Séminaire Lotharingien de Combinatoire **85B** (2021) Article #73, 12 pp. Proceedings of the 33rd Conference on Formal Power Series and Algebraic Combinatorics (Ramat Gan)

Inset games and strategies

Kento NAKADA*1

¹ Okayama University, Graduate School of Education, Master Program, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi, 700-8530, JAPAN.

Abstract. This paper proposes a new class of combinatorial 2-player games with calculatable winning strategy. Our games are obtained as patchwork of the Sato-Welter games. This paper gives the explicit formula of the Sprague-Grundy functions of the games.

Keywords: d-complete poset, inset, combinatorial games.

1 Introduction

Since the beginning of combinatorial game theory, i.e. the 1930's [7][3], winning strategies have been studied. In this paper, we focus on impartial games [2], which are a sort of 2-player games with perfect information. Winning strategies of impartial games are analyzed by the Sprague-Grundy value. Since the Sprague-Grundy value is recursively defined, it is very difficult to calculate the Sprague-Grundy value for most games. Therefore, finding large classes for which it is possible to calculate the Sprague-Grundy value is a very important issue. Typical examples of games possible to calculate the Sprague-Grundy value by "good" algorithm are:

- Nim. See [1][2] for details.
- Sato-Welter game. This game is introduced by M. Sato [6] and C. P. Welter [8] independently. See section 3 for definition and properties.
- Turning turtles. See section 4 for definition and properties. See [1] for further details.

In [4], N. Kawanaka generalize these examples to d-complete posets, which are introduced by R. A. Proctor [5]. In his setting,

- Sato-Welter game is a game on a shape (a Young diagram).
- Turning turtles is a game on a shifted shape (a shifted Young diagram).

^{*}nakada@okayama-u.ac.jp. This paper is partially supported by KAKENHI 18H01435.

He has given a formula which calculates the Sprague-Grudy function over his games. Unfortunately, his formula does not give a formula for individual d-complete posets.

In this paper, we focus on the class of insets, which is one of the classes of d-complete posets. We define a game over insets — which we call the *inset games* — and a closed formula for their Sprague-Grundy function. Our games are costructed as patchworks of the Sato-Welter games.

This paper is organized as follows: Section 2 explains fundamental notions and definitions of games and the Sprague-Grundy values. Section 3 explains precise definition of the Sato-Welter games. Section 4 explains precise definition of the turning turtles. Section 5 explains our main results.

2 Preliminaries

2.1 Games

We begin by defining the games we concern with.

Definition 2.1. Let P be a set, and \rightarrow a binary relation over P. For an element $p \in P$, we put $\alpha(p) := \{q \in P \mid p \rightarrow q\}$. The pair $(P; \rightarrow)$ is called a game if it satisfies:

- 1. For any $p \in P$, the set $\alpha(p)$ is finite;
- 2. There exists no infinite sequence

$$p_0, p_1, p_2, p_3, \ldots \quad p_i \in P$$

with

$$p_i \to p_{i+1}, \quad i = 0, 1, 2, 3, \dots$$

We call an element *p* of *P* a *position*, $\alpha(p)$ the *option set* at the position *p*. If $\alpha(p) = \emptyset$, then we say *p* is an *ending position*. Any position $p = p_0 \in P$ can be interpreted as an opening position of a 2-player game (in the usual sense of the word); two players alternatively choose positions:

 $p_0 \rightarrow p_1$ (the first player's move), $p_1 \rightarrow p_2$ (the second player's move), $p_2 \rightarrow p_3$ (the first player's move),

until one of them reaches an ending position p_n . If n is odd (resp. even), we say the first (resp. second) player *wins*. If $(P; \rightarrow)$ and $(Q; \rightarrow)$ are isomorphic to each other as digraphs, then we say $(P; \rightarrow)$ is game-isomorphic to $(Q; \rightarrow)$.

Example 2.2 (1-heap nim). Denote by \mathbb{N} the set of nonnegative integers. Then, the pair (\mathbb{N} ; >) is a game, where > denotes the ordinary order relation 'greater than'. This game is called the 1-heap nim.

