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Abstract. We consider a sequence of four variable polynomials by refining Stieltjes’
continued fraction for Eulerian polynomials. Using the combinatorial theory of Jacobi-
type continued fractions and bijections we derive various combinatorial interpretations
in terms of permutation statistics for these polynomials, which include special kinds
of descents and excedances in a recent paper of Baril and Kirgizov. As a by-product,
we derive several equidistribution results for permutation statistics, which enables
us to confirm and strengthen a recent conjecture of Vajnovszki and also to obtain
several companion permutation statistics for two bistatistics in a conjecture of Baril
and Kirgizov.
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1 Introduction

It is well-known [6, 20, 16] that the statistics “des” and “exc” are equidistributed over
permutations of [n] := {1, . . . , n}, their common generating function being the Eulerian
polynomials An(t), i.e.,

An(t) = ∑
σ∈Sn

tdes σ = ∑
σ∈Sn

texc σ,

which satisfy the identity
An(t)

(1 − t)n+1 =
∞

∑
r=0

tr(r + 1)n.
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Since MacMahon’s pioneering work [14] various combinatorial variants and refinements
of Eulerian polynomials have appeared, see [2, 8, 9, 13, 15, 19] for some recent papers.

In a recent paper [1] Baril and Kirgizov considered some special descents, excedances
and cycles of permutations, that we recall in the following. For a permutation σ :=
σ(1)σ(2) · · · σ(n) of 1 . . . n, an index i ∈ [1, n − 1] is called a

• descent (resp. excedance) if σ(i) > σ(i + 1) (resp. σ(i) > i);

• descent of type 2 if i is a descent and σ(j) < σ(i) for j < i;

• pure excedance if i is an excedance and σ(j) /∈ [i, σ(i)] for j < i;

and an index i ∈ [2, n] is called a

• drop if i > σ(i);

• pure drop if i is a drop and σ(j) /∈ [σ(i), i] for j > i.

Let des σ (resp. exc σ, drop σ, des2 σ, pex σ and pdrop σ) denote the number of descents
(resp. excedances, drops, descents of type 2, pure excedances and pure drops) of σ.
Identifying σ with the bijection i 7→ σ(i) on [n] we can decompose σ into disjoint cycles
(i, σ(i), . . . , σℓ(i)) with σℓ+1(i) = i and i ∈ [n]. A cycle with ℓ = 1 is called a fixed point
of σ. Let cyc σ (resp. fix σ) denote the number of cycles (resp. fixed points) of σ. The
number of non trivial cycles of σ [18, A136394] is defined by

pcyc σ = cyc σ − fix σ. (1.1)

For example, if n = 8 and σ = 2 3 1 4 6 8 7 5, the descent indexes of type 2 are {2, 6};
the pure excedance indexes are {1, 5} and the pure drop indexes are {3, 8}. Thus
des2 σ = 2, pex σ = 2, and pdrop σ = 2. Factorizing σ as product of disjoint cycles
(1 2 3)(4)(5 6 8)(7), we derive cyc σ = 4, fix σ = 2, and pcyc σ = 2.

A mesh pattern of length k is a pair (τ, R), where τ is a permutation of length k
and R is a subset of J0, kK × J0, kK with J0, kK = {0, 1, . . . , k}. Let (i, j) denote the box
whose corners have coordinates (i, j), (i, j + 1), (i + 1, j + 1), and (i + 1, j). Note that
a descent of type 2 can be viewed as an occurrence of the mesh pattern (21, L1) where
L1 = {1}× [0, 2]∪ {(0, 2)}. By abuse of notation, we use des2 to denote the mesh pattern
corresponding to an occurrence of descent of type 2 in Figure 1. Similarly, we use pex
(resp. pdrop) to denote an occurrence of pure excedance in Figure 1 although pex (resp.
pdrop) is not a mesh pattern. See [1, 11] for further information about mesh patterns.

Recently Baril and Kirgizov [1] proved the equidistribution of the statistics “des2”,
“pex” and “pcyc” over Sn by bijections and conclude their paper with the following two
conjectures on the equidistribution of two pairs of bistatistics.

