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Set Partitions, Fermions, and Skein Relations
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Abstract. The second author defined an action of the symmetric group Sn on the
vector space spanned by noncrossing partitions of {1, . . . , n} by introducing new skein
relations which resolve local crossings in set partitions. On the other hand, the second
author and Jongwon Kim defined and studied the fermionic diagonal coinvariant ring
FDRn which has a definition analogous to the Garsia-Haiman diagonal coinvariant
ring DRn, but with fermionic (anticommuting) variables. We prove that set partition
skein relations arises naturally in the context of FDRn. This clarifies and sharpens
results on the skein action and gives an Sn-equivariant way to resolve an arbitrary set
partition into a linear combination of noncrossing partitions.
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1 Introduction

This extended abstract relates two representations of the symmetric group Sn — one
combinatorial and one algebraic. We describe the combinatorial module first, and then
turn to the algebraic one.

A set partition π of [n] := {1, . . . , n} is noncrossing if for all 1 ≤ a < b < c < d ≤ n
such that a ∼ c and b ∼ d in π, we have a ∼ b ∼ c ∼ d. We let NC(n) denote the
family of noncrossing set partitions of [n] and NC(n, k) ⊆ NC(n) denote the subfamily
of noncrossing set partitions with k blocks. It is well-known that these families are
counted by the Catalan and Narayana numbers

|NC(n)| = Cat(n) =
1

n + 1

(
2n
n

)
, |NC(n, k)| = Nar(n, k) =

1
n

(
n
k

)(
n

k − 1

)
. (1.1)

Let Π(n) be the family of all set partitions of [n] and Π(n, k) be the set partitions of
[n] with k blocks. The sets Π(n) and Π(n, k) carry a permutation action π 7→ w(π) of the
symmetric group Sn. However, this action does not preserve the noncrossing property;
the subsets NC(n) ⊆ Π(n) and NC(n, k) ⊆ Π(n, k) are not Sn-closed. Nevertheless, the
second author introduced [12] new “set partition skein relations” to define an Sn-action
on the linearized versions C[NC(n)] and C[NC(n, k)] of these sets.
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Figure 1: The three skein relations defining the action of Sn on C[NC(n)]. The red
vertices are adjacent and the shaded blocks have at least three elements. The 3-term
relation obtained by reflecting the middle relation across the y-axis is not shown.

For 1 ≤ i ≤ n − 1, let si = (i, i + 1) ∈ Sn be the adjacent transposition. Given
π ∈ NC(n), the skein action of si on π is given by1

si · π :=

{
−si(π) if si(π) is noncrossing
σ(si(π)) otherwise

(1.2)

where σ(si(π)) ∈ C[NC(n)] resolves the crossing at i, i + 1 using the skein relations in
Figure 1. More precisely, if Bi and Bi+1 are the blocks of si(π) containing i and i + 1 we
have

σ(si(π)) :=


π1 + π2 if |Bi| = |Bi+1| = 2,
π1 + π2 − π3 if |Bi| > 2 and |Bi+1| = 2,
π1 + π2 − π4 if |Bi| = 2 and |Bi+1| > 2,
π1 + π2 − π3 − π4 if |Bi|, |Bi+1| > 2,

(1.3)

where the set partitions π1 = π and π2, π3, π4 are obtained from si(π) as follows:

• π2 replaces Bi and Bi+1 with (Bi ∪ Bi+1)− {i, i + 1} and {i, i + 1},

• π3 replaces Bi and Bi+1 with Bi − {i} and Bi+1 ∪ {i}, and

• π4 replaces Bi and Bi+1 with Bi ∪ {i + 1} and Bi+1 − {i + 1}.

1This version of the skein action is slightly modified from that in [12]. The skein relations are the same,
but the sign convention when si(π) is noncrossing is different.
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Since skein relations preserve the number of blocks C[NC(n, k)] ⊆ C[NC(n)] is a sub-
module for this action and we have C[NC(n)] =

⊕n
k=1 C[NC(n, k)].

