Inset games and strategies

Kento NAKADA*1
${ }^{1}$ Okayama University, Graduate School of Education, Master Program, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi, 700-8530, JAPAN.

Abstract

This paper proposes a new class of combinatorial 2-player games with calculatable winning strategy. Our games are obtained as patchwork of the Sato-Welter games. This paper gives the explicit formula of the Sprague-Grundy functions of the games.

Keywords: d-complete poset, inset, combinatorial games.

1 Introduction

Since the beginning of combinatorial game theory, i.e. the 1930's [7][3], winning strategies have been studied. In this paper, we focus on impartial games [2], which are a sort of 2-player games with perfect information. Winning strategies of impartial games are analyzed by the Sprague-Grundy value. Since the Sprague-Grundy value is recursively defined, it is very difficult to calculate the Sprague-Grundy value for most games. Therefore, finding large classes for which it is possible to calculate the Sprague-Grundy value is a very important issue. Typical examples of games possible to calculate the Sprague-Grundy value by "good" algorithm are:

- Nim. See [1][2] for details.
- Sato-Welter game. This game is introduced by M. Sato [6] and C. P. Welter [8] independently. See section 3 for definition and properties.
- Turning turtles. See section 4 for definition and properties. See [1] for further details.

In [4], N. Kawanaka generalize these examples to d-complete posets, which are introduced by R. A. Proctor [5]. In his setting,

- Sato-Welter game is a game on a shape (a Young diagram).
- Turning turtles is a game on a shifted shape (a shifted Young diagram).

[^0]He has given a formula which calculates the Sprague-Grudy function over his games. Unfortunately, his formula does not give a formula for individual d-complete posets.

In this paper, we focus on the class of insets, which is one of the classes of d-complete posets. We define a game over insets - which we call the inset games - and a closed formula for their Sprague-Grundy function. Our games are costructed as patchworks of the Sato-Welter games.

This paper is organized as follows: Section 2 explains fundamental notions and definitions of games and the Sprague-Grundy values. Section 3 explains precise definition of the Sato-Welter games. Section 4 explains precise definition of the turning turtles. Section 5 explains our main results.

2 Preliminaries

2.1 Games

We begin by defining the games we concern with.
Definition 2.1. Let P be a set, and \rightarrow a binary relation over P. For an element $p \in P$, we put $\alpha(p):=\{q \in P \mid p \rightarrow q\}$. The pair $(P ; \rightarrow)$ is called a game if it satisfies:

1. For any $p \in P$, the set $\alpha(p)$ is finite;
2. There exists no infinite sequence

$$
p_{0}, p_{1}, p_{2}, p_{3}, \ldots \quad p_{i} \in P
$$

with

$$
p_{i} \rightarrow p_{i+1}, \quad i=0,1,2,3, \ldots
$$

We call an element p of P a position, $\alpha(p)$ the option set at the position p. If $\alpha(p)=\varnothing$, then we say p is an ending position. Any position $p=p_{0} \in P$ can be interpreted as an opening position of a 2-player game (in the usual sense of the word); two players alternatively choose positions:

$$
\begin{aligned}
& p_{0} \rightarrow p_{1} \quad \text { (the first player's move), } \\
& p_{1} \rightarrow p_{2} \quad \text { (the second player's move), } \\
& p_{2} \rightarrow p_{3} \quad \text { (the first player's move), }
\end{aligned}
$$

until one of them reaches an ending position p_{n}. If n is odd (resp. even), we say the first (resp. second) player wins. If $(P ; \rightarrow)$ and $(Q ; \rightarrow)$ are isomorphic to each other as digraphs, then we say $(P ; \rightarrow)$ is game-isomorphic to $(Q ; \rightarrow)$.

Example 2.2 (1-heap nim). Denote by \mathbb{N} the set of nonnegative integers. Then, the pair $(\mathbb{N} ;>)$ is a game, where $>$ denotes the ordinary order relation 'greater than'. This game is called the 1-heap nim.

