Classifying Levi-Spherical Schubert Varieties

Yibo Gao ${ }^{* 1}$, Reuven Hodges ${ }^{\dagger 2}$, and Alexander Yong ${ }^{\ddagger 3}$
${ }^{1}$ Department of Mathematics, M.I.T., Cambridge, MA 02139, USA
${ }^{2}$ Department of Mathematics, Univ. California, San Diego, La Jolla, CA 92093, USA
${ }^{3}$ Department of Mathematics, Univ. Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Abstract

A Schubert variety in the flag manifold $G L_{n} / B$ is Levi-spherical if the action of a Borel subgroup in a Levi subgroup of a standard parabolic has an open dense orbit. We present some recent combinatorial developments on this topic, including a classification in terms of spherical elements of a symmetric group. We offer a new conjecture that extends the classification to other Lie types, along with supporting evidence.

Keywords: key polynomials, Schubert varieties, Levi subgroups, spherical varieties

1 Introduction

1.1 Schubert varieties and Levi-sphericality

Let Flags $\left(\mathbb{C}^{n}\right)$ be the variety of complete flags $\langle 0\rangle \subset F_{1} \subset F_{2} \subset \cdots \subset F_{n-1} \subset \mathbb{C}^{n}$, where F_{i} is a subspace of dimension i. The group $G L_{n}$ of invertible $n \times n$ matrices over \mathbb{C} acts transitively on Flags $\left(\mathbb{C}^{n}\right)$ by change-of-basis. Define the standard flag by $F_{i}=\operatorname{span}\left(\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{i}\right)$ where \vec{e}_{i} is the i-th standard basis vector. The stabilizer of this flag is $B \subset G L_{n}$, the Borel subgroup of upper triangular invertible matrices. Thus, Flags $\left(\mathbb{C}^{n}\right) \cong G L_{n} / B$. The Borel B acts on $G L_{n} / B$ with finitely many orbits. These orbits are the Schubert cells $X_{w}^{\circ}=B w B / B \cong \mathbb{C}^{\ell(w)}$ and are indexed by w in the symmetric group \mathfrak{S}_{n}. Their closures $X_{w}:=\overline{X_{w}^{\circ}}$ are the Schubert varieties and are of interest in combinatorial algebraic geometry and Lie theory. We refer the reader to [7] for more background.

For $I \subseteq J(w):=\left\{j \in[n-1]: w^{-1}(j)>w^{-1}(j+1)\right\}$, let $L_{I} \subseteq G L_{n}$ be the Levi subgroup of invertible block diagonal matrices

$$
L_{I} \cong G L_{d_{1}-d_{0}} \times G L_{d_{2}-d_{1}} \times \cdots \times G L_{d_{k}-d_{k-1}} \times G L_{d_{k+1}-d_{k}} .
$$

L_{I} acts on X_{w}; see, e.g., [10, Section 1.2]. This is the main concept of our interest:
Definition 1.1 ([10, Definition 1.8]). X_{w} is L_{I}-spherical if X_{w} has an open dense orbit of a Borel subgroup of L_{I}. If in addition, $I=J(w), X_{w}$ is maximally spherical.

[^0]The purpose of this extended abstract is to review recent work [10, 11, 9, 3, 8] about Definition 1.1. We also describe new (as yet, unpublished) progress for other Lie types.

1.2 Levi spherical permutations and the classification theorem

Let $G=G L_{n}$. Its Weyl group $W \cong \mathfrak{S}_{n}$ consists of permutations of $[n]:=\{1,2, \ldots, n\}$. Thus W is generated, as a Coxeter group, by the simple transpositions $S=\left\{s_{i}=(i i+\right.$ $1): 1 \leq i \leq n-1\}$. The set of left descents is $J(w)=\left\{j \in[n-1]: w^{-1}(j)>w^{-1}(j+1)\right\}$ $(j \in J(w)$ if $j+1$ appears to the left of j in w 's one-line notation). Let $\ell(w)$ be the Coxeter length of w. For $w \in \mathfrak{S}_{n}$,

$$
\ell(w)=\#\{1 \leq i<j \leq n: w(i)>w(j)\}
$$

is the number of inversions of w.
A parabolic subgroup W_{I} of W is the subgroup generated by a subset $I \subset S$. Furthermore, a standard Coxeter element $c \in W_{I}$ is the product of the elements of I listed in some order. Let $w_{0}(I)$ denote the longest element of W_{I}.
Definition 1.2 ([9, Definition 1.1]). Let $w \in W$ and fix $I \subseteq J(w)$. Then w is I-spherical if $w_{0}(I) w$ is a standard Coxeter element for some parabolic subgroup $W_{I^{\prime}}$ of W.

In [10, Conjecture 3.2], a conjectural combinatorial classification of L_{I}-spherical Schubert varieties was stated. In [9] (see Section 3) it was proved that said conjecture is equivalent to the following theorem of ibid.
Theorem 1.3 ([9, Theorem 1.5]). Let $w \in \mathfrak{S}_{n}$ and $I \subseteq J(w) . X_{w} \subseteq G L_{n} / B$ is L_{I}-spherical if and only if w is I-spherical.

The proof uses the theory of Demazure characters and their manifestation in algebraic combinatorics, the key polynomials. One of the results used is a classification of multiplicity-free key polynomials [11, Theorem 1.1]. This is explained in Section 2.

