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Abstract. We give a bijective proof of a result by R. Mantaci and F. Rakotondrajao from
2003 regarding even and odd derangements with a fixed number of excedances. We
refine their result by also considering the set of right-to-left minima.
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1 Introduction and Notations

A permutation π is a bijection from the set [n] = {1, 2, . . . , n} to itself and we will write
it in standard representation as π = π(1) π(2) · · ·π(n), or as the product of disjoint
cycles. We let Sn be the the symmetric group, the set of all permutations, acting on [n].
A fixed point of a permutation π is an integer i ∈ [n] such that π(i) = i. Let Dn ⊆ Sn
denote the set of permutations with no fixed points, which are called derangements. An
inversion of a permutation π is a pair (i, j) such that π(i) > π(j), where 1 ≤ i < j ≤ n.
The parity of a permutation π is defined as the parity of the number of inversions of π,
inv(π). That is, π is called an even if inv(π) is even, and an odd permutation otherwise.
The set of even permutations in Sn is denoted Se

n, and the set of odd permutations is
So

n. Similarly, De
n and Do

n represent the sets of even and odd derangements, respectively,
in Dn.

In order to state our results, we need to recall some standard terminology and nota-
tions. For any function g : [n] → [n], let the set of excedances, the set of excedance values,
the set of right-to-left minima indices, the set of right-to-left minima values, and the fixed
point set respectively, are defined as

EXCi(g) := {j ∈ [n] : g(j) > j},
EXCv(g) := {g(j) : j ∈ EXCi(g)},
RLMi(g) := {i ∈ [n] : g(i) < g(j) for all j ∈ {i + 1, . . . , n}},

RLMv(g) := {g(i) : i ∈ RLMi(g)},
FIX(g) := {i ∈ [n] : g(i) = i}.
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Moreover, we denote exc(g) := |EXCi(g)| and rlm(g) := |RLMi(g)| = |RLMv(g)|. Note
that, |EXCv(σ)| = |EXCi(σ)| = exc(σ), for any σ ∈ Sn.

Example 1. Consider the following three permutations in S7. The first is not a derange-
ment since it has 3 and 6 as fixed-points, while the remaining two are derangements.

Permutation, π inv(π) EXCi(π) RLMi(π) RLMv(π)

2135764 5 {1,4,5} {2,3,7} {1,3,4}
2153746 5 {1,3,5} {2,4,6,7} {1,3,4,6}
6713245 11 {1,2} {3,5,6,7} {1,2,4,5}

Note that whenever S = {s1, . . . , sm} is a finite set of positive integers, we shall let xS
denote the product xs1 xs2 · · · xsm . By definition, x∅ := 1.

R. Mantaci and F. Rakotondrajao [5] have proven1 the identity

|{π ∈ De
n : exc(π) = k}| − |{π ∈ Do

n : exc(π) = k}| = (−1)n−1, (1.1)

for every n ≥ 1 and 1 ≤ k ≤ n − 1. This refines a result by Chapman, stating that
|De

n| − |Do
n| = (−1)n−1(n − 1), see [2].

We provide a proof for a refinement of (1.1), namely

∑
π∈Dn

(−1)inv(π)xRLMv(π)yEXCv(π) = (−1)n−1
n−1

∑
j=1

x1· · ·xjyj+1· · ·yn,

in Section 2, by exhibiting a bijection and by using generating functions. The bijection
Ψ̂ : Dn → Dn with exactly (n − 1) fixed-elements, is a sign-reversing involution outside
the set of fixed-elements. Moreover, it preserves the excedance value and right-to-left
minima permutation statistics, which gives the desired result. We use the code obtained
in [4], which defined as follows.

Definition 2. A subexcedant function f on [n] is a map f : [n] → [n] such that

1 ≤ f (i) ≤ i for all 1 ≤ i ≤ n.

We let Fn denote the set of all subexcedant functions on [n]. The image of f ∈ Fn is
defined as IM( f ) := { f (i) : i ∈ [n]}.

We write subexcedant functions as words, f (1) f (2) . . . f (n). For example, the subex-
cedant function f = 112352 has IM( f ) = {1, 2, 3, 5}.

From each subexcedant function f ∈ Fn−1, one can obtain n distinct subexcedant
functions in Fn by appending any integer i ∈ [n] at the end of the word representing f .

1Their proof uses a recursion rather than an explicit involution.
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Hence, the cardinality of Fn is n!. The bijection sefToPerm : Fn → Sn, described in [4],
is defined by the product:

sefToPerm( f ) := (n f (n)) · · · (2 f (2))(1 f (1)).