According to [7][3], we define:

Definition 2.3. For a game $(P; \rightarrow)$, let $SG = SG_P : P \rightarrow \mathbb{N}$ be the map defined by

$$SG(p) = \min(\mathbb{N} \setminus \{SG(q) \in \mathbb{N} \mid p \to q\}), \quad (p \in P)$$

The map SG is called the Sprague-Grundy function of *P*. The value SG(p) is called the Sprague-Grundy number (or Sprague-Grundy value) of *p*.

Example 2.4 (1-heap nim). *The Sprague-Grundy function* SG *of the* 1*-heap nim* (\mathbb{N} ; >) *is the identity map:*

$$SG(x) = x \ (x \in \mathbb{N}).$$

Propsition 2.5 ([7, 3]). *Let* $(P; \rightarrow)$ *be a game and* $p \in P$. *Then we have:*

- 1. If $SG_P(p) = 0$, then, for any $q \in \alpha(p)$, we have $SG_P(q) > 0$.
- 2. If $SG_P(p) > 0$, then, for some $q \in \alpha(p)$, we have $SG_P(q) = 0$.
- 3. If p is an ending position, then we have $SG_P(p) = 0$.

Remark 2.6. For a position $p \in P$, the following two conditions are equivalent:

- 1. *the position p has a winning strategy.*
- 2. $SG_P(p) > 0$.

Indeed, if the first player is at the position p with $SG_P(p) > 0$. Then there exists a next position $q \in \alpha(p)$ with $SG_P(q) = 0$. The strategic move $p \to q$ leads the first player to win, because any next position $r \in \alpha(q)$ chosen by the second player must be satisfying $SG_P(r) > 0$.

2.2 Nim-Addition

Denote by \mathbb{Z} the set of integers. We shall write the binary expression of an integer $a \in \mathbb{Z}$ as

$$a = [a_i] = [a_i]_{i \in \mathbb{N}} = [\ldots, a_i, \ldots, a_3, a_2, a_1, a_0].$$

For example, we have:

$$\begin{array}{c} 11 = 1 + 2 + 0 + 2^{3} + 0 + 0 + \dots = [\cdots 001011],\\ -1 = 1 + 2 + 2^{2} + 2^{3} + 2^{4} + 2^{5} + \dots = [\cdots 111111],\\ -12 = 0 + 0 + 2^{2} + 0 + 2^{4} + 2^{5} + \dots = [\cdots 110100]. \end{array}$$

We recall the definition of Nim-addition \oplus in \mathbb{Z} . For $a = [a_i]$, $b = [b_i]$, and $c = [c_i]$ in \mathbb{Z} , we write

$$a \oplus b = c$$

if

$$a_i + b_i \equiv c_i \pmod{2}, \quad i \in \mathbb{N}$$

For example, we have

$$3 \oplus 5 = [\cdots 00011] \oplus [\cdots 00101] = [\cdots 00110] = 6$$

The system (\mathbb{Z} ; \oplus) forms an abelian group with

$$a \oplus a = 0$$
, for any $a \in \mathbb{Z}$.

Note that \mathbb{N} is an index 2 subgroup of $(\mathbb{Z}; \oplus)$. We have

$$(-1)\oplus a=-a-1.$$

Here, the symbol – denotes the inverse on the usual addition (the binary operation +). For $a \in \mathbb{Z}$, we put

$$\mathbf{N}(a) = a \oplus (a-1)$$

We also put, for $a, b \in \mathbb{Z}$,

$$(a \mid b) = \mathbf{N}(a \oplus b).$$

We have the following ([2, ch.13], [6], [8]).

Lemma 2.7. Let $a, b, c \in \mathbb{Z}$. We have:

1. If a is a multiple of 2^t $(t \in \mathbb{N})$, and is not a multiple of 2^{t+1} , then

$$N(a) = [\cdots 0 \overbrace{11 \cdots 1}^{t+1}] = 2^{t+1} - 1.$$

- 2. N(a) is negative if and only if a = 0.
- 3. (a | b) = N(a b).
- 4. $(a | b) = (a + c | b + c) = (a \oplus c | b \oplus c).$
- 5. If c > 0 (resp. c < 0), then we have

$$a \oplus \sum_{h=0}^{c-1} (a \mid h) = a - c \quad \left(\text{resp. } a \oplus \sum_{h=c}^{-1} (a \mid h) = a - c \right),$$

where the symbol \sum^{\oplus} denotes Nim-summation.