The top skein relation in Figure 1 is the famous transformation

7→ + ,

which appears in many contexts including Schubert calculus, centralizer algebras, invari-
ant theory, cluster algebras, and knot theory. In contrast, the lower two skein relations
do not seem to have been defined before the 2017 paper [12].

The skein action was defined to give representation-theoretic proofs of cyclic sieving
results of Reiner–Stanton–White and Pechenik [10, 11]. While its basic properties were
established in [12], its purely combinatorial definition made for very involved proofs –
even verifying that the local action of si satisfies the Coxeter relations used a number
of ‘miraculous’ 16-term identities. It was also unclear whether the skein relations of
Figure 1 were tied to other areas of mathematics.

Our algebraic module is as follows. Let Θn = (θ1, . . . , θn) and Ξn = (ξ1, . . . , ξn) be
two lists of n variables and let ∧{Θn, Ξn} be the rank 2n exterior algebra over these
variables. This ring carries a diagonal action of Sn, viz.

w · θi := θw(i) w · ξi := ξw(i) (w ∈ Sn, 1 ≤ i ≤ n)

Adopting the language of physics, we refer to the anticommuting variables θi and ξi as
fermionic and general elements f ∈ ∧{Θn, Ξn} as fermions.

The second author and Jongwon Kim [5] defined the fermionic diagonal coinvariant ring
to be the quotient

FDRn := ∧{Θn, Ξn}/I (1.4)

where I ⊆ ∧{Θn, Ξn} is the ideal generated by Sn-invariants with vanishing constant
term. The ring FDRn is a bigraded Sn-module, with one grading coming from the θ-
variables and the other from the ξ-variables. The ring FDRn is analogous to the Garsia-
Haiman diagonal coinvariant ring DRn (see [4]) but uses anticommuting rather than
commuting variables. In recent years, various authors [1, 2, 3, 8, 15, 14, 17, 18, 20, 19]
have considered versions of DRn involving mixtures of commuting and anticommuting
variables.

We recall some Sn-module terminology. For a partition λ ⊢ n, let Sλ be the corre-
sponding Sn-irreducible. The Frobenius image of an Sn-module V =

⊕
λ⊢n cλSλ is the

symmetric function Frob V = ∑λ⊢n cλsλ, where sλ is the Schur function of shape λ.
The ring FDRn was shown [5] to have total dimension (2n−1

n ), proving a conjecture
of Zabrocki [19]. The bigraded piece (FDRn)i,j was shown [5] to vanish unless i + j < n.
When i + j < n we have

Frob (FDRn)i,j = s(i,1n−i) ∗ s(j,1n−j) − s(i+1,1n−i−1) ∗ s(j+1,1n−j−1) (1.5)



4 J. Kim and B. Rhoades

where ∗ denotes Kronecker product of Schur functions.
The combinatorics of FDRn went largely unexplored in [5]. A hint at its combinatorial

interest is that in the ‘extremal bidegrees’ i + j = n − 1 it has dimension

dim(FDRn)n−k,k−1 = Nar(n, k) so that
n

∑
k=1

dim(FDRn)n−k,k−1 = Cat(n) (1.6)

which is a consequence of Equation (1.5). Our contributions are as follows.

• We enhance (1.6) by establishing Sn-module isomorphisms

(FDRn)n−k,k−1
∼= C[NC(n, k)] so that

n⊕
k=1

(FDRn)n−k,k−1
∼= C[NC(n)] (1.7)

between the extreme components of FDRn and the skein modules. We prove these
isomorphisms by attaching fermions Fπ, fπ ∈ ∧{Θn, Ξn} to any set partition π ∈
Π(n) which satisfy the skein relations in Figure 1.

• The fermions Fπ give a natural method of resolving crossings in set partitions
which extends the usual crossing resolution in chord diagrams. We describe this
resolution combinatorially.