According to [7][3], we define:
Definition 2.3. For a game $(P ; \rightarrow)$, let $\mathrm{SG}=\mathrm{SG}_{P}: P \rightarrow \mathbb{N}$ be the map defined by

$$
\mathrm{SG}(p)=\min (\mathbb{N} \backslash\{\mathrm{SG}(q) \in \mathbb{N} \mid p \rightarrow q\}), \quad(p \in P)
$$

The map SG is called the Sprague-Grundy function of P. The value $\operatorname{SG}(p)$ is called the Sprague-Grundy number (or Sprague-Grundy value) of p.

Example 2.4 (1-heap nim). The Sprague-Grundy function SG of the 1-heap nim $(\mathbb{N} ;>)$ is the identity map:

$$
\mathrm{SG}(x)=x \quad(x \in \mathbb{N})
$$

Propsition $2.5([7,3])$. Let $(P ; \rightarrow)$ be a game and $p \in P$. Then we have:

1. If $\mathrm{SG}_{p}(p)=0$, then, for any $q \in \alpha(p)$, we have $\mathrm{SG}_{p}(q)>0$.
2. If $\mathrm{SG}_{p}(p)>0$, then, for some $q \in \alpha(p)$, we have $\mathrm{SG}_{P}(q)=0$.
3. If p is an ending position, then we have $\mathrm{SG}_{P}(p)=0$.

Remark 2.6. For a position $p \in P$, the following two conditions are equivalent:

1. the position p has a winning strategy.
2. $\mathrm{SG}_{P}(p)>0$.

Indeed, if the first player is at the position p with $\mathrm{SG}_{p}(p)>0$. Then there exists a next position $q \in \alpha(p)$ with $\operatorname{SG}_{p}(q)=0$. The strategic move $p \rightarrow q$ leads the first player to win, because any next position $r \in \alpha(q)$ chosen by the second player must be satisfying $\mathrm{SG}_{P}(r)>0$.

2.2 Nim-Addition

Denote by \mathbb{Z} the set of integers. We shall write the binary expression of an integer $a \in \mathbb{Z}$ as

$$
a=\left[a_{i}\right]=\left[a_{i}\right]_{i \in \mathbb{N}}=\left[\ldots, a_{i}, \ldots, a_{3}, a_{2}, a_{1}, a_{0}\right]
$$

For example, we have:

$$
\begin{aligned}
11 & =1+2+0+2^{3}+0+0+\cdots \\
-1 & =1+2+2^{2}+2^{3}+2^{4}+2^{5}+\cdots=[\cdots 001011] \\
-12 & =0+0+2^{2}+0+2^{4}+2^{5}+\cdots=[\cdots 11111] \\
& =[\cdots 10100] .
\end{aligned}
$$

We recall the definition of Nim-addition \oplus in \mathbb{Z}. For $a=\left[a_{i}\right], b=\left[b_{i}\right]$, and $c=\left[c_{i}\right]$ in \mathbb{Z}, we write

$$
a \oplus b=c
$$

if

$$
a_{i}+b_{i} \equiv c_{i} \quad(\bmod 2), \quad i \in \mathbb{N}
$$

For example, we have

$$
3 \oplus 5=[\cdots 00011] \oplus[\cdots 00101]=[\cdots 00110]=6
$$

The system $(\mathbb{Z} ; \oplus)$ forms an abelian group with

$$
a \oplus a=0, \quad \text { for any } a \in \mathbb{Z}
$$

Note that \mathbb{N} is an index 2 subgroup of $(\mathbb{Z} ; \oplus)$. We have

$$
(-1) \oplus a=-a-1
$$

Here, the symbol - denotes the inverse on the usual addition (the binary operation +).
For $a \in \mathbb{Z}$, we put

$$
\mathrm{N}(a)=a \oplus(a-1)
$$

We also put, for $a, b \in \mathbb{Z}$,

$$
(a \mid b)=\mathrm{N}(a \oplus b)
$$

We have the following ([2, ch.13], [6], [8]).
Lemma 2.7. Let $a, b, c \in \mathbb{Z}$. We have:

1. If a is a multiple of $2^{t}(t \in \mathbb{N})$, and is not a multiple of 2^{t+1}, then

$$
\mathrm{N}(a)=[\cdots 0 \overbrace{11 \cdots 1}^{t+1}]=2^{t+1}-1 .
$$

2. $\mathrm{N}(a)$ is negative if and only if $a=0$.
3. $(a \mid b)=\mathrm{N}(a-b)$.
4. $(a \mid b)=(a+c \mid b+c)=(a \oplus c \mid b \oplus c)$.
5. If $c>0$ (resp. $c<0$), then we have

$$
a \oplus \sum_{h=0}^{c-1}(a \mid h)=a-c \quad\left(\text { resp. } a \oplus \sum_{h=c}^{-1}(a \mid h)=a-c\right)
$$

where the symbol \sum^{\oplus} denotes Nim-summation.

2.3 Animating Functions

Following Conway [2], we call a function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ of the form

$$
f(x)=\cdots((((x \oplus a)+b) \oplus c)+d) \oplus \cdots
$$

an animating function. Clearly an animating function is a bijective map from \mathbb{Z} to \mathbb{Z}, and its inverse is animating again. As is shown in [2], a function f is animating if and only if it can be written as

$$
\begin{equation*}
f(x)=x \oplus \sum_{i=1}^{r}\left(x \mid \alpha_{i}\right) \oplus \beta \tag{2.1}
\end{equation*}
$$

with some $\alpha_{i}, \beta \in \mathbb{Z}$. Moreover, the expression (2.1) is unique as long as $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ are distinct. We denote by $\operatorname{Anim}(\mathbb{Z})$ the set of animating functions.

Some of the fundamental properties of animating functions are listed in the following:
Lemma 2.8 (Sato [6] and Conway [2]). Let $x, y \in \mathbb{Z}$.

1. If f and g are elements of $\operatorname{Anim}(\mathbb{Z})$, then the composition $f \circ g$ and the inverse f^{-1} are elements of $\operatorname{Anim}(\mathbb{Z})$. (Hence ($\operatorname{Anim}(\mathbb{Z}), \circ)$ forms a group.)
2. If f is an element of $\operatorname{Anim}(\mathbb{Z})$, then we have

$$
(f(x) \mid f(y))=(x \mid y), \quad(x, y \in \mathbb{Z})
$$

3. If $y=f(x)$ with $f(x)$ given by (2.1), then the inverse $x=f^{-1}(y)$ is given by

$$
f^{-1}(y)=y \oplus \sum_{i=1}^{r}\left(y \mid f\left(\alpha_{i}\right)\right) \oplus \beta
$$

Definition 2.9. A multivariate function $E: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$ is said to be animating if

1. $E_{i}\left(x_{i}\right):=E\left(x_{1}, \cdots, x_{i}, \cdots, x_{n}\right)$ is animating for each x_{i},
2. E is symmetric in x_{1}, \cdots, x_{n}.

The set of animating functions over \mathbb{Z}^{n} is denoted by $\operatorname{Anim}\left(\mathbb{Z}^{n}\right)$.

3 The Sato-Welter Game

Definition 3.1. Fix an integer $n \geq 1$. Put

$$
P_{n}:=\{\mathbf{x} \subseteq \mathbb{N}| | \mathbf{x} \mid=n\} .
$$

For $\mathbf{x}, \mathbf{y} \in P_{n}$, we denote $\mathbf{x} \rightarrow_{\mathrm{A}} \mathbf{y}$ if the following two coditions hold:

- $|\mathbf{x} \cap \mathbf{y}|=n-1$;
- if $x \in \mathbf{x} \backslash \mathbf{y}$ and $y \in \mathbf{y} \backslash \mathbf{x}$, then $y<x$.