Conjecture 1 (Baril and Kirgizov). The two bistatistics (des2, cyc) and (pex, cyc) are equidis-
tributed on Sn.
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des2 = pex = pdrop = ear =

Figure 1: Illustration of the mesh patterns des2 and pex and ear, where the cross line
means that the value cannot be in the segment of the horizontal line

Conjecture 2 (Vajnovszki). The two bistatistics (des2, des) and (pex, exc) are equidistributed
on Sn.

In this paper we shall take a different approach to their problems through the combi-
natorial theory of J-continued fractions developed by Flajolet and Viennot in the 1980s [7,
5], see [2, 4, 9, 19] for recent developments of this theory. Recall that a J-type continued
fraction is a formal power series defined by

∞

∑
n=0

anzn =
1

1 − γ0z −
β1z2

1 − γ1z −
β2z2

· · ·

,

where (γn)n≥0 and (βn)n≥1 are two sequences in some commutative ring.
Define the polynomials An(t, λ, y, w) by the J-fraction

∑
n≥0

zn An(t, λ, y, w) =
1

1 − wz −
tλy z2

1 − (w + t + 1)z −
t(λ + 1)(y + 1) z2

· · ·

(1.2)

with γn = w + n(t + 1) and βn = t(λ + n − 1)(y + n − 1).
It is known that An(t, 1, 1, 1) equals the Eulerian polynomial An(t), see [9, 19]. Re-

cently Sokal and the third author [19] have generalized the J-fraction for Eulerian polyno-
mials in infinitely many intermediates, which are also generalizations of the polynomials
An(t, λ, y, w). The aim of this paper is to generalize the results in [1] by exploring the
combinatorial interpretations of the polynomials An(t, λ, y, w) in light of the aforemen-
tioned statistics. In particular, we confirm and strengthen Conjecture 2 (see Corollary 2)
and obtain five equidistributed companions of the bistatistic (pex, cyc) in Conjecture 1
(see Theorem 3). This extended abstract is a summary of the recent paper [10].
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2 Main results

For σ ∈ Sn, an index i ∈ [n] is called (see [19]) a

• cycle peak (cpeak) if σ−1(i) < i > σ(i);

• cycle valley (cval) if σ−1(i) > i < σ(i);

• cycle double rise (cdrise) if σ−1(i) < i < σ(i);

• cycle double fall (cdfall) if σ−1(i) > i > σ(i);

• fixed point (fix) if σ−1(i) = i = σ(i).

Clearly every index i belongs to exactly one of these five types; we refer to this classifi-
cation as the cycle classification. Next, an index i ∈ [n] (or a value σ(i)) is called a

• record (rec) (or left-to-right maximum) if σ(j) < σ(i) for all j < i (the index 1 is always
a record];

• antirecord (arec) (or right-to-left minimum) if σ(j) > σ(i) for all j > i (the index n is
always an antirecord);

• exclusive record (erec) if it is a record and not also an antirecord;

• exclusive antirecord (earec) if it is an antirecord and not also a record.

• exclusive antirecord cycle peak (eareccpeak) if i is an exclusive antirecord and also a
cycle peak.

The statistic eareccpeak was introduced in [19], in this paper we adopt the following
concise notation instead

ear := eareccpeak . (2.1)

An illustration of the pattern ear is given in Figure 1. Also, we shall denote the set
of indexes of each type by capitalizing the first letter of type name. Hence Cpeak σ

denotes the set of indexes of cycle peaks of σ. For example, if σ = 2 3 1 4 7 8 6 5 =
(1 2 3)(4)(6 8 5 7), then Earec σ = {3, 8} as σ(3) = 1 and σ(8) = 5 and Cpeak σ =
{3, 7, 8}, so Ear σ = {3, 8} and ear σ = 2.

Our first result provides three interpretations for the polynomials An(t, λ, y, w) in
(1.2).
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Theorem 1. We have

An(t, λ, y, w) = ∑
σ∈Sn

texc σλpex σyear σwfix σ (2.2a)

= ∑
σ∈Sn

texc σλpcyc σyear σwfix σ (2.2b)

= ∑
σ∈Sn

texc σλpcyc σypex σwfix σ. (2.2c)

By (1.2), the polynomial An(t, λ, y, w) is invariant under λ ↔ y. Hence, the above
theorem implies immediately the following result.

Corollary 1. The six bistatistics (pex, ear), (ear, pex), (ear, pcyc), (pcyc, ear), (pex, pcyc)
and (pcyc, pex) are equidistributed on Sn.