The skein relations of Figure 1 have appeared in invariant theory. Given two integers
ℓ ≤ n which are both ≥ 2, Patrias, Pechenik, and Striker [9] studied the projective variety
X of two-step flags V• = (0 = V0 ⊆ V1 ⊆ V2 ⊆ Cn) of subspaces of Cn with dim V1 = 2
and dim V2 = ℓ. They found certain natural elements gπ ∈ C[X] of the homogeneous
coordinate ring of X indexed by set partitions which satisfy the relations of Figure 1.
More general flag varieties G/P give a natural setting for possible generalizations of the
relations in Figure 1. We are hopeful that our skein relations will see further application
to algebra, geometry, and topology.

2 Fermions for Set Partitions

We recall a notion of ‘differentiation’ in exterior algebras. Let Ωm = (ω1, . . . , ωm) be a
list of fermionic variables and let ∧{Ωm} be the exterior algebra over these variables.
For 1 ≤ i ≤ m we define

ωi ⊙ (ωj1 · · ·ωjr) :=

{
(−1)s−1ωj1 · · · ω̂js · · ·ωjr if i = js,
0 if i /∈ {j1, . . . , jr},

(2.1)

whenever 1 ≤ j1, . . . , jr ≤ n are distinct indices. Linear extension gives an action ⊙ of
∧{Ωm} on itself called contraction. Using our alphabet (θ1, . . . , θn, ξ1, . . . , ξn) of variables,
we have an action

⊙ : ∧ {Θn, Ξn} ⊗ ∧{Θn, Ξn} −→ ∧{Θn, Ξn} (2.2)
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of ∧{Θn, Ξn} on itself.
Certain derivations of ∧{Θn, Ξn} will be key to our constructions. For any nonempty

subset B ⊆ [n], define the block operator ρB : ∧ {Θn, Ξn} → ∧{Θn, Ξn} by

ρB( f ) :=

ξi · (θi ⊙ f ) B = {i} is a singleton,

∑i,j∈B
i ̸=j

ξ j · (θi ⊙ f ) otherwise, (2.3)

for f ∈ ∧{Θn, Ξn}. The operator ρB raises ξ-degree and lowers θ-degree by one. It
bears formal similarity to the polarization operators y1∂

j
x1 + · · ·+ yn∂

j
xn (see, e.g., [14]) in

the theory of harmonic spaces.

Lemma 1. For any nonempty subsets A and B of [n], we have ρA ◦ ρB = ρB ◦ ρA as operators
on ∧{Θn, Ξn}.

Our aim is to attach fermions to set partitions. The following construction is valid by
Lemma 1.

Definition 1. Let π = {B1 | · · · | Bk} ∈ Π(n) be a set partition. We define two fermions
Fπ, fπ ∈ ∧{Θn, Ξn} by

Fπ := (ρB1 ◦ · · · ◦ ρBk)(θ1 · · · θn) and fπ := (ξ1 + · · ·+ ξn)⊙ Fπ (2.4)

As an example of these objects, for π = {1, 3 | 2} we have

F{1, 3 | 2} = ρ{1, 3} ◦ ρ{2}(θ1θ2θ3) = ρ{1,3}(−ξ2 · θ1θ3) = ξ3ξ2θ3 − ξ1ξ2θ1,

f{1, 3 | 2} = (ξ1 + ξ2 + ξ3)⊙ (ξ3ξ2θ3 − ξ1ξ2θ1) = ξ2θ3 − ξ3θ3 − ξ2θ1 + ξ1θ1.

If π ∈ Π(n, k) has k blocks, the fermion Fπ has bidegree (n − k, k) and the fermion
fπ has bidegree (n − k, k − 1). The Fπ are cleaner to work with, but the fπ are useful for
the study of FDRn.

How do the Fπ and fπ interact with the combinatorics of set partitions? Recall the
natural permutation action w(π) of Sn on Π(n). Denote by ⋆ the sign twist of this action
on C[Π(n)]. Explicitly, we have

w ⋆ π := sign(w)w(π) (w ∈ Sn, π ∈ Π(n)). (2.5)

Proposition 1. The assignments π 7→ Fπ and π 7→ fπ both induce Sn-module homomorphisms