We call the game $\left(P_{n} ; \rightarrow_{\mathrm{A}}\right)$ the Sato-Welter game with n balls.
The Sato-Welter game with n balls can be visually interpreted as follows: n balls are lined up. At each move, a player moves one ball " \bigcirc " leftwards to any empty box. The player to make the last move wins.
Example 3.2. For a position $\mathbf{x}=\{3,5\}=\square \square \square|\square| \square \square \cdot P_{2}$ of the Sato-Welter game of 2 balls, the elements of the option set $\alpha(\mathbf{x})$ are:

$$
\begin{aligned}
& \{3,4\}=\square \square \square O O \square \square \square . ., \\
& \{3,2\}=\square \square O \mid \square \square \square \square \cdot . ., \\
& \{3,1\}=\square \mathrm{O} \square \mathrm{O} \square \square \square \square \cdot,
\end{aligned}
$$

Remark 3.3. By regarding a position $\mathbf{x} \in P_{n}$ of the Sato-Welter game as a beta number, we can also regard \mathbf{x} as Young diagrams. For exmaple, a position $\mathbf{x}=\{3,5\} \in P_{2}$ is regarded as a Young diagram with partition $(4,3)$.
Remark 3.4. The Sato-Welter game P_{1} of 1 ball is game-isomorphic to the 1-heap nim.
For $\mathbf{x}=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\} \in P_{n}$, we put

$$
\varphi_{n}(\mathbf{x}):=\sum_{i}^{\oplus} x_{i} \oplus \sum_{i<j}^{\oplus}\left(x_{i} \mid x_{j}\right)
$$

For $\mathbf{x} \in P_{n}$, we have $\varphi_{n}(\mathbf{x}) \geq 0$. Since φ is a symmetric function in x_{1}, \cdots, x_{n}, we denote $\varphi_{n}(\mathbf{x})=\varphi_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$.
Theorem 3.5 (Sato [6], and Welter [8]). The Sprague-Grundy function of the Sato-Welter game $\left(P_{n} ; \rightarrow_{\mathrm{A}}\right)$ is given by

$$
\varphi_{n}(\mathbf{x}), \quad \mathbf{x} \in P_{n}
$$

Example 3.6. For $\mathbf{x}=\{3,5\} \in P_{2}$, the Sprague-Grundy value $\varphi_{2}(\mathbf{x})$ is

$$
\varphi_{2}(\mathbf{x})=3 \oplus 5 \oplus(3 \mid 5)=5 \neq 0
$$

Hence, the position \mathbf{x} has a winning strategy. The (unique) winning move is:

$$
\{3,5\} \rightarrow_{\mathrm{A}}\{3,2\} .
$$

4 The Turning turtles

Definition 4.1. Put

$$
\begin{equation*}
P_{\text {odd }}:=\bigcup_{n: \text { odd }} P_{n}=\bigcup_{n: o d d}\{\mathbf{x} \subseteq \mathbb{N}| | \mathbf{x} \mid=n\} . \tag{4.1}
\end{equation*}
$$

For $\mathbf{x} \in P_{n}$ and $\mathbf{y} \in P_{m}$, we denote $\mathbf{x} \rightarrow_{\mathrm{D}} \mathbf{y}$ if

- $n=m$ and $\mathbf{x} \rightarrow_{\mathrm{A}} \mathbf{y}$; or
- $n=m+2$ and $\mathbf{x} \supset \mathbf{y}$.

We call the game $\left(P_{\text {odd }} ; \rightarrow_{\mathrm{D}}\right)$ the turning turtles.
The turning turtles can be visually interpreted as follows: Several turtles are lined up. An odd number of them are awake and the others sleeping. At each move, a player chooses two turtles with both hands and turns them over. The player is allowed to turn " \bigcirc "(awake turtle) into "empty"(sleeping turtle) and also "empty" into " \bigcirc ". However, the turtle that he grabs with his right hand must be an awake turtle. The player to make the last move wins.

Example 4.2. For a position $\mathbf{x}=\{2,3,5\}=\square \square \bigcirc \bigcirc \square \square \square . . \in P_{\text {odd }}$ of the turning turtles, the elements of the option set $\alpha(\mathbf{x})$ are:

$$
\begin{aligned}
& \{2,3,4\}=\square \square O O Q \square \square \cdots, \quad\{1,3,5\}=\square|\square \square| O \square \square \cdot \cdot, \\
& \{2,3,1\}=\square \text { OOOD } \square \square \square \cdot ., \quad\{0,3,5\}=\mathrm{O} \square \square \mathrm{O} \mid \mathrm{O} \square \square \cdot \cdot, \\
& \{2,3,0\}=O \square O \mid O \square \square \square \cdot ., \quad\{5\}=\square \square \square \square \square O \square \square \cdot ., \\
& \{2,1,5\}=\square \mathrm{OOQ} \mathrm{\square O} \mathrm{\square} \mathrm{\square} \cdot \cdot, \quad\{3\}=\square \square \square \mathrm{O} \square \square \square \cdot \cdot, \\
& \{2,0,5\}=O \square O \square \square O \square \square \cdot ., \\
& \{2\}=\square \square O \square \square \square \square \square \cdot .
\end{aligned}
$$