Now we consider three specializations of An(t, λ, y, w). First we let Bn(t, λ, w) =
An(t, λ, 1, w) = An(t, 1, λ, w), namely,

∑
n≥0

znBn(t, λ, w) =
1

1 − wz −
tλ z2

1 − (w + t + 1)z −
2t(λ + 1) z2

· · ·

(2.3)

with γn = w + n(t + 1) and βn = nt(λ + n − 1).

Remark 1. By (2.2c) we recover the fix and cycle (p, q)-Eulerian polynomials [12, 13, 21]

An(x, p, 1, pq) = Bn(x, p, pq) = ∑
σ∈Sn

xexc σ pcyc σqfix σ. (2.4)

To deal with descent statistics, we recall some linear statistics from [9]. For σ =
σ(1)σ(2) · · · σ(n) ∈ Sn with convention 0–∞, i.e., σ(0) = 0 and σ(n + 1) = n + 1, a value
σ(i) (1 ≤ i ≤ n) is called a

• double ascent (dasc) if σ(i − 1) < σ(i) and σ(i) < σ(i + 1);

• double descent (ddes) if σ(i − 1) > σ(i) and σ(i) > σ(i + 1);

• peak (peak) if σ(i − 1) < σ(i) and σ(i) > σ(i + 1);

• valley (valley) if σ(i − 1) > σ(i) and σ(i) < σ(i + 1).

A double ascent σ(i) (1 ≤ i ≤ n) is called a foremaximum of σ if it is at the same
time a record. Denote the number of foremaxima of σ by fmax σ. For example, if
σ = 3 4 2 1 5 8 7 6, then dasc σ = ddes σ = peak σ = val σ = 2 and fmax σ = 2 as the
foremaxima of σ are 3, 5.



6 B. Han, J. Mao, and J. Zeng

Theorem 2. We have

Bn(t, λ, w) = ∑
σ∈Sn

texc σλpcyc σwfix σ (2.5a)

= ∑
σ∈Sn

texc σλear σwfix σ (2.5b)

= ∑
σ∈Sn

texc σλpex σwfix σ (2.5c)

= ∑
σ∈Sn

tdes σλdes2 σwfmax σ (2.5d)

and

∑
n≥0

Bn(t, λ, w)
zn

n!
= ewz

(
1 − t

etz − tez

)λ

. (2.5e)

The following corollary of Theorem 2 confirms and generalizes Conjecture 2.

Corollary 2. The four bistatistics (exc, pcyc), (exc, ear), (des, des2) and (exc, pex) are equi-
distributed over Sn.

Remark 2. We will provide bijective proofs of Corollary 2 in [10].

Next let Cn(y, λ) = An(1, λ, y, λ) = An(1, y, λ, λ). Using (1.1) we obtain the following
result directly from Theorem 2.

Theorem 3. We have

Cn(y, λ) = ∑
σ∈Sn

ypex σλear σ+fix σ = ∑
σ∈Sn

year σλpex σ+fix σ (2.6a)

= ∑
σ∈Sn

ypcyc σλear σ+fix σ = ∑
σ∈Sn

year σλcyc σ (2.6b)

= ∑
σ∈Sn

ypcyc σλpex σ+fix σ = ∑
σ∈Sn

ypex σλcyc σ. (2.6c)

Finally let Dn(t, λ, y) = An(t, λ, y, 0). From Theorem 1 we deduce

Dn(t, λ, y) = ∑
σ∈Dn

texc σλpex σyear σ (2.7a)

= ∑
σ∈Dn

texc σλcyc σyear σ (2.7b)

= ∑
σ∈Dn

texc σλcyc σypex σ, (2.7c)

where Dn is the set of derangements (that is, permutations without a fixed point.) in Sn.
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Let D∗
n the subset of Dn consisting of derangements without cycle double rise. Fur-

thermore, for k ∈ [n] define the set

D∗
n(k) ={σ ∈ Dn | exc(σ) = k, cdrise(σ) = 0}. (2.8)

We show that the polynomials Dn(t, λ, y) have a nice γ-positive formula, see [3, 9] for
further information.