Let us also mention some other related results. Theorem 1.3 is used in C. Gaetz's [8], which proves [10, Conjecture 3.8]. Consequently, this gives a pattern avoidance criterion for maximally spherical Schubert varieties [8, Theorem 1.4, Corollary 1.5]. Earlier work of D. Brewster-R. Hodges-A. Yong [3] proved a weaker numerical assertion, that

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[w \in S_{n}, w \text { is } I \text {-spherical for some } I \subseteq J(w)\right]=0
$$

as well as its geometric counterpart

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[w \in S_{n}, X_{w} \text { is } L_{I} \text {-spherical for some } I \subseteq J(w)\right]=0
$$

However, the proofs in ibid. did not depend on [11] but rather a definition of proper permutations. Work in preparation of J. Balogh, D. Brewster, and the second author extend the results of ibid. to other Lie types.

Our focus now turns to extending Theorem 1.3 to other Lie types. In Section 4 we report on our ongoing project in that direction after [10, 11, 3, 9].

Acknowledgements

We thank Alexander Woo for helpful conversations.

2 Key polynomials and sphericality

The problem of deciding if a Schubert variety is Levi spherical is closely connected to the algebraic combinatorics of key polynomials.

2.1 Key polynomials

Let Pol $:=\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be the polynomial ring in the indeterminates $x_{1}, x_{2}, \ldots, x_{n}$. For $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in$ Comp $_{n}$, the key polynomial κ_{α} is defined as follows. If α is weakly decreasing, then $\kappa_{\alpha}:=\prod_{i} x_{i}^{\alpha_{i}}$. Otherwise, suppose $\alpha_{i}>\alpha_{i+1}$. Let

$$
\pi_{i}: \text { Pol } \rightarrow \text { Pol, } f \mapsto \frac{x_{i} f\left(\ldots, x_{i}, x_{i+1}, \ldots\right)-x_{i+1} f\left(\ldots, x_{i+1}, x_{i}, \ldots\right)}{x_{i}-x_{i+1}}
$$

and $\kappa_{\alpha}=\pi_{i}\left(\kappa_{\widehat{\alpha}}\right)$ where $\widehat{\alpha}:=\left(\alpha_{1}, \ldots, \alpha_{i+1}, \alpha_{i}, \ldots\right)$.
The operators π_{i} satisfy the relations

$$
\begin{aligned}
\pi_{i} \pi_{j} & =\pi_{j} \pi_{i}(\text { for }|i-j|>1) \\
\pi_{i} \pi_{i+1} \pi_{i} & =\pi_{i+1} \pi_{i} \pi_{i+1} \\
\pi_{i}^{2} & =\pi_{i} ;
\end{aligned}
$$

see [14]. Recall that the Demazure product on \mathfrak{S}_{n} is defined by

$$
w * s_{i}= \begin{cases}w s_{i} & \text { if } \ell\left(w s_{i}\right)=\ell(w)+1 \\ 0 & \text { otherwise }\end{cases}
$$

This product is associative. Then $R=\left(s_{i_{1}}, \cdots, s_{i_{\ell}}\right)$ is a Hecke word of w if $w=s_{i_{1}} * s_{i_{2}} *$ $\cdots * s_{i_{\ell}}$. For any $w \in \mathfrak{S}_{n}$ one unambiguously defines

$$
\pi_{w}:=\pi_{i_{1}} \pi_{i_{2}} \cdots \pi_{i_{\ell}}
$$

where $R=\left(s_{i_{1}}, \ldots, s_{i_{\ell}}\right)$ is a Hecke word of w.
Next, suppose $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}\right)$ is a partition, and $w \in \mathfrak{S}_{n}$. Define

$$
\kappa_{w \lambda}:=\kappa_{\lambda_{w^{-1}(1)}, \ldots, \lambda_{w^{-1}(n)}} .
$$

Therefore, $\kappa_{w \lambda}=\pi_{w} \kappa_{\lambda}$.

2.2 Split-symmetry and multiplicity-freeness

We recall some notions from [10, Section 4]. Suppose

$$
d_{0}:=0<d_{1}<d_{2}<\cdots<d_{k}<d_{k+1}:=n
$$

and $D=\left\{d_{1}, \ldots, d_{k}\right\}$. Let Π_{D} be the subring of Pol consisting of the polynomials that are separately symmetric in $X_{i}:=\left\{x_{d_{i-1}+1}, \ldots, x_{d_{i}}\right\}$ for $1 \leq i \leq k+1$. If $f \in \Pi_{D}, f$ is D-split-symmetric.

The ring Π_{D} has a basis of D-Schur polynomials

$$
s_{\lambda^{1}, \ldots, \lambda^{k}}:=s_{\lambda^{1}}\left(X_{1}\right) s_{\lambda^{2}}\left(X_{2}\right) \cdots s_{\lambda^{k}}\left(X_{k}\right),
$$

where

$$
\left(\lambda^{1}, \ldots, \lambda^{k}\right) \in \operatorname{Par}_{D}:=\operatorname{Par}_{d_{1}-d_{0}} \times \cdots \times \operatorname{Par}_{d_{k+1}-d_{k^{\prime}}}
$$

and Par_{t} is the set of partitions with at most t nonzero-parts. See [10, Definition 4.3, Corollary 4.4]. Thus, for any $f \in \Pi_{D}$ there is a unique expression

$$
\begin{equation*}
f=\sum_{\left(\lambda^{1}, \ldots, \lambda^{k}\right) \in \operatorname{Par}_{D}} c_{\lambda^{1}, \ldots, \lambda^{k}} s_{\lambda^{1}, \ldots, \lambda^{k}} . \tag{2.1}
\end{equation*}
$$

Definition 2.1 ([10, Definition 4.7]). If $c_{\lambda^{1}, \ldots, \lambda^{k}} \in\{0,1\}$ for all $\left(\lambda^{1}, \ldots, \lambda^{k}\right) \in \operatorname{Par}_{D}, f$ is D-multiplicity-free.