Remark 4.3. By regarding a position $\mathbf{x} \in P_{\text {odd }}$ of the turning tutles as a strict partition, we can also regard \mathbf{x} as shifted Young diagrams. For exmaple, a position $\mathbf{x}=\{2,3,5\} \in P_{\text {odd }}$ is regarded as a shifted Young diagram with strict partition (5,3,2).

For $\mathbf{x}=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\} \in P_{\text {odd }}$, we put

$$
\psi(\mathbf{x}):=x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}
$$

For $\mathbf{x} \in P_{\text {odd }}$, we have $\psi(\mathbf{x}) \geq 0$. See [1] for further details.
Theorem 4.4. The Sprague-Grundy function of the turning turltes $\left(P_{\text {odd }} ; \rightarrow_{\mathrm{D}}\right)$ is given by

$$
\psi(\mathbf{x}), \quad \mathbf{x} \in P_{\text {odd }} .
$$

Example 4.5. For $\mathbf{x}=\{2,3,5\} \in P_{\text {odd, }}$, the Sprague-Grundy value $\psi(\mathbf{x})$ is

$$
\psi(\mathbf{x})=2 \oplus 3 \oplus 5=4 \neq 0
$$

Hence, the position \mathbf{x} has a winning strategy. The (unique) winning move is:

$$
\{2,3,5\} \rightarrow_{D}\{2,3,1\}
$$

5 Main result

The definition 4.1 means the position set $P_{\text {odd }}$ of turning turtles is a "patchwork" of position sets P_{n} of Sato-Welter games. This is our motivation of this study.

Definition 5.1. Fix an integer $N \geq 2$. Put

$$
P_{N, 1}:=P_{N} \cup P_{1} .
$$

Let $n, m \in\{1, N\}$. For $\mathbf{x} \in P_{n}$ and $\mathbf{y} \in P_{m}$, we denote $\mathbf{x} \rightarrow \mathbf{y}$ if

- $n=m$ and $\mathbf{x} \rightarrow \mathrm{A} \mathbf{y}$; or
- $n=N, m=1$ and $\mathbf{x} \supset \mathbf{y}$.

We call the game $\left(P_{N, 1} ; \rightarrow\right)$ the inset game.
Remark 5.2. If $N=2,3$, then this game is not new (see subsection 5.1,5.2). For $N \geq 4$, this game is new.

Example 5.3. For a position

$$
\mathbf{x}=\{1,2,4,5\}=\square \bigcirc \bigcirc \square O \square \square \cdot \cdot \in P_{4,1}
$$

of our game with $N=4$, the elements of option set $\alpha(\mathbf{x})$ are:

$$
\begin{aligned}
& \{1,2,4,0\}=0|O| O|\square| \cdots, \quad\{5\}=\square \square \square \square \square|\square| \square \cdot \cdot, \\
& \{1,2,3,5\}=\square O O \mid \square \square \square \cdots, \\
& \{4\}=\square \square \square|O| \square \square \cdot \cdot, \\
& \{1,2,0,5\}=0 \mid O \square \square O \square \square \cdot \cdot, \\
& \{2\}=\square \square O \square \square \square \square \square \cdot \cdot, \\
& \{1,0,4,5\}=0|0| \square| | \mid \square \cdot \cdot, \\
& \{1\}=\square O \square \square \square \square \square \square \cdot \cdot .
\end{aligned}
$$

Remark 5.4. With a position $\mathbf{x}=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\} \in P_{N, 1}$, the inset

can be associated, if $n=N$ and $x_{1}<x_{2}<\cdots<x_{N}$. If, on the other hand, $n=1$, then we attach the x_{1}-chain.