Theorem 4. We have

Dn(t, λ, y) =
⌊ n

2⌋
∑
k=0

γn,k(λ, y)tk(1 + t)n−2k, (2.9)

where the gamma coefficient γn,k(λ, y) has the following interpretations

γn,k(λ, y) = ∑
σ∈D∗

n(k)
λpex σyear σ (2.10a)

= ∑
σ∈D∗

n(k)
λcyc σyear σ (2.10b)

= ∑
σ∈D∗

n(k)
λcyc σypex σ. (2.10c)

Remark 3. For σ ∈ D∗
n(k), the mapping σ 7→ σ−1 is a bijection from D∗

n(k) to D∗∗
n (k) with

D∗∗
n (k) ={σ ∈ Dn | drop(σ) = k, cdfall(σ) = 0}. (2.11)

Thus, when y = 1 both (2.10b) and (2.10c) reduce to [17, Theorem 11].

In [10], we construct two bijections on Sn to prove the equality between (2.5c) and
(2.5d), namely we have the following result.

Theorem 5. There are bijections Φ1 : Sn → Sn and Φ2 : Sn → Sn such that

(des, des2) σ = (exc, ear)Φ1(σ); (2.12a)
(des, des2, fmax) σ = (exc, pex, fix)Φ2(σ). (2.12b)

Remark 4. Note that Φ2 gives a bijective proof of Conjecture 2.

The rest of this paper is organized as follows: Theorem 1 is proved in Section 3 while
the proofs of other theorems can be found in [10].
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3 Proof of Theorem 1

We recall the two master J-fractions for permutations in [19]. First we associate to each
permutation σ ∈ Sn a pictorial representation by placing vertices 1, 2, . . . , n along the
horizontal axis and then draw an arc from i to σ(i) above (resp. below) the horizontal
axis in case σ(i) > i (resp. σ(i) < i), if σ(i) = i we do not draw any arc. Of course, the
arrows on the arc are redundant, because the arrow on an arc above (resp. below) the
axis always points to the right (resp. left). We then say that a quadruplet i < j < k < l
forms an

• upper crossing (ucross) if k = σ(i) and l = σ(j);

• lower crossing (lcross) if i = σ(k) and j = σ(l);

• upper nesting (unest) if l = σ(i) and k = σ(j);

• lower nesting (lnest) if i = σ(l) and j = σ(k).

See Figure 2 and Figure 3. We also need a refined version of the above statistics. We
define

ucross(j, σ) = #{i < j < k < l : k = σ(i) and l = σ(j)} (3.1a)

unest(j, σ) = #{i < j < k < l : k = σ(j) and l = σ(i)} (3.1b)

lcross(k, σ) = #{i < j < k < l : i = σ(k) and j = σ(l)} (3.1c)

lnest(k, σ) = #{i < j < k < l : i = σ(l) and j = σ(k)} (3.1d)

We also consider the degenerate cases with j = k, by saying that a triplet i < j < l forms
an

• upper pseudo-nesting (upsnest) if l = σ(i) and j = σ(j);

• lower pseudo-nesting (lpsnest) if i = σ(l) and j = σ(j).

See Figure 4. Note that upsnest(σ) = lpsnest(σ) for all σ (see [19]). We therefore write
these two statistics simply as

lev(σ) = upsnest(σ) = lpsnest(σ).

The refined level of a fixed point j (σ(j) = j) is defined by

lev(j, σ) = #{i < j < l : l = σ(i)} = #{i < j < l : i = σ(l)} . (3.2)

And we obviously have
ucross(σ) = ∑

j∈cval
ucross(j, σ) (3.3)
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Figure 2: Upper crossing and lower crossing
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Figure 3: Upper nesting and lower nesting

and analogously for the other four statistics lcross, unest, lnest and lev.
We introduce five infinite families of indeterminates a = (aℓ,ℓ′)ℓ,ℓ′≥0, b = (bℓ,ℓ′)ℓ,ℓ′≥0,

c = (cℓ,ℓ′)ℓ,ℓ′≥0, d = (dℓ,ℓ′)ℓ,ℓ′≥0, e = (eℓ)ℓ≥0 and define the polynomial Qn(a,b, c,d, e)
by

Qn(a,b, c,d, e) =

∑
σ∈Sn

∏
i∈Cval

aucross(i,σ), unest(i,σ) ∏
i∈Cpeak

blcross(i,σ), lnest(i,σ) ×

∏
i∈Cdfall

clcross(i,σ), lnest(i,σ) ∏
i∈Cdrise

ducross(i,σ), unest(i,σ) ∏
i∈Fix

elev(i,σ) . (3.4)

The following is the first master J-fraction for permutations in [19, Theorem 2.9].

