequence applied to T̂ exchanges entries of the SYRT it is acting
on (Proposition 5.9 below). We sketch the necessary arguments, which require further
structural results on T̂ and Tsup.

Since Tsup generates RE0
α , we have T̂ = πσ(Tsup) for some (nonidentity) σ ∈ Sn. Fix

a reduced word si1 · · · sir for σ; we have πi1 · · ·πir(Tsup) = si1 · · · sir(Tsup) = T̂. Let ε

denote the smallest integer that occupies a different box in T̂ to that it occupies in Tsup.
Example 5.10 can be used as a running example for the following results.

Lemma 5.7. The box containing ε in Tsup is the rightmost box in its thread.

Lemma 5.7 is proved as follows. First, one can show that if πi1 · · ·πir(Tsup) =
si1 · · · sir(Tsup) = T̂, then all of i1, . . . , ir are strictly larger than ε. In particular, πε−1
is never applied, so ε is never moved leftwards by this sequence of operators. Then,
since ε is in a different box in T̂ than it is in Tsup, πε must be applied at least once in the
sequence, and the box containing ε in T̂ is strictly right of the box containing ε in Tsup.

Now we can argue by contradiction. If ε did not occupy the rightmost box in its
thread, then ε− 1 would be in the column immediately right of the column of ε. It can
then be shown that the first time πε is applied, it moves ε at least two columns rightwards
(and thus strictly right of ε− 1). However then ε− 1 is a descent in T̂ but not in Tsup,
contradicting that Des(T̂) ⊆ Des(Tsup).

With Lemma 5.7 established, one can argue from the thread structure and the fact
that Des(T̂) ⊆ Des(Tsup) that ε− 1 must be strictly left of ε in Tsup. In particular, ε is not
in the leftmost column of Tsup. Therefore, we may define x to be the entry left-adjacent
to ε in Tsup. By (R1), we have x < ε.

Lemma 5.8. The entries x, x + 1, . . . ε− 2, ε− 1 all reside strictly left of ε in Tsup. Moreover,
the entries x, x + 1, . . . ε− 2, ε− 1 all reside strictly left of ε in T̂, and the entry left-adjacent to
ε in T̂ is strictly smaller than x.

The first part is proved using Lemma 5.7 and properties of the thread structure of
Tsup, in particular Lemma 5.3. The second part follows from the first part and the fact
that each of x, x + 1, . . . ε− 2, ε− 1 occupy the same box in T̂ as they do in Tsup, and the
fact that the box containing ε in T̂ is strictly right of the box containing ε in Tsup.
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Then, immediately from Lemma 5.8 and the definition of the entry x, we obtain

Proposition 5.9. The operator πxπx+1 . . . πε−2πε−1 satisfies

1. πxπx+1 . . . πε−2πε−1(Tsup) = 0; and

2. πxπx+1 . . . πε−2πε−1(T̂) = sxsx+1 . . . sε−2sε−1(T̂) 6= 0.

Example 5.10. Let α = (6, 4, 5, 2, 3). Below are Tsup and a T̂ ∈ E0 with Des(T̂) =
{1, 3, 6, 10, 15, 16, 18} = Des(Tsup).

Tsup = 15 16 18
10 14
6 9 13 17 20
3 5 8 12
1 2 4 7 11 19

T̂ = 15 16 20
10 14
6 9 13 18 19
3 5 8 12
1 2 4 7 11 17

In this example we have T̂ = π19π17π18(Tsup). We have ε = 17 and x = 13. We
observe that π13π14π15π16(Tsup) = 0 while π13π14π15π16(T̂) = s13s14s15s16(T̂) 6= 0.

Recall the partial ordering on SYRT(α) given in Lemma 3.3. Restrict this ordering
to E0, and define the rank of T ∈ E0 to be the smallest number of operators πi needed
for a sequence that sends Tsup to T. This is well-defined since in a minimal sequence
of operators all πi act as si, and all reduced words in the symmetric group Sn have the
same length. In this way, the poset (E0,�) is graded.

Theorem 5.1 can now be proved by contradiction. Suppose some T̂ 6= Tsup appears
in f (Tsup) with nonzero coefficient. We may assume T̂ has maximal rank among such
SYRTs. By Lemma 5.5 we have Des(T̂) ⊆ Des(Tsup). Let T′ = πxπx+1 . . . πε−2πε−1(T̂) =
sxsx+1 . . . sε−2sε−1(T̂) 6= 0, by Proposition 5.9. The maximality of the rank of T̂ ensures
that the coefficient of T′ in

πxπx+1 . . . πε−2πε−1( f (Tsup)) = ∑
T∈E0

aTπxπx+1 . . . πε−2πε−1(T)

is exactly aT̂. However,

πxπx+1 . . . πε−2πε−1( f (Tsup)) = f (πxπx+1 . . . πε−2πε−1(Tsup)) = f (0) = 0.

This implies aT̂ = 0, which is the desired contradiction.
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