2.3 Animating Functions

Following Conway [2], we call a function $f : \mathbb{Z} \to \mathbb{Z}$ of the form

$$f(x) = \cdots ((((x \oplus a) + b) \oplus c) + d) \oplus \cdots$$

an *animating function*. Clearly an animating function is a bijective map from \mathbb{Z} to \mathbb{Z} , and its inverse is animating again. As is shown in [2], a function *f* is animating if and only if it can be written as

$$f(x) = x \oplus \sum_{i=1}^{r} \oplus (x \mid \alpha_i) \oplus \beta$$
(2.1)

with some $\alpha_i, \beta \in \mathbb{Z}$. Moreover, the expression (2.1) is unique as long as $\alpha_1, \alpha_2, ..., \alpha_r$ are distinct. We denote by Anim(\mathbb{Z}) the set of animating functions.

Some of the fundamental properties of animating functions are listed in the following:

Lemma 2.8 (Sato [6] and Conway [2]). Let $x, y \in \mathbb{Z}$.

- 1. If f and g are elements of Anim(\mathbb{Z}), then the composition $f \circ g$ and the inverse f^{-1} are elements of Anim(\mathbb{Z}). (Hence (Anim(\mathbb{Z}), \circ) forms a group.)
- 2. If f is an element of $\operatorname{Anim}(\mathbb{Z})$, then we have

$$(f(x) | f(y)) = (x | y), \quad (x, y \in \mathbb{Z}).$$

3. If y = f(x) with f(x) given by (2.1), then the inverse $x = f^{-1}(y)$ is given by

$$f^{-1}(y) = y \oplus \sum_{i=1}^{r} \bigoplus (y | f(\alpha_i)) \oplus \beta$$

Definition 2.9. A multivariate function $E : \mathbb{Z}^n \to \mathbb{Z}$ is said to be animating if

- 1. $E_i(x_i) := E(x_1, \dots, x_i, \dots, x_n)$ is animating for each x_i ,
- 2. *E* is symmetric in x_1, \dots, x_n .

The set of animating functions over \mathbb{Z}^n is denoted by Anim (\mathbb{Z}^n) .

3 The Sato-Welter Game

Definition 3.1. *Fix an integer* $n \ge 1$ *. Put*

$$P_n := \left\{ \mathbf{x} \subseteq \mathbb{N} \mid |\mathbf{x}| = n \right\}.$$

For $\mathbf{x}, \mathbf{y} \in P_n$, we denote $\mathbf{x} \rightarrow_A \mathbf{y}$ if the following two coditions hold:

• $|\mathbf{x} \cap \mathbf{y}| = n - 1$; • *if* $x \in \mathbf{x} \setminus \mathbf{y}$ *and* $y \in \mathbf{y} \setminus \mathbf{x}$ *, then* y < x.

We call the game $(P_n; \rightarrow_A)$ the Sato-Welter game with *n* balls.

The Sato-Welter game with *n* balls can be visually interpreted as follows: *n* balls are lined up. At each move, a player moves one ball " \bigcirc " leftwards to any empty box. The player to make the last move wins.

$$\{3,4\} = \bigcirc \bigcirc \bigcirc \bigcirc \cdots &; \\
 \{3,2\} = \bigcirc \bigcirc \bigcirc \bigcirc \cdots &; \\
 \{3,1\} = \bigcirc \bigcirc \bigcirc \bigcirc \cdots &; \\
 \{3,0\} = \bigcirc \bigcirc \bigcirc \bigcirc \cdots &; \\
 \{0,5\} = \bigcirc \bigcirc \bigcirc \cdots &; \\
 \{0,5\} = \bigcirc \bigcirc \bigcirc \cdots &; \\
 \{1,5\} = \bigcirc \bigcirc \bigcirc \cdots &; \\
 \{1,5\} = \bigcirc \bigcirc \bigcirc \odot \cdots &; \\
 \{1,5\} = \bigcirc \bigcirc \bigcirc \odot &; \\
 \{1,5\} = \bigcirc \bigcirc \bigcirc \odot &; \\
 \{1,5\} = \bigcirc \bigcirc \bigcirc &; \\
 \{1,5\} = \bigcirc \bigcirc &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = \bigcirc &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0 &; \\
 \{1,5\} = 0$$

Remark 3.3. By regarding a position $\mathbf{x} \in P_n$ of the Sato-Welter game as a beta number, we can also regard \mathbf{x} as Young diagrams. For exmaple, a position $\mathbf{x} = \{3, 5\} \in P_2$ is regarded as a Young diagram with partition (4,3).