Example 2.2 (Vieta's formulas, a reinterpretation). Let $f=\prod_{i=2}^{n}\left(x_{1}+x_{i}\right)$. This polynomial is D-split symmetric for $D=\{1\}$, i.e., it is separately symmetric in $\left\{x_{1}\right\}$ and $\left\{x_{2}, \ldots, x_{n}\right\}$. Then (2.1) is the D-multiplicity-free expansion

$$
\begin{equation*}
f=s_{n-1}\left(x_{1}\right) s_{\varnothing}\left(x_{2}, \ldots, x_{n}\right)+s_{n-2}\left(x_{1}\right) s_{1}\left(x_{2}, \ldots, x_{n}\right)+\cdots+s_{\varnothing}\left(x_{1}\right) s_{1^{n-1}}\left(x_{2}, \ldots, x_{n}\right) . \tag{2.2}
\end{equation*}
$$

Thinking of f as a monic polynomial in x_{1} with roots $-x_{2},-x_{3}, \ldots,-x_{n},(2.2)$ is just stating Vieta's formulas.

Definition 2.1 unifies two disparate concepts of multiplicity-freeness:
(MF1) Suppose $f=f\left(x_{1}, \ldots, x_{n}\right)$ is symmetric and

$$
f=\sum_{\lambda \in \operatorname{Par}_{n}} c_{\lambda} s_{\lambda} .
$$

Then f is multiplicity-free if $c_{\lambda} \in\{0,1\}$ for all λ. This is the case $D=\varnothing$. For example, J. Stembridge [17] classified multiplicity-freeness when $f=s_{\mu} s_{v}$. See [10] for additional references.
(MF2) Now let

$$
f=\sum_{\alpha \in \mathrm{Comp}_{n}} c_{\alpha} x^{\alpha} \in \text { Pol. }
$$

f is multiplicity-free if $c_{\alpha} \in\{0,1\}$ for all α. This corresponds to $D=[n-1]$. For instance, recent work of A. Fink-K. Mészáros-A. St. Dizier [6] characterizes multiplicity-free Schubert polynomials.
In [11, Theorem 1.1], an analogue, for key polynomials, of the aforementioned result [6] was proved. That key polynomial result plays a role in the proof of Theorem 1.3.
Definition 2.3 (Composition patterns [11, Definition 4.8]). Let

$$
\text { Comp }:=\bigcup_{n=1}^{\infty} \operatorname{Comp}_{n}
$$

For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\ell}\right), \beta=\left(\beta_{1}, \ldots, \beta_{k}\right) \in$ Comp, α contains the composition pattern β if there exist integers $j_{1}<j_{2}<\cdots<j_{k}$ that satisfy:

- $\left(\alpha_{j_{1}}, \ldots, \alpha_{j_{k}}\right)$ is order isomorphic to $\beta\left(\alpha_{j_{s}} \leq \alpha_{j_{t}}\right.$ if and only if $\left.\beta_{s} \leq \beta_{t}\right)$,
- $\left|\alpha_{j_{s}}-\alpha_{j_{t}}\right| \geq\left|\beta_{s}-\beta_{t}\right|$.

The first condition is the naïve notion of pattern containment, while the second allows for minimum relative differences. If α does not contain β, then α avoids β. For $S \subset$ Comp, α avoids S if α avoids all the compositions in S.
Example 2.4. The composition ($3, \underline{1}, 4, \underline{2}, \underline{2}$) contains $(0,1,1)$. It avoids $(0,2,2)$.
Define

$$
\mathrm{KM}=\{(0,1,2),(0,0,2,2),(0,0,2,1),(1,0,3,2),(1,0,2,2)\} .
$$

Let $\overline{\mathrm{KM}}_{n}$ be those $\alpha \in \mathrm{Comp}_{n}$ that avoid KM.
Theorem 2.5 ([11, Theorem 1.1]). κ_{α} is $[n-1]$-multiplicity-free if and only if $\alpha \in \overline{\mathrm{KM}}_{n}$.
It is an open problem to classify when $\kappa_{\alpha} \in \Pi_{D}$ is D-multiplicity-free. (The analogous question for Schubert polynomials, whose solution would generalize [6] is also open.)

2.3 Geometry to combinatorics connection

This fact from [10] allows us to turn the geometric question of Levi-sphericality into D-multiplicity-freeness of key polynomials:
Theorem 2.6 ([10, Theorem 4.13]). Let $\lambda \in \operatorname{Par}_{n}$, and $w \in \mathfrak{S}_{n}$. Suppose $I \subseteq J(w)$ and $D=[n-1]-I . X_{w}$ is L_{I}-spherical if and only if $\kappa_{w \lambda}$ is D-multiplicity-free for all $\lambda \in \operatorname{Par}_{n}$.