C[Π(n)] −→ ∧{Θn, Ξn},

where C[Π(n)] is endowed with the ⋆-action.
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The map in Proposition 1 is neither surjective (for degree reasons) or injective (by our
next result). Let π ∈ NC(n) be a noncrossing partition and let 1 ≤ i ≤ n be such that
si(π) is not noncrossing. Let Bi and Bi+1 be the blocks of si(π) containing i and i + 1.
For brevity, define a fermion Fσ(si(π)) ∈ ∧{Θn, Ξn} by

Fσ(si(π)) :=


Fπ1 + Fπ2 if |Bi| = |Bi+1| = 2,
Fπ1 + Fπ2 − Fπ3 if |Bi| > 2 and |Bi+1| = 2,
Fπ1 + Fπ2 − Fπ4 if |Bi| = 2 and |Bi+1| > 2,
Fπ1 + Fπ2 − Fπ3 − Fπ4 if |Bi|, |Bi+1| > 2,

(2.6)

where π1, . . . , π4 ∈ NC(n) are as in (1.3). We also define fσ(si(π)) ∈ ∧{Θn, Ξn} by

fσ(si(π)) := (ξ1 + · · ·+ ξn)⊙ Fσ(si(π)). (2.7)

The following result states that the fermions Fπ and fπ satisfy the skein relations. For
complete versions of the proofs in this abstract, see [6].

Theorem 1. Let π ∈ NC(n) be a noncrossing partition and 1 ≤ i ≤ n − 1. Let Bi and Bi+1 be
the blocks of si(π) containing i and i + 1, respectively. Then

Fsi(π) + Fσ(si(π)) = 0 and fsi(π) + fσ(si(π)) = 0. (2.8)

in ∧{Θn, Ξn} where we interpret σ(si(π)) = π if si(π) is noncrossing.

Proof sketch. Assume si(π) is not noncrossing. Introduce a variant ψB of the block oper-
ator ρB on ∧{Θn, Ξn} by

ψB( f ) := ∑
i,j∈B
i ̸=j

ξ j · (θj ⊙ f ) (2.9)

for f ∈ ∧{Θn, Ξn}. In particular, we have ψB = 0 when B is a singleton. Like the
ρ-operators, the ψ-operators commute. The ψ-operators remove the branching in the
definition of Fσ(si(π)). Writing A := Bi − {i} and B := Bi+1 − {i + 1}, one checks the
operator identity

ψA⊔{i+1} ◦ ψB⊔{i} + ψA⊔{i} ◦ ψB⊔{i+1} + ψA⊔B ◦ ψ{i,i+1}

− ψA ◦ ψB⊔{i,i+1} − ψA⊔{i,i+1} ◦ ψB = 0. (2.10)

Applying both sides of Equation (2.10) to θ1 · · · θn (together with the block operators
ρC for blocks C ∈ si(π) other than Bi, Bi+1) yields Fsi(π) + Fσ(si(π)) = 0. The further
application of (ξ1 + · · ·+ ξn)⊙ (−) gives fsi(π) + fσ(si(π)) = 0.
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Singleton blocks play a special role in the theory of skein actions. To this end, we
define subsets Π(n, k, m) ⊆ Π(n, k) and NC(n, k, m) ⊆ NC(n, k) by

Π(n, k, m) := {π ∈ Π(n, k) : π has m singletons},
NC(n, k, m) := {π ∈ NC(n, k) : π has m singletons},

Our families of set partitions give rise to six subspaces of ∧{Θn, Ξn} as follows:

V(n) := span{Fπ : π ∈ NC(n)}, W(n) := span{ fπ : π ∈ NC(n)},
V(n, k) := span{Fπ : π ∈ NC(n, k)}, W(n, k) := span{ fπ : π ∈ NC(n, k)},

V(n, k, m) := span{Fπ : π ∈ NC(n, k, m)}, W(n, k, m) := span{ fπ : π ∈ NC(n, k, m)},

Theorem 1 guarantees that these subspaces are closed under the action of Sn. The next
result states that they are isomorphic to the skein modules and implies that their defining
spanning sets are in fact bases.

Theorem 2. Let m ≤ k ≤ n. The action of si on C[NC(n)] defined in Equation (1.2) satisfies
the Coxeter relations, and so extends to an action of Sn on C[NC(n)] for which C[NC(n, k)]
and C[NC(n, k, m)] are submodules.