Remark 3.4. The Sato-Welter game P_1 of 1 ball is game-isomorphic to the 1-heap nim.

For **x** = { x_1, x_2, \dots, x_n } $\in P_n$, we put

$$arphi_n(\mathbf{x}) := \sum_i^\oplus x_i \oplus \sum_{i < j}^\oplus (x_i \mid x_j).$$

For $\mathbf{x} \in P_n$, we have $\varphi_n(\mathbf{x}) \ge 0$. Since φ is a symmetric function in x_1, \dots, x_n , we denote $\varphi_n(\mathbf{x}) = \varphi_n(x_1, x_2, \dots, x_n)$.

Theorem 3.5 (Sato [6], and Welter [8]). *The Sprague-Grundy function of the Sato-Welter game* $(P_n; \rightarrow_A)$ *is given by*

$$\varphi_n(\mathbf{x}), \quad \mathbf{x} \in P_n.$$

Example 3.6. For $\mathbf{x} = \{3, 5\} \in P_2$, the Sprague-Grundy value $\varphi_2(\mathbf{x})$ is

$$\varphi_2(\mathbf{x}) = 3 \oplus 5 \oplus (3 \mid 5) = 5 \neq 0.$$

Hence, the position \mathbf{x} has a winning strategy. The (unique) winning move is:

$$\{3,5\} \rightarrow_A \{3,2\}.$$

4 The Turning turtles

Definition 4.1. Put

$$P_{odd} := \bigcup_{n:odd} P_n = \bigcup_{n:odd} \left\{ \mathbf{x} \subseteq \mathbb{N} \mid |\mathbf{x}| = n \right\}.$$
(4.1)

For $\mathbf{x} \in P_n$ *and* $\mathbf{y} \in P_m$ *, we denote* $\mathbf{x} \rightarrow_D \mathbf{y}$ *if*

•
$$n = m$$
 and $\mathbf{x} \rightarrow_A \mathbf{y}$; or • $n = m + 2$ and $\mathbf{x} \supset \mathbf{y}$.

We call the game $(P_{odd}; \rightarrow_D)$ the turning turtles.

The turning turtles can be visually interpreted as follows: Several turtles are lined up. An odd number of them are awake and the others sleeping. At each move, a player chooses two turtles with both hands and turns them over. The player is allowed to turn " \bigcirc "(awake turtle) into "empty"(sleeping turtle) and also "empty" into " \bigcirc ". However, the turtle that he grabs with his right hand must be an awake turtle. The player to make the last move wins.

$$\{2,3,4\} = \boxed{0}, \\ \{2,3,1\} = \boxed{0}, \\ \{2,3,0\} = \boxed{0}, \\ \{2,3,0\} = \boxed{0}, \\ \{2,1,5\} = \boxed{0}, \\ \{2,0,5\} = \boxed{0}, \\ \{2,0,5\} = \boxed{0}, \\ \{2,1,5\} =$$

Remark 4.3. By regarding a position $\mathbf{x} \in P_{odd}$ of the turning tutles as a strict partition, we can also regard \mathbf{x} as shifted Young diagrams. For exmaple, a position $\mathbf{x} = \{2, 3, 5\} \in P_{odd}$ is regarded as a shifted Young diagram with strict partition (5, 3, 2).

For **x** = { x_1, x_2, \dots, x_n } \in *P*_{odd}, we put

$$\psi(\mathbf{x}) := x_1 \oplus x_2 \oplus \cdots \oplus x_n$$

For $\mathbf{x} \in P_{\text{odd}}$, we have $\psi(\mathbf{x}) \ge 0$. See [1] for further details.