For $\mathbf{x}=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\} \in P_{N, 1}$, we put

$$
\varphi_{N, 1}(\mathbf{x}):= \begin{cases}\sum_{i}^{\oplus}\left(-1 \mid \varphi_{N-1}\left(\mathbf{x}^{(i)}\right)\right) \oplus \varphi_{N}(\mathbf{x}) & n=N \\ x_{1} & n=1\end{cases}
$$

where $\mathbf{x}^{(i)}=\mathbf{x} \backslash\left\{x_{i}\right\}$. For $\mathbf{x} \in P_{N, 1}$, we have

$$
\begin{equation*}
\varphi_{N, 1}(\mathbf{x}) \geq 0 \tag{5.1}
\end{equation*}
$$

Now we can state the main result:
Theorem 5.5. The Sprague-Grundy function of the inset game $\left(P_{N, 1} ; \rightarrow\right)$ is given by

$$
\varphi_{N, 1}(\mathbf{x}), \quad \mathbf{x} \in P_{N, 1}
$$

A sketch of proof is given in the subsection 5.3.
Example 5.6. For $\mathbf{x}=\{1,2,4,5\} \in P_{4,1}$, the Sprague-Grundy value $\varphi_{4,1}(\mathbf{x})$ is

$$
\begin{aligned}
\varphi_{4,1}(\mathbf{x})= & \left(-1 \mid \varphi_{3}(2,4,5)\right) \oplus\left(-1 \mid \varphi_{3}(1,4,5)\right) \\
& \oplus\left(-1 \mid \varphi_{3}(1,2,5)\right) \oplus\left(-1 \mid \varphi_{3}(1,2,4)\right) \oplus \varphi_{4}(1,2,4,5) \\
= & (-1 \mid 0) \oplus(-1 \mid 7) \oplus(-1 \mid 1) \oplus(-1 \mid 4) \oplus 6=10
\end{aligned}
$$

Hence, the position \mathbf{x} has a winning strategy. The (unique) winning move is:

$$
\{1,2,4,5\} \rightarrow\{0,1,4,5\} .
$$

5.1 Case $N=2$

Define an injection $f: P_{2,1} \rightarrow P_{2}$ by

$$
f\left(\left\{x_{1}, x_{2}\right\}\right)=\left\{x_{1}+1, x_{2}+1\right\}, \quad f\left(\left\{x_{1}\right\}\right)=\left\{0, x_{1}+1\right\}
$$

It is straightforward to see the case $N=2$:
Propsition 5.7. The map f is a game isomorphism from $P_{2,1}$ to the image $f\left(P_{2,1}\right)$. In particular, for $\mathbf{x} \in P_{2,1}$, we have $\varphi_{2,1}(\mathbf{x})=\varphi_{2}(f(\mathbf{x}))$.
Example 5.8. For a position

$$
x=\{2,4\}=\square \square O \square O \square \square \square \cdot \cdot \in P_{2,1}
$$

of our game with $N=2$, the elements of option set $\alpha(\mathbf{x})$ are:

These positions correspond to the positions in Example 3.2.

5.2 Case $N=3$

Define an injection $f: P_{3,1} \rightarrow P_{\text {odd }}$ by

$$
f\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right)=\left\{x_{1}, x_{2}, x_{3}\right\}, \quad f\left(\left\{x_{1}\right\}\right)=\left\{x_{1}\right\}
$$

It is straightforward to see the case $N=3$:
Propsition 5.9. The map f is a game isomorphism from $P_{3,1}$ to the image $f\left(P_{3,1}\right)$. In particular, for $\mathbf{x} \in P_{3,1}$, we have $\varphi_{3,1}(\mathbf{x})=\psi(f(\mathbf{x}))$.