Theorem 6. [19] The ordinary generating function of the polynomials Qn(a,b, c,d, e) has the
J-type continued fraction

∞

∑
n=0

Qn(a,b, c,d, e) zn =

1

1 − e0z −
a00b00z2

1 − (c00 + d00 + e1)z −
(a01 + a10)(b01 + b10)z2

1 − (c01 + c10 + d01 + d10 + e2)z −
(a02 + a11 + a20)(b02 + b11 + b20)z2

1 − · · ·
(3.5)

with coefficients

γn = c⋆n−1 + d⋆n−1 + en, (3.6a)
βn = a⋆n−1 b

⋆
n−1, (3.6b)
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Figure 4: Upper pseudo-nesting and lower pseudo-nesting of a fixed point

where

a⋆n−1
def
=

n−1

∑
ℓ=0

aℓ,n−1−ℓ (3.7)

and likewise for b, c, d.

We again define five infinite families of indeterminates: a = (aℓ)ℓ≥0, b = (bℓ,ℓ′)ℓ,ℓ′≥0,
c = (cℓ,ℓ′)ℓ,ℓ′≥0, d = (dℓ,ℓ′)ℓ,ℓ′≥0, e = (eℓ)ℓ≥0; note that a now has one index rather than
two. We then define the polynomial Q̂n(a,b, c,d, e, λ) by

Q̂n(a,b, c,d, e, λ) =

∑
σ∈Sn

λcyc(σ) ∏
i∈Cval

aucross(i,σ)+unest(i,σ) ∏
i∈Cpeak

blcross(i,σ), lnest(i,σ) ×

∏
i∈Cdfall

clcross(i,σ), lnest(i,σ) ∏
i∈Cdrise

ducross(i,σ)+unest(i,σ), unest(σ−1(i),σ) ∏
i∈Fix

elev(i,σ) . (3.8)

The following is the second master J-fraction for permutations in [19, Theorem 2.14].

Theorem 7. [19] The ordinary generating function of the polynomials Q̂n(a,b, c,d, e, λ) has
the J-type continued fraction

∞

∑
n=0

Q̂n(a,b, c,d, e, λ) zn =

1

1 − λe0z −
λa0b00z2

1 − (c00 + d00 + λe1)z −
(λ + 1)a1(b01 + b10)z2

1 − (c01 + c10 + d10 + d11 + λe2)z −
(λ + 2)a2(b02 + b11 + b20)z2

1 − · · ·
(3.9)

with coefficients

γn =
n−1

∑
ℓ=0

cℓ,n−1−ℓ +
n−1

∑
ℓ=0

dn−1,ℓ + λen, (3.10a)

βn = (λ + n − 1) an−1

n−1

∑
ℓ=0

bℓ,n−1−ℓ, (3.10b)
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We derive the following dual version of Theorem 7 from (3.8) by constructing a bijec-
tion, see [10].

Proposition 1 (Dual form of Theorem 7). We have

Q̂n(a,b, c,d, e, λ) =

∑
σ∈Sn

λcyc(σ) ∏
i∈Cval

bucross(i,σ), unest(i,σ) ∏
i∈Cpeak

alcross(i,σ)+lnest(i,σ) ×

∏
i∈Cdfall

dlcross(i,σ)+lnest(i,σ), lnest(σ−1(i),σ) ∏
i∈Cdrise

cucross(i,σ), unest(i,σ) ∏
i∈Fix

elev(i,σ) . (3.11)

We derive Theorem 1 from Theorem 6, Theorem 7 and Proposition 1. Please see [10]
for more details.

Remark 5. As the polynomials Qn and Q̂n are originally defined using cyclic statistics of
permutations, it is then suggested in [19] to seek for interpretations using linear statistics
for these master polynomials. In [10], we give two such interpretations for the polyno-
mials Qn and as an application, we give a group action proof for a gamma-expansion
formula Equation (2.10a) (see Theorem 4). And we conclude the paper [10] with some
open questions.
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