In view of Theorem 2.6, the following is clearly equivalent to Theorem 1.3.
Theorem 2.7. Let $D=[n-1]-I$. w is I-spherical if and only if $\kappa_{w \lambda}$ is D-multiplicity-free for all $\lambda \in \operatorname{Par}_{n}$.

2.4 Proof sketch for Theorem 2.7 (and Theorem 1.3)

We outline the argument from [9]. The " \Rightarrow " proof starts with two simple observations:
Lemma 2.8. If $w=w_{0}(I) c$ where c is a standard Coxeter element, then $\kappa_{w \lambda}=\pi_{w_{0}(I)} \kappa_{c \lambda}$.
For any $\alpha \in \mathrm{Comp}_{n}$, let

$$
a_{\alpha_{1}+n-1, \alpha_{2}+n-2, \ldots, \alpha_{n}}:=\operatorname{det}\left(x_{j}^{\lambda_{i}+n-i}\right)_{1 \leq i, j \leq n}
$$

In particular, $\Delta_{n}:=a_{n-1, n-2, \ldots, 0}=\prod_{1 \leq j<k \leq n}\left(x_{j}-x_{k}\right)$ is the Vandermonde determinant.
Define a generalized Schur polynomial s_{α} by

$$
\begin{equation*}
s_{\alpha}\left(x_{1}, \ldots, x_{n}\right):=a_{\alpha_{1}+n-1, \alpha_{2}+n-2, \ldots, \alpha_{n}} / a_{n-1, n-2, \ldots, 1,0} \tag{2.3}
\end{equation*}
$$

Definition 2.9 ([9, Definition 3.4]). If $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in$ Comp $_{n}$ and $i<j \in[n-1]$, define $t_{i j}: \mathrm{Comp}_{n} \rightarrow \mathrm{Comp}_{n}$ by

$$
\begin{equation*}
t_{i j}\left(\ldots, \beta_{i}, \ldots, \beta_{j}, \ldots\right)=\left(\ldots, \beta_{j}-(j-i), \ldots, \beta_{i}+(j-i), \ldots\right) \tag{2.4}
\end{equation*}
$$

Also let $t_{i}:=t_{i+1}$.
This is well-known, and clear from (2.3) and the row-swap property of determinants:
Lemma 2.10. $s_{t_{i} \alpha}\left(x_{1}, \ldots, x_{n}\right)=-s_{\alpha}\left(x_{1}, \ldots, x_{n}\right)$. If $\alpha_{i+1}=\alpha_{i}+1$ then $s_{\alpha}\left(x_{1}, \ldots, x_{n}\right)=0$.
It follows that:
Lemma 2.11. Let $\beta \in$ Comp $_{n}$, then

$$
\pi_{w_{0}(I)}\left(x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}}\right) \in\left\{0, \pm s_{\alpha^{1}, \ldots, \alpha^{k}}\right\}
$$

where $\left(\alpha^{1}, \ldots, \alpha^{k}\right) \in \operatorname{Par}_{D}$.
Fix $\gamma \in \operatorname{Par}_{D}$. We argue [9, Proposition 5.7] that the set

$$
\mathcal{P}_{c \lambda, \gamma}:=\left\{\beta \in \operatorname{Comp}_{n}:\left[x^{\beta}\right] \kappa_{c \lambda} \neq 0 \text { and } \pi_{w_{0}(I)} x^{\beta}= \pm s_{\gamma}\right\}
$$

has the structure of a poset isomorphic to an interval in (strong) Bruhat order of the Young subgroup $\mathfrak{S}_{d_{1}-d_{0}} \times \cdots \times \mathfrak{S}_{d_{k+1}-d_{k}}$ of \mathfrak{S}_{n}. This poset isomorphism is deduced in part by using combinatorial properties of key polynomials from [1,5,12]. The technical core is to establish a "diamond property" (in the sense of [15]) for $\mathcal{P}_{c \lambda, \gamma}$; this is [9, Theorem 5.3]. The upshot is that if

$$
\Phi: \mathcal{P}_{c \lambda, \gamma} \rightarrow \mathfrak{S}_{d_{1}-d_{0}} \times \cdots \times \mathfrak{S}_{d_{k+1}-d_{k}}
$$

is the aforementioned poset isomorphism, then in fact

$$
\pi_{w_{0}(I)} x^{\beta}=(-1)^{\ell(\Phi(\beta))} s_{\gamma} .
$$

Multiplicity-freeness of $\kappa_{w \lambda}$ then follows from this (mild extension of a) result of V. Deodhar [4], thus completing the (sketch) proof of \Rightarrow :

Lemma 2.12 ([9, Lemma 5.6]). Let $\mathfrak{S}:=\mathfrak{S}_{d_{1}-d_{0}} \times \cdots \times \mathfrak{S}_{d_{k+1}-d_{k}}$ be a Young subgroup of \mathfrak{S}_{n}. Suppose $[u, v] \subset \mathfrak{S}$ is an interval. Then

$$
\sum_{u \leq w \leq v}(-1)^{\ell(u w)}= \begin{cases}1 & \text { if } u=v \tag{2.5}\\ 0 & \text { otherwise }\end{cases}
$$

Sketch proof of Theorem $2.7^{\prime \prime} \Leftarrow$ ": Now suppose w is not I-spherical. By Proposition 3.4, $u:=w_{0}(I) w$ contains either a 321 pattern or a 3412 pattern. We select a suitable λ depending on which pattern u contains. Then we show that $\kappa_{w \lambda}$ has multiplicity. This is achieved using Kohnert's rule for key polynomials [12] combined with some further analysis of the poset $\mathcal{P}_{u \lambda}$ (defined similarly to $\mathcal{P}_{c \lambda}$ above).