5.3 Sketch of proof of main theorem

We need the following two lemmata:
Lemma 5.10. Let $\mathbf{x} \in P_{N, 1}$ and $h \in \mathbb{N}$. Then we have

1. if $0 \leq h<\varphi_{N, 1}(\mathbf{x})$, then the number of $\mathbf{y} \in \alpha(\mathbf{x})$ with $\varphi_{N, 1}(\mathbf{y})=h$ is odd. In particular, there exists such a next position \mathbf{y} of \mathbf{x} with $\varphi_{N, 1}(\mathbf{y})=h$.
2. if $h \geq \varphi_{N, 1}(\mathbf{x})$, then the number of $\mathbf{y} \in \alpha(\mathbf{x})$ with $\varphi_{N, 1}(\mathbf{y})=h$ is even (it may be zero).

We omit the proof of Lemma 5.10.
Lemma 5.11. Let $\mathbf{x} \in P_{N, 1}$ and $\mathbf{y} \in \alpha(\mathbf{x})$. Then we have $\varphi_{N, 1}(\mathbf{x}) \neq \varphi_{N, 1}(\mathbf{y})$.
Proof. Let $\mathbf{x}=\left\{x_{1}, \cdots, x_{n}\right\}$ and $\mathbf{y}=\left\{y_{1}, \cdots, y_{m}\right\}$.
Case $\mathbf{x} \in P_{N}$ and $\mathbf{y} \in P_{N}:$ We may assume that $x_{1}>y_{1}$ and $x_{i}=y_{i}(2 \leq i \leq N)$. We have

$$
\begin{aligned}
& \varphi_{N, 1}(\mathbf{x}) \oplus \varphi_{N, 1}(\mathbf{y}) \\
& =\sum_{i=2}^{N} \oplus\binom{\left(-1 \mid \varphi_{N-1}\left(\left\{x_{1}, x_{2}, \cdots, x_{N}\right\} \backslash\left\{x_{i}\right\}\right)\right)}{\oplus\left(-1 \mid \varphi_{N-1}\left(\left\{y_{1}, x_{2}, \cdots, x_{N}\right\} \backslash\left\{x_{i}\right\}\right)\right)} \oplus x_{1} \oplus y_{1} \oplus \sum_{i=2}^{N}\left(\left(x_{1} \mid x_{i}\right) \oplus\left(y_{1} \mid x_{i}\right)\right) .
\end{aligned}
$$

Suppose $\varphi_{N, 1}(\mathbf{x})=\varphi_{N, 1}(\mathbf{y})$. Then we have

$$
\begin{aligned}
& \sum_{i=2}^{N}\left(-1 \mid \varphi_{N-1}\left(\left\{x_{1}, x_{2}, \cdots, x_{N}\right\} \backslash\left\{x_{i}\right\}\right)\right) \oplus x_{1} \oplus \sum_{i=2}^{N}\left(x_{1} \mid x_{i}\right) \\
& =\sum_{i=2}^{N}\left(-1 \mid \varphi_{N-1}\left(\left\{y_{1}, x_{2}, \cdots, x_{N}\right\} \backslash\left\{x_{i}\right\}\right)\right) \oplus y_{1} \oplus \sum_{i=2}^{N}\left(y_{1} \mid x_{i}\right) .
\end{aligned}
$$

Put

$$
g_{i}(x):=\varphi_{N-1}\left(\left\{x, x_{2}, \cdots, x_{N}\right\} \backslash\left\{x_{i}\right\}\right), \quad(2 \leq i \leq N)
$$

Then g_{i} is an animating function. Put

$$
f(x):=\sum_{i=2}^{N}\left(-1 \mid g_{i}(x)\right) \oplus x \oplus \sum_{i=2}^{N}\left(x \mid x_{i}\right) .
$$

Then f is an animating function and $f\left(x_{1}\right)=f\left(y_{1}\right)$. Since f is bijective, we have $x_{1}=y_{1}$. This contradicts our assumption. Hence, we have $\varphi_{N, 1}(\mathbf{x}) \neq \varphi_{N, 1}(\mathbf{y})$.