For σ ∈ Sn and j ∈ [n], the jth entry of sefToPerm−1(σ) is express in the recursive
formula:

sefToPerm−1(σ)j :=

{
σ(n) if j = n,
sefToPerm−1 ( (n σ(n)) ◦ σ

)
j otherwise.

(1.2)

Note that σ′ := (n σ(n)) ◦ σ is the result after interchanging n and the image of n in
σ. Therefore, σ′(n) = n and, by a slight abuse of notation, σ′ can be considered as a
permutation in Sn−1. For simplicity, we use the shorthand fσ := sefToPerm−1(σ).

Example 3. The corresponding subexcedant function of the permutation σ=6 1 2 9 3 5 4 8 7
is fσ = 112435487 ∈ F9.

Since subexcedant functions are maps on [n], we have the notion of excedance, right-
to-left minima, fixed points, etc., as defined above.

Proposition 4 (See [4, Proposition 3.5]). For fσ ∈ Fn we have that [n] \ IM( fσ) = EXCv(σ).
In particular, exc(σ) = n − | IM( fσ)|.

We say that a subexcedant function f has a strict anti-excedance at i if f (i) < i.

Proposition 5 (See [4, Proposition 4.1]). The permutation σ is even (odd) if and only if the
number of strict anti-excedances in fσ even (odd).

A fixed point of f ∈ Fn is an integer i ∈ [n] such that f (i) = i. Moreover, i is a
multiple fixed point of f if f (i) = i and there is some j > i such that f (j) = i.

Proposition 6 (See [4, Proposition 3.8]). We have that σ ∈ Dn if and only if all fixed points
of fσ are multiple.

Proposition 7. Let π ∈ Sn and fπ be the corresponding subexcedant function. Then

(a) i ∈ RLMi(π) implies π(i) = fπ(i),

(b) RLMv(π) = RLMv( fπ),

(c) RLMi(π) = RLMi( fπ).
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2 An involution and its consequences

A subexcedant function f is matchless if it is of the form

f := 1 1 2 3 4 . . . k−1 k k . . . k for 1 ≤ k ≤ n−1.

There are n − 1 matchless subexcedant functions of length n. For example, for n = 10,
the following subexcedant functions are matchless:

1111111111, 1122222222, 1123333333,
1123444444, 1123455555, 1123456666,
1123456777, 1123456788, 1123456789.

Let DFn be the set of subexcedant functions corresponding to derangements of [n].
Note that every f ∈ DFn must have at least two 1’s in its row representation.

For any matchless fσ ∈ DFn

σ = sefToPerm( fσ) = (1 k+1 k+2 . . . n k k−1 . . . 2).

Since σ has only one cycle, its sign is (−1)n−1. Looking directly at the definition of fσ,
we have that

IM( fσ) = [k] implies EXCv(σ) = [n] \ [k],
by Proposition 4. Similarly, from Proposition 7 we have RLMv(σ) = [k].

Definition 8. Define a mapping Ψ : DFn → DFn below, where fτ is short for Ψ( fσ).
First, if fσ is matchless, we set fτ := fσ. Now we assume that fσ is non-matchless and let

IM( fσ) = {m1, m2, m3, . . . , mℓ}.

Note that m1 = 1 and since fσ is non-matchless, we know that ℓ ≥ 2 in IM( fσ). With
these preparations, we define two auxiliary maps, fixi, unfixi on subexcedant functions.
For i ∈ {2, . . . , ℓ},

fixi( fσ)(mi) := mi, unfixi( fσ)(mi) := mi−1

while the remaining entries of fσ are untouched. For i ∈ {2, . . . , ℓ}, we say that fσ

satisfies ⊛i if the three conditions

fσ(mi) < mi < mℓ, f−1
σ (1) = {1, 2}, and {mi + 1} ⊊ f−1

σ (mi), (⊛i)

hold. Note that

{mi + 1} ⊊ f−1
σ (mi) if and only if fσ(mi + 1) = mi and | f−1

σ (mi)| ≥ 2.

Now let i ∈ {2, . . . , ℓ} be the smallest element satisfying one of the cases below, and
let fτ be given as described in each case.
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Case ♡i: If fσ(mi) = mi, then fτ := unfixi( fσ).

Case ♠i: If fσ(mi) < mi and | f−1
σ (1)| ≥ 3, then fτ := fixi( fσ).

Case ♢i: If ⊛i holds and fσ(mi+1) = mi+1, then fτ := unfixi+1( fσ).

Case ♣i: If ⊛i holds and fσ(mi+1) < mi+1, then fτ := fixi+1( fσ).

Note that for the same i, the four cases are mutually exclusive. We emphasize that by
saying that a case with subscript i holds, this particular i ≥ 2 is the smallest i for which
the conditions one of the four cases hold.