Theorem 4.4. The Sprague-Grundy function of the turning turltes $(P_{odd}; \rightarrow_D)$ is given by

 $\psi(\mathbf{x}), \quad \mathbf{x} \in P_{odd}.$

Example 4.5. For $\mathbf{x} = \{2, 3, 5\} \in P_{odd}$, the Sprague-Grundy value $\psi(\mathbf{x})$ is

$$\psi(\mathbf{x}) = 2 \oplus 3 \oplus 5 = 4 \neq 0.$$

Hence, the position \mathbf{x} has a winning strategy. The (unique) winning move is:

$$\{2,3,5\} \rightarrow_{D} \{2,3,1\}.$$

5 Main result

The definition 4.1 means the position set P_{odd} of turning turtles is a "patchwork" of position sets P_n of Sato-Welter games. This is our motivation of this study.

Definition 5.1. *Fix an integer* $N \ge 2$ *. Put*

$$P_{N,1} := P_N \cup P_1.$$

Let $n, m \in \{1, N\}$ *. For* $\mathbf{x} \in P_n$ *and* $\mathbf{y} \in P_m$ *, we denote* $\mathbf{x} \to \mathbf{y}$ *if*

- n = m and $\mathbf{x} \rightarrow_{\mathbf{A}} \mathbf{y}$; or
- n = N, m = 1 and $\mathbf{x} \supset \mathbf{y}$.

We call the game $(P_{N,1}; \rightarrow)$ the inset game.

Remark 5.2. If N = 2, 3, then this game is not new (see subsection 5.1, 5.2). For $N \ge 4$, this game is new.

Example 5.3. For a position

of our game with N = 4, the elements of option set $\alpha(\mathbf{x})$ are:

Remark 5.4. With a position $\mathbf{x} = \{x_1, x_2, \cdots, x_n\} \in P_{N,1}$, the inset

can be associated, if n = N and $x_1 < x_2 < \cdots < x_N$. If, on the other hand, n = 1, then we attach the x_1 -chain.

For
$$\mathbf{x} = \{x_1, x_2, \cdots, x_n\} \in P_{N,1}$$
, we put

$$\varphi_{N,1}(\mathbf{x}) := \begin{cases} \sum_{i}^{\oplus} \left(-1 \mid \varphi_{N-1}(\mathbf{x}^{(i)})\right) \oplus \varphi_N(\mathbf{x}) & n = N \\ x_1 & n = 1 \end{cases}$$

where $\mathbf{x}^{(i)} = \mathbf{x} \setminus \{x_i\}$. For $\mathbf{x} \in P_{N,1}$, we have

$$\varphi_{N,1}(\mathbf{x}) \ge 0. \tag{5.1}$$

Now we can state the main result:

Theorem 5.5. The Sprague-Grundy function of the inset game $(P_{N,1}; \rightarrow)$ is given by

$$\varphi_{N,1}(\mathbf{x}), \mathbf{x} \in P_{N,1}$$

A sketch of proof is given in the subsection 5.3.

Example 5.6. For $\mathbf{x} = \{1, 2, 4, 5\} \in P_{4,1}$, the Sprague-Grundy value $\varphi_{4,1}(\mathbf{x})$ is

$$\varphi_{4,1}(\mathbf{x}) = (-1 | \varphi_3(2,4,5)) \oplus (-1 | \varphi_3(1,4,5)) \\ \oplus (-1 | \varphi_3(1,2,5)) \oplus (-1 | \varphi_3(1,2,4)) \oplus \varphi_4(1,2,4,5) \\ = (-1 | 0) \oplus (-1 | 7) \oplus (-1 | 1) \oplus (-1 | 4) \oplus 6 = 10.$$

Hence, the position \mathbf{x} has a winning strategy. The (unique) winning move is:

$$\{1, 2, 4, 5\} \rightarrow \{0, 1, 4, 5\}.$$

5.1 Case N = 2

Define an injection $f : P_{2,1} \to P_2$ by

$$f({x_1, x_2}) = {x_1 + 1, x_2 + 1}, \qquad f({x_1}) = {0, x_1 + 1}.$$

It is straightforward to see the case N = 2:

Propsition 5.7. *The map* f *is a game isomorphism from* $P_{2,1}$ *to the image* $f(P_{2,1})$ *. In particular, for* $\mathbf{x} \in P_{2,1}$ *, we have* $\varphi_{2,1}(\mathbf{x}) = \varphi_2(f(\mathbf{x}))$ *.*

Example 5.8. For a position

of our game with N = 2, the elements of option set $\alpha(\mathbf{x})$ are:

These positions correspond to the positions in Example 3.2.