Case $\mathbf{x} \in P_{N}$ and $\mathbf{y} \in P_{1}$: Put

$$
f(x):=x \oplus \sum_{j=1}^{N}\left(x \mid x_{j}\right) \oplus \varphi_{N}(\mathbf{x}), \quad(x \in \mathbb{Z})
$$

Then f is animating and we have

$$
\begin{equation*}
f^{-1}(y)=y \oplus \sum_{i=1}^{N}\left(y \mid f\left(x_{i}\right)\right) \oplus \varphi_{N}(\mathbf{x}), \quad(y \in \mathbb{Z}) \tag{5.2}
\end{equation*}
$$

by Lemma 2.8 (3). Since

$$
\begin{aligned}
\left(-1 \mid \varphi_{N-1}\left(\mathbf{x}^{(i)}\right)\right) & =\left(\left(x_{i} \mid x_{i}\right) \mid x_{i} \oplus \sum_{j \neq i}^{\oplus}\left(x_{i} \mid x_{j}\right) \oplus \varphi_{N}(\mathbf{x})\right) \\
& =\left(0 \mid x_{i} \oplus \sum_{j=1}^{N}\left(x_{i} \mid x_{j}\right) \oplus \varphi_{N}(\mathbf{x})\right) \\
& =\left(0 \mid f\left(x_{i}\right)\right)
\end{aligned}
$$

we have

$$
\begin{equation*}
\varphi_{N, 1}(\mathbf{x})=0 \oplus \sum_{i=1}^{N}\left(0 \mid f\left(x_{i}\right)\right) \oplus \varphi_{N}(\mathbf{x}) \tag{5.3}
\end{equation*}
$$

Hence, by (5.2) and (5.3), we have $\varphi_{N, 1}(\mathbf{x})=f^{-1}(0)$. Therefore,

$$
0=f\left(\varphi_{N, 1}(\mathbf{x})\right)=\varphi_{N, 1}(\mathbf{x}) \oplus \sum_{i=1}^{N}\left(\varphi_{N, 1}(\mathbf{x}) \mid x_{i}\right) \oplus \varphi_{N}(\mathbf{x})
$$

Since the first term (by (5.1)) and the last terms are nonnegative in the right hand side and x_{i} 's are distinct, there exists no i such that $\varphi_{N, 1}(\mathbf{x})=x_{i}$.

Case $\mathbf{x} \in P_{1}$ and $\mathbf{y} \in P_{1}$: Then we have

$$
\varphi_{N, 1}(\mathbf{x})=x_{1}>y_{1}=\varphi_{N, 1}(\mathbf{y})
$$

Hence, we have $\varphi_{N, 1}(\mathbf{x}) \neq \varphi_{N, 1}(\mathbf{y})$.
By Lemma 5.10, Lemma 5.11 and induction, we have

$$
\mathrm{SG}_{P_{N, 1}}(\mathbf{x})=\varphi_{N, 1}(\mathbf{x}), \quad\left(\mathbf{x} \in P_{N, 1}\right)
$$

This proves Theorem 5.5.

Acknowledgements

The author would like to thank Dr. Hagiwara for his comments and suggestions.

References

[1] E. Berlekamp, J. Conway, and R. Guy. Winning Ways for Your Mathematical Play. Academic Press, 1982.
[2] J. Conway. On Numbers and Games. Academic Press, 1976.
[3] P. M. Grundy. "Mathematics and games". Eureka 2 (1939), pp. 6-8.
[4] N. Kawanaka. Games and algorithms with hook structure (in Japanese). Vol. 63. 4. Suugaku, The Mathematical Society of Japan, 2011, pp. 421-441.
[5] R. A. Proctor. "Dynkin diagram classification of λ-minuscule Bruhat lattices and of d complete posets". J. Algebraic Combin. 6 (1999), pp. 61-294.
[6] M. Sato. On Maya game, Lecture notes taken by H. Enomoto (in Japanese). Vol. 15. 1. Special Issue "Mikio Sato". Suugaku-no-Ayumi, 1970, pp. 73-84.
[7] R. P. Sprague. "Über mathematische Kampfspiele". Tohoku Mathematical Journal 41 (1935-36), pp. 438-444.
[8] C. P. Welter. "The theory of a class of games on a sequence of squares, in terms of advancing operation in a special group". Indag. Math. 16 (1954), pp. 194-200.

[^0]: *nakada@okayama-u.ac.jp. This paper is partially supported by KAKENHI 18H01435.