The following example, illustrates the \Rightarrow argument.
Example 2.13. Let $w=265439871$ and $\lambda=987654321$. Then $J(w)=\{1,3,4,5,7,8\}$ and let $I=J(w)$. Thus $w_{0}(I)=216543987$ and w factors as $w_{0}(I) c$ with c the standard Coxeter element $c=134567892=s_{2} s_{3} s_{4} s_{5} s_{6} s_{7} s_{8}$. Additionally, $c^{-1}=192345678$ and $w^{-1}=915432876$. This yields $\alpha=c \lambda=918765432$, and $w \lambda=195678234$.

Since $D=[9]-I=\{2,6\}$, the key polynomial $\kappa_{w \lambda}=\kappa_{195678234} \in \Pi_{D}$ is separately symmetric in the sets of indeterminates $\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}, x_{5}, x_{6}\right\},\left\{x_{7}, x_{8}, x_{9}\right\}$.

By [10, Theorem 4.13(II)], the fact that c is a standard Coxeter element implies that $\kappa_{c \lambda}$ is $[n-1]$-multiplicity-free. Now we consider the term $x^{981765432}$ that appears in $\kappa_{c \lambda}$.

Observe $\pi_{w_{0}(I)}\left(x^{981765432}\right)=s_{98, \underline{1765,432}}=-s_{98,6 \underline{65}, 432}=s_{9,6535,432}=-s_{98,6544,432}$, where in each step we have underlined the swaps from applying Lemma 2.10.

The $\beta \in \mathrm{Comp}_{n}$ such that the monomial x^{β} of $\kappa_{c \lambda}$ satisfies $\pi_{w_{0}(I)}\left(x^{\beta}\right)= \pm s_{98,6544,432,}$ along with the signs they contribute, are:

$$
\begin{gathered}
{[9,8,1,7,6,5,4,3,2]:-1,[9,8,2,7,6,4,4,3,2]: 1,[9,8,6,2,6,5,4,3,2]: 1} \\
{[9,8,4,7,3,5,4,3,2]: 1,[9,8,6,3,6,4,4,3,2]:-1,[9,8,6,5,3,5,4,3,2]:-1} \\
{[9,8,4,7,4,4,4,3,2]:-1,[9,8,6,5,4,4,4,3,2]: 1 .}
\end{gathered}
$$

These elements form the poset $\mathcal{P}_{c \lambda, \gamma}=98,6544,432$ which is shown in Figure 1 and is isomorphic to the interval [id, $s_{3} s_{4} s_{5}$] in Bruhat order. The associated coefficients sum to zero, agreeing with the preceding discussion on the Möbius function.

3 Another definition of I-spherical elements

Let Φ be a finite crystallographic root system, with positive roots Φ^{+}, and simple roots $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$. Let W be its finite Weyl group with corresponding simple generators $S=\left\{s_{1}, s_{2}, \ldots, s_{r}\right\}$, where we have fixed a bijection of $[r]:=\{1,2, \ldots, r\}$ with the nodes

Figure 1: The poset $\mathcal{P}_{c \lambda, \gamma}$ for $c=234567918, \lambda=987654321, \gamma=986544432, I=$ $\{1,3,4,5,7,8\}$ with some edges labeled.
of the Dynkin diagram \mathcal{G}. Let $\operatorname{Red}(w)$ be the set of the reduced expressions $w=s_{i_{1}} \cdots s_{i_{k}}$, where $k=\ell(w)$ is the Coxeter length of w. The left descents of w are

$$
J(w)=\left\{j \in[r]: \ell\left(s_{j} w\right)<\ell(w)\right\}
$$

For $I \in 2^{[r]}$, let \mathcal{G}_{I} be the induced subdiagram of \mathcal{G}. Write $\mathcal{G}_{I}=\bigcup_{z=1}^{m} \mathcal{C}^{(z)}$ as its decomposition into connected components. Let $w_{0}^{(z)}$ be the longest element of the parabolic subgroup $W_{I^{(z)}}$ generated by $I^{(z)}=\left\{s_{j}: j \in \mathcal{C}^{(z)}\right\}$. This general-type definition of I-spherical was proposed in [10]:

Definition 3.1 ([10, Definition 1.1]). Let $w \in W$ and fix $I \subset J(w)$. Then w is I-spherical if there exists $R=s_{i_{1}} \cdots s_{i_{\ell(w)}} \in \operatorname{Red}(w)$ such that

- $\#\left\{t \mid i_{t}=j\right\} \leq 1$ for all $j \in[r]-I$, and
- \# $\left\{t \mid i_{t} \in \mathcal{C}^{(z)}\right\} \leq \ell\left(w_{0}^{(z)}\right)+\# \operatorname{vertices}\left(\mathcal{C}^{(z)}\right)$ for $1 \leq z \leq m$.