5.2 Case N = 3

Define an injection $f : P_{3,1} \rightarrow P_{odd}$ by

 $f(\{x_1, x_2, x_3\}) = \{x_1, x_2, x_3\}, \qquad f(\{x_1\}) = \{x_1\}.$

It is straightforward to see the case N = 3:

Propsition 5.9. *The map* f *is a game isomorphism from* $P_{3,1}$ *to the image* $f(P_{3,1})$ *. In particular, for* $\mathbf{x} \in P_{3,1}$ *, we have* $\varphi_{3,1}(\mathbf{x}) = \psi(f(\mathbf{x}))$ *.*

5.3 Sketch of proof of main theorem

We need the following two lemmata:

Lemma 5.10. Let $\mathbf{x} \in P_{N,1}$ and $h \in \mathbb{N}$. Then we have

- 1. *if* $0 \le h < \varphi_{N,1}(\mathbf{x})$, then the number of $\mathbf{y} \in \alpha(\mathbf{x})$ with $\varphi_{N,1}(\mathbf{y}) = h$ is odd. In particular, there exists such a next position \mathbf{y} of \mathbf{x} with $\varphi_{N,1}(\mathbf{y}) = h$.
- 2. *if* $h \ge \varphi_{N,1}(\mathbf{x})$, then the number of $\mathbf{y} \in \alpha(\mathbf{x})$ with $\varphi_{N,1}(\mathbf{y}) = h$ is even (it may be zero).

We omit the proof of Lemma 5.10.

Lemma 5.11. Let $\mathbf{x} \in P_{N,1}$ and $\mathbf{y} \in \alpha(\mathbf{x})$. Then we have $\varphi_{N,1}(\mathbf{x}) \neq \varphi_{N,1}(\mathbf{y})$.

Proof. Let $\mathbf{x} = \{x_1, \dots, x_n\}$ and $\mathbf{y} = \{y_1, \dots, y_m\}$.

Case $\mathbf{x} \in P_N$ and $\mathbf{y} \in P_N$: We may assume that $x_1 > y_1$ and $x_i = y_i$ $(2 \le i \le N)$. We have

$$\begin{split} \varphi_{N,1}(\mathbf{x}) \oplus \varphi_{N,1}(\mathbf{y}) \\ &= \sum_{i=2}^{N} \begin{pmatrix} (-1 \mid \varphi_{N-1}(\{x_1, x_2, \cdots, x_N\} \setminus \{x_i\})) \\ \oplus (-1 \mid \varphi_{N-1}(\{y_1, x_2, \cdots, x_N\} \setminus \{x_i\})) \end{pmatrix} \oplus x_1 \oplus y_1 \oplus \sum_{i=2}^{N} \left((x_1 \mid x_i) \oplus (y_1 \mid x_i) \right). \end{split}$$

Suppose $\varphi_{N,1}(\mathbf{x}) = \varphi_{N,1}(\mathbf{y})$. Then we have

$$\sum_{i=2}^{N} \oplus \left(-1 \left| \varphi_{N-1}(\{x_1, x_2, \cdots, x_N\} \setminus \{x_i\})\right) \oplus x_1 \oplus \sum_{i=2}^{N} \oplus \left(x_1 \left| x_i\right)\right.$$
$$= \sum_{i=2}^{N} \oplus \left(-1 \left| \varphi_{N-1}(\{y_1, x_2, \cdots, x_N\} \setminus \{x_i\})\right) \oplus y_1 \oplus \sum_{i=2}^{N} \oplus \left(y_1 \left| x_i\right).$$

Put

$$g_i(x) := \varphi_{N-1}(\{x, x_2, \cdots, x_N\} \setminus \{x_i\}), \quad (2 \le i \le N).$$

Then g_i is an animating function. Put

$$f(x) := \sum_{i=2}^{N} \oplus \left(-1 \mid g_i(x)\right) \oplus x \oplus \sum_{i=2}^{N} \oplus \left(x \mid x_i\right)$$

Then *f* is an animating function and $f(x_1) = f(y_1)$. Since *f* is bijective, we have $x_1 = y_1$. This contradicts our assumption. Hence, we have $\varphi_{N,1}(\mathbf{x}) \neq \varphi_{N,1}(\mathbf{y})$.