Furthermore, the assignments Fπ ↔ fπ ↔ π induce Sn-module isomorphisms

V(n) ∼= W(n) ∼= C[NC(n)], V(n, k) ∼= W(n, k) ∼= C[NC(n, k)],
V(n, k, m) ∼= W(n, k, m) ∼= C[NC(n, k, m)].

for any m ≤ k ≤ n. The common Frobenius images of these modules are

Frob C[NC(n)] =
n

∑
k=1

Frob C[NC(n, k)], Frob C[NC(n, k)] =
k

∑
m=1

Frob C[NC(n, k, m)],

Frob C[NC(n, k, m)] = s(k−m,k−m,1n−2k+m) · s(1m).

Proof sketch. By Theorem 1, the map π 7→ Fπ gives Sn-epimorphisms from the skein
modules to the V-modules. One then proves, using parabolic symmetrizers and an-
tisymmetrizers in C[Sn], that V(n, k, 0) ∼= S(k,k,1n−2k) is the Sn-irreducible of flag shape
(k, k, 1n−2k) ⊢ n. Next, one checks directly that

V(n, k, m) ∼= IndSn
Sn−m×Sm

V(n − m, k − m, 0)⊗ signSm
(2.11)

as Sn-modules. This proves dim V(n, k, m) = |NC(n, k, m)| so that the epimorphism
V(n, k, m) ↠ C[NC(n, k, m)] is an isomorphism. The other isomorphisms are proven in
a similar way.

As mentioned earlier, the proof in [12] that the skein action of si on C[NC(n)] satisfied
the Coxeter relations was lengthy and calculation intensive. By contrast, fermions made
the proof of Theorem 2 much cleaner. The simplicity of the block operators ρB give
conceptual reason for ‘why’ the skein action should exist.
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3 Resolving Set Partition Crossings

A matching of size n is a set partition of [n] in which every block has size 1 or 2. Any
matching may be transformed into a linear combination of noncrossing matchings by
repeated use of the local transformation

7→ + .

For example, resolving crossings in the ‘asterisk of order 4’ yields

7→ + + + + + + 2 ·

+ + + + + + + 2 · .

Among other things, this resolution combinatorializes the representation theory of the
Temperley-Lieb algebra TLn, the Kazhdan-Lusztig cellular basis of the Sn-irreducible of
2-row rectangular shape, sl2-web bases, and the coordinate ring of the Grassmannian of
2-planes in n-space [7, 13, 16]. Thanks to skein actions, we can extend this resolution
from matchings to arbitrary set partitions.

Definition 2. Let π ∈ Π(n) be a set partition. We define p(π) ∈ C[NC(n)] by

p(π) = ∑
τ∈NC(n)

cπ,τ · τ,

where the cπ,τ are the unique coefficients so that Fπ = ∑τ∈NC(n) cπ,τ · Fτ.

When π is a matching, p(π) agrees with the resolution described above up to a global
sign. For a non-matching example, if π = {1, 2, 6 | 3, 4, 8 | 5, 7} ∈ Π(8), applying p
yields

1
2

3
45

6

7
8 1

2

3
45

6

7
8

7→ − + − +

− + − +

1
2

3
45

6

7
8 1

2

3
45

6

7
8

1
2

3
45

6

7
8 1

2

3
45

6

7
8

1
2

3
45

6

7
8 1

2

3
45

6

7
8

1
2

3
45

6

7
8 1

2

3
45

6

7
8

1
2

3
45

6

7
8 1

2

3
45

6

7
8

1
2

3
45

6

7
8 1

2

3
45

6

7
8

1
2

3
45

6

7
8 1

2

3
45

6

7
8 1

2

3
45

6

7
8 1

2

3
45

6

7
8

1
2

3
45

6

7
8 1

2

3
45

6

7
8

The map p fixes noncrossing set partitions and is equivariant with respect to Sn-actions.
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Theorem 3. The linear map p : C[Π(n)] ↠ C[NC(n)] is an Sn-equivariant projection where
C[Π(n)] carries the ⋆-action and C[NC(n)] carries the skein action.