Such an R is called an I-witness.
Definition 1.2 makes sense in the general context as well. However, that notion differs from Definition 3.1 in type D_{4} and F_{4} (although we suspect they are equivalent for B_{n} and C_{n} types). Nevertheless, this next proposition says that Definition 3.1 is, in general, "close" to Definition 1.2.

Proposition 3.2 ([9, Proposition 2.6]). If $w \in W$ is I-spherical (in the sense of Definition 3.1), then there exists an I-witness R of w of the form $R=R^{\prime} R^{\prime \prime}$ where $R^{\prime} \in \operatorname{Red}\left(w_{0}(I)\right)$ and $R^{\prime \prime} \in \operatorname{Red}\left(w_{0}(I) w\right)$.

Moreover, in type A, the two notions are indeed equivalent:
Theorem 3.3 ([9, Theorem 1.3]). Definitions 1.2 and 3.1 are equivalent for $W=\mathfrak{S}_{n}$.
Proof sketch: The \Rightarrow direction is clear.
For the converse recall that $w \in \mathfrak{S}_{n}$ contains the pattern $u \in \mathfrak{S}_{k}$ if there exists $i_{1}<i_{2}<\cdots<i_{k}$ such that $w\left(i_{1}\right), w\left(i_{2}\right), \ldots, w\left(i_{k}\right)$ is in the same relative order as $u(1), u(2), \ldots, u(k)$. Furthermore w avoids u if no such indices exist.

Proposition 3.4 ([18]). A permutation $w \in \mathfrak{S}_{n}$ is a product of distinct generators, i.e., a standard Coxeter element in some parabolic subgroup, if and only if w avoids 321 and 3412.

Assume w is I-spherical with some I-witness. By Proposition 3.2 and Definition 3.1, we write $w=w_{0}(I) u$ such that there is a reduced word $R^{\prime \prime}=s_{i_{1}} \cdots s_{i_{\ell(u)}}$ of u such that

- $s_{d_{i}}$ appears at most once in $R^{\prime \prime}$; and
- \#\{m| $\left.d_{t-1}<i_{m}<d_{t}\right\}<\left(d_{t}-d_{t-1}+1\right)-\left(d_{2}^{d_{t}-d_{t-1}}\right)=d_{t}-d_{t-1}$ for $1 \leq t \leq k+1$.

By Proposition 3.4, it remains to show that $u=w_{0}(I) \cdot w$ avoids 321 and 3412. This is established by direct considerations.

4 A (new) classification conjecture for all Lie types

Let G be a complex, connected, semisimple Lie group. Fix a choice B Borel subgroup and its maximal torus T. The generalized flag variety is G / B. Its Weyl group is $W \cong N(T) / T$; it is generated by simple reflections $S=\left\{s_{1}, s_{2}, \ldots, s_{r}\right\}$ as in Section 3. The Schubert varieties $\overline{B w B / B}$ are indexed by $w \in W$. For $I \subseteq J(w)$, there is a parabolic subgroup $P_{I} \supset B$. Let L_{I} be the standard Levi subgroup of P_{I}. As explained in [10, Section 1.2], Definition 1.1 extends verbatim to this more general setting. This is the main conjecture of this report:
Conjecture 4.1. Let $I \subseteq J(w) . X_{w}$ is $L_{l^{-}}$-spherical if and only if $w \in W$ is I-spherical (in the sense of Definition 1.2).

We claim (details omitted here) that Theorem 2.6 generalizes to this context, with the exception that the key polynomial is replaced by the more general notion of Demazure character $D_{w, \lambda}$ where $\lambda \in \mathbb{Q}[\Lambda]$ is a weight, that is $\left\langle\lambda, \alpha_{i}\right\rangle \in \mathbb{Z} . D_{w, \lambda}$ is an element of the weight ring, i.e. the Laurent polynomial ring generated by formal exponentials $e^{ \pm \omega}$ where ω is a fundamental weight associated to G.

Using SageMath we are able to check in the classical types $B_{n}, C_{n}, D_{n}(n \leq 6)$ that for a fixed dominant integral weight $\lambda(n)$ (that depends only on n), w is not I-spherical if and only if $D_{w, \lambda(n)}$ is not multiplicity-free as an L_{I}-character. This gives a complete verification of the " \Rightarrow " direction of Conjecture 4.1 for these low-rank cases; it also gives nontrivial evidence for the converse.

Since we have already remarked that Definition 3.1 and Definition 1.2 disagree in type D_{4}, it follows that [10, Conjecture 1.9] is false for $G=S O_{8}$. This disproves the general version of the general-type conjecture of [10].

Now, we have further evidence for " \Leftarrow ":
Theorem 4.2. Conjecture $4.1 " \Leftarrow$ " holds for $G=S p_{2 n}\left(\right.$ type $\left.C_{n}\right)$.
The proof also should extend to type D_{n}. We now sketch the type C_{n} argument. The main idea is to use the fact that $G=S p_{2 n}$ may be realized as the fixed point locus of an involution σ on $H=S L_{2 n}$. We recall this construction and refer the reader to [13, Section 6] for additional details. Define the block matrix

$$
E=\left[\begin{array}{cc}
0 & J \\
-J & 0
\end{array}\right],
$$

where J is the $n \times n$ matrix with 1 's on the antidiagonal and 0 's elsewhere. Let $\sigma: H \rightarrow H$ be the map that sends A to $E\left(A^{T}\right)^{-1} E^{-1}$. Then

$$
G=\left\{A \in H \mid A^{T} E A=E\right\}=\left\{A \in H \mid E\left(A^{T}\right)^{-1} E^{-1}=A\right\}=H^{\sigma}
$$

More is true. Let B_{H} be the Borel subgroup of upper triangular matrices in H, and T_{H} the subgroup of diagonal matrices. Setting $B_{G}=B_{H}^{\sigma}$ and $T_{G}=T_{H}^{\sigma}, B_{G}$ and T_{G} are, respectively, a Borel subgroup and maximal torus in G.