Remark 9. Suppose ♠i applies for fσ. Then, for sure fσ(m2) < m2, since otherwise, we
would be in the case ♡2. Hence, ♠i may only apply when i = 2.

Theorem 10. The map Ψ : DFn → DFn is an involution with the following properties.

(i) The image is preserved, IM( fσ) = IM(Ψ( fσ)).

(ii) If fτ = Ψ( fσ), then EXCv(σ) = EXCv(τ).

(iii) The set of right-to-left minima is preserved, RLMv( fσ) = RLMv(Ψ( fσ)).

(iv) Ψ changes the parity of a non-matchless subexcedant function.

The complete proof of this theorem can be found in [1].

Example 11. Consider the following four subexcedant functions in DF 7.

1. Let fσ = 1133535. Then IM( fσ) = {1, 3, 5} and 2 is the smallest index greater than
1 with fσ(m2) = fσ(3) = 3. Hence, fσ is in case ♡2 and fτ = unfix2( fσ) = 1113535.

2. Now let fσ = 1121355. Then IM( fσ) = {1, 2, 3, 5}. Since fσ(2) < 2 and | f−1
σ (1)| = 3,

then fσ is in case ♠2. Thus, fτ = fix2( fσ) = 1221355.

3. Suppose that fσ = 1123535, then IM( fσ) = {1, 2, 3, 5}. The index 2 does not satisfy
any of the four cases. So, we consider the next integer i = 3. We note that ⊛3 holds
and in addition, fσ(m4) = fσ(5) = 5. Hence, fσ fulfills ♢3 and fτ = unfixi+1( fσ) =
unfix4( fσ) = 1123335.

4. Now take fσ = 1123445. Then IM( fσ) = {1, 2, 3, 4, 5}. None of the four cases for fσ

are fulfilled with i ∈ {2, 3}. However, fσ satisfies ⊛4 and fσ(m5) = fσ(5) = 4 < m5.
Thus, we are in ♣4 and fτ = fix5( fσ) = 1123545.

We now have an involution on derangements Ψ̂ : Dn → Dn by setting

Ψ̂(σ) := (sefToPerm ◦Ψ ◦ sefToPerm−1)(σ), for σ ∈ Dn.
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Corollary 12. The involution Ψ̂ satisfies the properties below:

(i) The excedance value set is preserved: EXCv(Ψ̂(σ)) = EXCv(σ).

(ii) The set of right-to-left minima is preserved: RLMv(Ψ̂(σ)) = RLMv(σ).

(iii) Whenever σ is a non-matchless derangement (the corresponding fσ is non-matchless), Ψ̂
changes the parity of σ.

Theorem 13. We have that

∑
π∈Dn

(−1)inv(π)xRLMv(π)yEXCv(π) = (−1)n−1
n−1

∑
j=1

x1 · · · xj · yj+1 · · · yn. (2.1)

Moreover,

∑
π∈Dn

(−1)inv(π)xRLMi(π)yEXCi(π) = (−1)n−1
n−1

∑
j=1

y1 · · · yj · xj+1 · · · xn. (2.2)

Proof. By applying the involution Ψ̂ and using all the properties listed in Corollary 12,
all terms in the left-hand side of (2.1) that are non-matchless derangements cancel. Thus,
the left-hand side of (2.1) is equal to

n−1

∑
k=1

(−1)n−1x[k]y[n]\[k],

using properties of matchless derangements, which is the right-hand side of (2.1).

Equation (2.2) follows by applying the change of variables i 7→ n+ 1− i on both sides
of (2.1) and then use the bijection ζ : Dn → Dn, where

ζ(σ)(k) := n + 1 − σ−1(n + 1 − k), for σ ∈ Dn and k ∈ [n],

on the left-hand side.

Corollary 14. By letting xj → 1 and yj → t, we have that

∑
π∈Dn

(−1)inv(π)texc(π) = (−1)n−1(t + t2 + · · ·+ tn−1).

By comparing coefficients of tk, we get (1.1). In a similar manner,

∑
π∈Dn

(−1)inv(π)trlm(π) = (−1)n−1(t + t2 + · · ·+ tn−1).
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3 A proof using generating functions

Mantaci, in [3], proved Proposition 15 (albeit stated in a slightly different manner) by
introducing a bijection on Sn that preserves the set of excedances and changes the sign
of non-fixed elements of the bijection. There is a unique fixed element for each excedance
set and its parity is the same as the parity of the cardinality of its excedance set.