Proof. This follows from Theorem 1 and Theorem 2.

Corollary 1. Let w ∈ Sn and π ∈ NC(n) be such that w(π) is noncrossing. In the skein action
on C[NC(n)] we have w · π = sign(w)w(π).

Proof. By Theorem 3 we calculate

sign(w)w(π) = sign(w)p(w(π)) = p(w ⋆ π) = w · p(π) = w · π, (3.1)

where we used that w(π) and π are noncrossing, hence fixed by p.

To see Corollary 1 in action, consider applying the long cycle c = (1, 2, 3, 4, 5, 6) ∈ S6
to π = {1, 5, 6 | 2 4 | 3} ∈ NC(6). Using the skein action, we calculate the action of
c = s1s2s3s4s5, cancelling terms along the way:

1
2

34
5

6 1
2

34
5

6
s57−→−

1
2

34
5

6 1
2

34
5

6
s47−→− − +

1
2

34
5

6 1
2

34
5

6 1
2

34
5

6 1
2

34
5

6 1
2

34
5

6 1
2

34
5

6
s37−→

+ − s27−→−
1

2
34

5
6 1

2
34

5
6 1

2
34

5
6 1

2
34

5
6 1

2
34

5
6 1

2
34

5
6 1

2
34

5
6 1

2
34

5
6

+ + − +
1

2
34

5
6 1

2
34

5
6 1

2
34

5
6 1

2
34

5
6 1

2
34

5
6 1

2
34

5
6 1

2
34

5
6 1

2
34

5
6

s17−→−
1

2
34

5
6 1

2
34

5
6

− + − + + −
1

2
34

5
6 1

2
34

5
6 1

2
34

5
6 1

2
34

5
6 1

2
34

5
6 1

2
34

5
6 1

2
34

5
6 1

2
34

5
6 1

2
34

5
6 1

2
34

5
6 1

2
34

5
6 1

2
34

5
6

As Corollary 1 says, the end result is sign(c) · c(π) = −c(π) = −{1, 2, 6 | 3, 5 | 4}.
Corollary 1 implies a cyclic sieving result of Reiner, Stanton, and White [11]. The q-
Narayana number is

Narq(n, k) :=
q(n−k)(n−k+1)

[n]q

[
n
k

]
q

[
n

k − 1

]
q
, (3.2)

where we use the standard q-analog notation

[n] := 1 + q + · · ·+ qn−1, [n]!q := [n]q[n − 1]q · · · [1]q, and
[

n
k

]
q

:=
[n]!q

[k]!q · [n − k]!q
.

Corollary 2. The triple (NC(n, k), Zn, Narq(n, k)) exhibits the cyclic sieving phenomenon
where Zn acts on NC(n, k) by rotation.

Proof sketch. Corollary 1 implies that the skein action of c = (1, . . . , n) on C[NC(n, k)] is
the scalar sign(c) = (−1)n−1 times rotation. Theorem 2 gives the Sn-isomorphism type
of C[NC(n, k)]. Now apply Springer’s Theorem on regular elements.
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Given π ∈ Π(n), calculating p(π) ∈ C[NC(n)] using Definition 2 involves expanding
Fπ as a linear combination of {Fτ : τ ∈ NC(n)}. There is a purely combinatorial way to
compute p(π) as follows.

If π ∈ Π(n) is not noncrossing, let A, B ∈ π be two blocks whose convex hulls cross
on the circle labeled clockwise with 1, 2, . . . , n. The union A ∪ B may be expressed as a
cyclic sequence (C1, C2, . . . , C2m) of nonempty sets where each C2i is a cyclically contigu-
ous subset of A and each C2i+1 is a cyclically contiguous subset of B. For example, if
π = {A | B} ∈ Π(16) is the two-block set partition with

A = {1, 2, 4, 8, 9, 10, 12, 13, 14, 15, 16} and ]B = {3, 5, 6, 7, 11}

then m = 3, and we may take

(C1, . . . , C6) = ({1, 2, 12, 13, 14, 15, 16}, {3}, {4}, {5, 6, 7}, {8, 9, 10}, {11}).