Let $W_{H}=N_{H}\left(T_{H}\right) / T_{H}$ be the Weyl group of H and $W_{G}=N_{G}\left(T_{G}\right) / T_{G}$ be the Weyl group of G. Then $N_{G}\left(T_{G}\right)=N_{H}\left(T_{H}\right)^{\sigma}$, and hence there is a canonical injection $\iota: W_{G} \hookrightarrow$ W_{H}. Identifying W_{G} with its image under ι gives

$$
W_{G}=\left\{\left(a_{1}, \ldots, a_{2 n}\right) \in S_{2 n} \mid a_{i}=2 n+1-a_{2 n+1-i} \text { for } i \in[2 n]\right\} .
$$

For $w=\left(a_{1}, \ldots, a_{2 n}\right) \in W_{G}$, let ex $(w):=\left|\left\{i \in[n] \mid a_{i}>n\right\}\right|$.
Proposition 4.3 ([13, Proposition 6.1.0.1]). For $w=\left(a_{1}, \ldots, a_{2 n}\right) \in W_{G}$, we have $\ell_{G}(w)=$ $\frac{1}{2}\left(\ell_{H}(\iota(w))+\operatorname{ex}(w)\right)$, where $\ell_{G}(w)$ is the Coxeter length of $w \in W_{G}$ (and similarly for $\ell_{H}(w)$).
Corollary 4.4. If w_{0}^{G} and w_{0}^{H} are the long elements in W_{G} and W_{H} (resp.) then $\iota\left(w_{0}^{G}\right)=w_{0}^{H}$.
Let $\bar{\sigma}:[2 n] \rightarrow[2 n]$ be the map which sends i to $2 n-i$. The canonical injection $\iota: W_{G} \hookrightarrow W_{H}$ is the group homomorphism [2, Section 8.1] with

$$
\iota\left(s_{i}\right)=\left\{\begin{array}{ll}
s_{i} s_{\bar{\sigma}(i)} & \text { if } i<n \tag{4.1}\\
s_{i} & \text { if } i=n
\end{array} .\right.
$$

For $w \in W_{G}$, denote the set of left descents of w as $J_{G}(w)$. Denote the set of left descents of $\iota(w) \in W_{H}$, as $J_{H}(w)$. The map $\bar{\sigma}$ induces a map, which we also denote $\bar{\sigma}$, from $\mathcal{P}([2 n])$, the power set of $[2 n]$, to itself. Let $\bar{l}: \mathcal{P}([n]) \mapsto \mathcal{P}([2 n])^{\bar{\sigma}}$ be the map that sends $S \in \mathcal{P}([n])$ to $T \subseteq \mathcal{P}([2 n])^{\bar{\sigma}}$ where $i \in T$ if and only if $i \in S$.

This is proved using the exchange property of Bruhat order and Proposition 4.3:
Lemma 4.5. Let $w \in W_{G}$. Then $\bar{l}\left(J_{G}(w)\right)=J_{H}(w) \in \mathcal{P}([2 n])^{\bar{\sigma}}$.
Using Corollary 4.4 and Lemma 4.5 one shows:
Proposition 4.6. Let $w \in W_{G}$ and let $I_{G} \subseteq J_{G}(w)$ with $I_{H} \subseteq J_{H}(w)$ such that $\bar{l}\left(I_{G}\right)=I_{H} \in$ $\mathcal{P}([2 n])^{\bar{\sigma}}$. Then w is I_{G}-spherical implies $\iota(w)$ is I_{H}-spherical.

Proof of Theorem 4.2: Let $I_{H} \subseteq J_{H}(w)$ such that $\iota\left(I_{G}\right)=I_{H} \in \mathcal{P}([2 n])^{\bar{\sigma}}$. If w is I_{G}-spherical, then $\iota(w)$ is I_{H}-spherical by Proposition 4.6. By Theorem 1.3, $X_{\iota(w)}$ is $L_{I_{H}}$-spherical. By [16, Theorem 2.1.2], this is equivalent to the existence of a Borel subgroup $B_{L_{H}}$ in $L_{I_{H}}$ such that $B_{L_{H}}$ has finitely many orbits in $X_{\iota(w)}$. Then, as a set, $X_{\iota(w)}=\bigcup_{1 \leq k \leq z} B_{L_{H}} \cdot x_{k}$ for some $z \in \mathbb{Z}_{>0}$ and $x_{1}, \ldots, x_{z} \in X_{\iota(w)}$. Now, $X_{w}=X_{\iota(w)} \cap G / B_{G}$ [13, Proposition 6.1.1.2], and therefore, set-theoretically,

$$
\begin{equation*}
X_{w}=\left(\bigcup_{1 \leq k \leq z} B_{L_{H}} \cdot x_{k}\right) \cap G / B_{G} \tag{4.2}
\end{equation*}
$$