Proposition 15. Let n ≥ 1, then

∑
π∈Sn

(−1)inv(π)xEXCi(π) = ∏
j∈[n−1]

(1 − xj) = ∑
E⊆[n−1]

(−1)|E|xE. (3.1)

In particular, by setting all xi equal to t, we have

∑
π∈Se

n

texc(π) − ∑
π∈So

n

texc(π) = (1 − t)n−1.

Proposition 16. Let n ≥ 1 and let T ⊆ [n]. Let m ≤ n be the largest integer not in T and set
E = {1, 2, . . . , m − 1} \ T. Then

∑
π∈Sn

T⊆FIX(π)

(−1)inv(π)xEXCi(π) = ∏
j∈E

(1 − xj), (3.2)

where the empty product has value 1.
Setting all xi to be t, we have

∑
π∈Se

n
T⊆FIX(π)

texc(π) − ∑
π∈So

n
T⊆FIX(π)

texc(π) =

{
1 if |T| = n,
(1 − t)n−1−|T| otherwise.

Proof. if T = [n], then E = ∅ and (3.2) follows. Now assume |T| < n. From formation
of E, we can easily see that |E| = n − 1 − |T|. Now suppose π ∈ Sn is a permutation
such that T ⊆ FIX(π). We then construct π′ ∈ Sn−|T|, by only considering the positions
not in T, and the relative ordering of the entries at these positions. For example, for
π = 127436589 we have T = {2, 4, 6, 8, 9}, [n] \ T = {1, 3, 5, 7} and π′ = 1423.

Observe that exc(π) = exc(π′) and (−1)inv(π) = (−1)inv(π′). Hence, the sum in the
left-hand side of (3.2), can be taken as a sum over permutations π′ ∈ Sn−|T|, but with
a reindexing of the variables using values in [n] \ T. Now, this sum can be computed
using Proposition 15 which finally gives (3.2).

Using inclusion-Exclusion and Proposition 16, the following theorem is obtained.

Theorem 17. Let n ≥ 1. Then

∑
π∈Dn

(−1)inv(π)xEXCi(π) = (−1)n−1
n−1

∑
j=1

x1x2 · · · xj. (3.3)
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The following follows directly by comparing coefficients of degree k in (3.3).

Corollary 18. For n, k ≥ 1, we have that

|{π ∈ De
n : exc(π) = k}| − |{π ∈ Do

n : exc(π) = k}| = (−1)n−1.

3.1 A right-to-left minima analog

Definition 19. Let κ : Sn → Sn be defined as follows. Given π ∈ Sn, let i ∈ [n] be
the smallest odd integer such that π(i i + 1) and π have the same sets of right-to-left
minima, if such an i exists. That is, we swap the entries at positions i and i + 1 in π. We
then set κ(π) := π(i i + 1), and κ(π) := π otherwise. We say that π is decisive2 if it is a
fixed-element of κ.

Example 20. In S7, there are 8 decisive permutations:

1234567, 1234657, 1243567, 1243657, 2134567, 2134657, 2143567, 2143657.

Note that {1, 3, 5, 7} are always right-to-left minima (but there might be more).

Lemma 21. The map κ : Sn → Sn has the following properties:

(i) κ is an involution.

(ii) κ preserves the number of right-to-left minima.

(iii) κ changes sign of non-fixed elements.

(iv) For each subset T ∈ [n] ∩ {2, 4, 6, . . . }, there is a unique decisive permutation with
{1, 3, 5, . . . } ∪ T as right-to-left minima set.

(v) There are ( ⌊n/2⌋
k−⌈n/2⌉) decisive permutations with exactly k right-to-left minima, and they all

have sign (−1)n−k.

The following is a right-to-left minima analog of Proposition 15.

Corollary 22. We have that for any n ≥ 1

∑
π∈Sn

(−1)inv(π)xRLMv(π) =
(

∏
i∈[n]
i odd

xi
)(

∏
j∈[n]
j even

(xj − 1)
)
. (3.4)

In particular, for any k = 1, . . . , n we have that

|{π ∈ Se
n : rlm(π) = k}| − |{π ∈ So

n : rlm(π) = k}| = (−1)n−k
(

⌊n/2⌋
k − ⌈n/2⌉

)
.

2As a nod to the word critical.



An Involution on Derangements Preserving Excedances and Right-to-Left Minima 9

We conclude with the following problem.

Problem 23. Is it possible to state an analog of Proposition 16? In particular, for T ⊆ [n], is
there a nice expression for the sum

∑
π∈Sn

T⊆FIX(π)

(−1)inv(π)trlm(π)?

Computer experiments suggest that this sum is either 0 or of the form ±ta(t+ 1)b(t− 1)c, where
a, b, and c depend on T in some manner.
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