Theorem 4. With π, A, B, and (C1, C2, . . . , C2m) as above we have

Fπ = ∑
1≤i≤j≤2m

ϵ(i, j) · Fπ(i,j)

where π(i, j) is obtained from π by replacing A and B with C := Ci ∪ Ci+1 ∪ · · · ∪ Cj and
D := (A ∪ B)− C and the coefficient ϵ(i, j) is 0 if either of C or D are singletons and (−1)j−i

otherwise.

Theorem 4 resolves the local crossing between the blocks A, B ∈ π. In the example
above, this resolution looks like

C1

C2

C3C4

C5

C6 C1

C2

C3C4

C5

C6

= + +

− − − − − −

+ + +

C1

C2

C3C4

C5

C6 C1

C2

C3C4

C5

C6 C1

C2

C3C4

C5

C6 C1

C2

C3C4

C5

C6 C1

C2

C3C4

C5

C6 C1

C2

C3C4

C5

C6

C1

C2

C3C4

C5

C6 C1

C2

C3C4

C5

C6 C1

C2

C3C4

C5

C6 C1

C2

C3C4

C5

C6 C1

C2

C3C4

C5

C6 C1

C2

C3C4

C5

C6 C1

C2

C3C4

C5

C6 C1

C2

C3C4

C5

C6 C1

C2

C3C4

C5

C6 C1

C2

C3C4

C5

C6 C1

C2

C3C4

C5

C6 C1

C2

C3C4

C5

C6

C1

C2

C3C4

C5

C6 C1

C2

C3C4

C5

C6 C1

C2

C3C4

C5

C6 C1

C2

C3C4

C5

C6 C1

C2

C3C4

C5

C6 C1

C2

C3C4

C5

C6

where we have compressed the sets Ci to vertices and terms with an isolated C2, C3,
and C6 do not appear since these sets are singletons. For arbitrary π ∈ Π(n), repeated
applications of this rule yield the resolution p(π) of the crossings in π.
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4 Fermionic Diagonal Coinvariants and the Skein Action

Thus far, we have considered the fermions Fπ and fπ as members of the exterior algebra
∧{Θn, Ξn}. The next theorem establishes that { fπ : π ∈ NC(n)} descends to a basis of
the ‘extreme bidegree part’ of its quotient FDRn.

Theorem 5. Let k ≤ n. The set { fπ : π ∈ NC(n, k)} descends to a basis of (FDRn)n−k,k−1
and the composite map

W(n, k) ↪→ ∧{Θn, Ξn}n−k,k−1 ↠ (FDRn)n−k,k−1

is an isomorphism of Sn-modules.

Proof sketch. We need only prove that that { fπ : π ∈ NC(n, k)} descends to a basis.
Since dim (FDRn)n−k,k−1 = Nar(n, k), it suffices to show linear independence. In [5, 8] it
is proven that the defining ideal I of FDRn is generated by three elements:

θ1 + · · ·+ θn, ξ1 + · · ·+ ξn, and θ1ξ1 + · · ·+ θnξn.

One deduces that { fπ : π ∈ NC(n, k)} is orthogonal to I ∩ ∧{Θn, Ξn}n−k,k−1 under
the inner product ⟨−,−⟩ on ∧{Θn, Ξn}n−k,k−1 which declares the ‘fermionic monomial
basis’ {θi1 · · · θin−k ξ j1 · · · ξ jk−1 : 1 ≤ i1 < · · · < in−k ≤ n, 1 ≤ j1 < · · · < jk−1 ≤ n} to be
orthonormal. The linear independence of { fπ : π ∈ NC(n, k)} in (FDRn)n−k,k−1 follows
from Theorem 2.

Theorem 5 gives a combinatorial basis for the portion of FDRn =
⊕

i+j<n(FDRn)i,j in
extreme bidegrees i + j = n − 1. In a forthcoming paper, the first author will extend our
results to all bidegrees i + j < n.
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