Case $\mathbf{x} \in P_N$ and $\mathbf{y} \in P_1$: Put

$$f(x) := x \oplus \sum_{j=1}^{N^{\oplus}} (x \mid x_j) \oplus \varphi_N(\mathbf{x}), \quad (x \in \mathbb{Z}).$$

Then *f* is animating and we have

$$f^{-1}(y) = y \oplus \sum_{i=1}^{N} \bigoplus \left(y \mid f(x_i) \right) \oplus \varphi_N(\mathbf{x}), \quad (y \in \mathbb{Z})$$
(5.2)

by Lemma 2.8 (3). Since

$$\begin{pmatrix} -1 | \varphi_{N-1}(\mathbf{x}^{(i)}) \end{pmatrix} = \begin{pmatrix} (x_i | x_i) | x_i \oplus \sum_{j \neq i}^{\oplus} (x_i | x_j) \oplus \varphi_N(\mathbf{x}) \end{pmatrix}$$
$$= \begin{pmatrix} 0 | x_i \oplus \sum_{j=1}^{N}^{\oplus} (x_i | x_j) \oplus \varphi_N(\mathbf{x}) \end{pmatrix}$$
$$= (0 | f(x_i)),$$

we have

$$\varphi_{N,1}(\mathbf{x}) = 0 \oplus \sum_{i=1}^{N} \oplus \left(0 \left| f(x_i) \right| \right) \oplus \varphi_N(\mathbf{x}).$$
(5.3)

Hence, by (5.2) and (5.3), we have $\varphi_{N,1}(\mathbf{x}) = f^{-1}(0)$. Therefore,

$$0 = f(\varphi_{N,1}(\mathbf{x})) = \varphi_{N,1}(\mathbf{x}) \oplus \sum_{i=1}^{N} \bigoplus (\varphi_{N,1}(\mathbf{x}) \mid x_i) \oplus \varphi_N(\mathbf{x}).$$

Since the first term (by (5.1)) and the last terms are nonnegative in the right hand side and x_i 's are distinct, there exists no *i* such that $\varphi_{N,1}(\mathbf{x}) = x_i$.

Case $\mathbf{x} \in P_1$ and $\mathbf{y} \in P_1$: Then we have

$$\varphi_{N,1}(\mathbf{x}) = x_1 > y_1 = \varphi_{N,1}(\mathbf{y})$$

Hence, we have $\varphi_{N,1}(\mathbf{x}) \neq \varphi_{N,1}(\mathbf{y})$.

By Lemma 5.10, Lemma 5.11 and induction, we have

$$\mathrm{SG}_{P_{N,1}}(\mathbf{x}) = \varphi_{N,1}(\mathbf{x}), \quad (\mathbf{x} \in P_{N,1}).$$

This proves Theorem 5.5.

Acknowledgements

The author would like to thank Dr. Hagiwara for his comments and suggestions.

References

- [1] E. Berlekamp, J. Conway, and R. Guy. *Winning Ways for Your Mathematical Play*. Academic Press, 1982.
- [2] J. Conway. On Numbers and Games. Academic Press, 1976.
- [3] P. M. Grundy. "Mathematics and games". Eureka 2 (1939), pp. 6–8.
- [4] N. Kawanaka. Games and algorithms with hook structure (in Japanese). Vol. 63. 4. Suugaku, The Mathematical Society of Japan, 2011, pp. 421–441.
- [5] R. A. Proctor. "Dynkin diagram classification of λ-minuscule Bruhat lattices and of *d*-complete posets". J. Algebraic Combin. 6 (1999), pp. 61–294.
- [6] M. Sato. On Maya game, Lecture notes taken by H. Enomoto (in Japanese). Vol. 15. 1. Special Issue "Mikio Sato". Suugaku-no-Ayumi, 1970, pp. 73–84.
- [7] R. P. Sprague. "Über mathematische Kampfspiele". Tohoku Mathematical Journal 41 (1935–36), pp. 438–444.
- [8] C. P. Welter. "The theory of a class of games on a sequence of squares, in terms of advancing operation in a special group". *Indag. Math.* **16** (1954), pp. 194–200.