Suppose that $B_{L_{H}} \cdot x_{k} \cap G / B_{G} \neq \varnothing$. Modifying x_{k} if necessary, we may assume without loss that $x_{k} \in G / B_{G}$. The parabolic subgroup $P_{I_{G}}=P_{I_{H}}^{\sigma}$ and its Levi $L_{I_{G}}=L_{I_{H}}^{\sigma}$. Further, $B_{L_{G}}:=B_{L_{H}}^{\sigma}$ is a Borel in $L_{I_{G}}$. We claim that $B_{L_{H}} \cdot x_{k} \cap G / B_{G}=B_{L_{G}} \cdot x_{k}$. Proving this claim completes our proof since then (4.2) implies $B_{L_{G}}$ has finitely many orbits in X_{w}, which by [16, Theorem 2.1.2] is equivalent to X_{w} being $L_{I_{G}}$-spherical.
(\subseteq) We have $B_{L_{G}} \cdot x_{k} \subseteq B_{L_{H}} \cdot x_{k} \cap G / B_{G}$ since $B_{L_{G}} \subseteq B_{L_{H}}$ and $B_{L_{G}} \subseteq \operatorname{stab}{ }_{G}\left(X_{w}\right)$.
(\supseteq) Let $b \in B_{L_{H}}$. Suppose that $b x_{k} \in G / B_{G}$. Let \bar{x}_{k} be a coset representative of x_{k} in G. Then $b x_{k} \in G / B_{G}$ implies $b \bar{x}_{k} \in G$. This implies $\bar{x}_{k}^{T} b^{T} E b \bar{x}_{k}=E$ which further implies $b^{T} E b=\left(\bar{x}_{k}^{T}\right)^{-1} E\left(\bar{x}_{k}\right)^{-1}=E \bar{x}_{k} E^{-1} E\left(\bar{x}_{k}\right)^{-1}=E$. Thus $b \in B_{L_{H}}^{\sigma}=B_{L_{G}}$.

References

[1] A. Adve, C. Robichaux, and A. Yong. "An efficient algorithm for deciding vanishing of Schubert polynomial coefficients". Adv. Math. 383 (2021), Paper No. 107669, 38. DoI.
[2] A. Björner and F. Brenti. Combinatorics of Coxeter Groups. Vol. 231. Graduate Texts in Mathematics. Springer, New York, 2005, pp. xiv +363 .
[3] D. Brewster, R. Hodges, and A Yong. "Proper permutations, Schubert geometry, and randomness". 2020. arXiv:2012.09749.
[4] V. V. Deodhar. "Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function". Invent. Math. 39.2 (1977), pp. 187-198. DoI.
[5] N. J. Y. Fan, P. L. Guo, S. C. Y. Peng, and S. C. C. Sun. "Lattice points in the Newton polytopes of key polynomials". SIAM J. Discrete Math. 34.2 (2020), pp. 1281-1289. Doi.
[6] A. Fink, K. Mészáros, and A. St. Dizier. "Schubert polynomials as integer point transforms of generalized permutahedra". Adv. Math. 332 (2018), pp. 465-475. Doi.
[7] W. Fulton. Young tableaux. Vol. 35. London Mathematical Society Student Texts. With applications to representation theory and geometry. Cambridge University Press, Cambridge, 1997, pp. x+260.
[8] C. Gaetz. "Spherical Schubert varieties and pattern avoidance". Selecta Math. (N.S.) 28.2 (2022), Paper No. 44, 9. Doi.
[9] Y. Gao, R. Hodges, and A Yong. "Classification of Levi-spherical Schubert varieties". 2021. arXiv:2104.10101.
[10] R. Hodges and A. Yong. "Coxeter combinatorics and spherical Schubert geometry". 2020. arXiv:2007.09238.
[11] R. Hodges and A. Yong. "Multiplicity-free key polynomials". 2020. arXiv:2007.09229.
[12] A. Kohnert. "Weintrauben, Polynome, Tableaux". Bayreuth. Math. Schr. 38 (1991). Dissertation, Universität Bayreuth, Bayreuth, 1990, pp. 1-97.
[13] V. Lakshmibai and K. N. Raghavan. Standard Monomial Theory. Vol. 137. Encyclopaedia of Mathematical Sciences. Invariant theoretic approach, Invariant Theory and Algebraic Transformation Groups, 8. Springer-Verlag, Berlin, 2008, pp. xiv+265.
[14] A. Lascoux. "Polynomials". Online; Accessed March 29, 2022. 2013. Link.
[15] M. H. A. Newman. "On theories with a combinatorial definition of "equivalence."" Ann. of Math. (2) 43 (1942), pp. 223-243. Doi.
[16] N. Perrin. "On the geometry of spherical varieties". Transform. Groups 19.1 (2014), pp. 171223. doi.
[17] J. R. Stembridge. "Multiplicity-free products of Schur functions". Ann. Comb. 5.2 (2001), pp. 113-121. Doi.
[18] B. E. Tenner. "Pattern avoidance and the Bruhat order". J. Combin. Theory Ser. A 114.5 (2007), pp. 888-905. Doi.

[^0]: *gaoyibo@mit.edu
 ${ }^{\dagger}$ rhodges@ucsd.edu. Partially supported by an AMS-Simons Travel Grant.
 \ddagger ayong@illinois.edu. Partially supported a Simons Collaboration Grant and an NSF RTG.

