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Abstract. A Schubert variety in the flag manifold GLn/B is Levi-spherical if the action of
a Borel subgroup in a Levi subgroup of a standard parabolic has an open dense orbit.
We present some recent combinatorial developments on this topic, including a classi-
fication in terms of spherical elements of a symmetric group. We offer a new conjecture
that extends the classification to other Lie types, along with supporting evidence.
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1 Introduction

1.1 Schubert varieties and Levi-sphericality

Let Flags(Cn) be the variety of complete flags ⟨0⟩ ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ Cn,
where Fi is a subspace of dimension i. The group GLn of invertible n × n matrices
over C acts transitively on Flags(Cn) by change-of-basis. Define the standard flag by
Fi = span(⃗e1, e⃗2, . . . , e⃗i) where e⃗i is the i-th standard basis vector. The stabilizer of
this flag is B ⊂ GLn, the Borel subgroup of upper triangular invertible matrices. Thus,
Flags(Cn) ∼= GLn/B. The Borel B acts on GLn/B with finitely many orbits. These orbits
are the Schubert cells X◦

w = BwB/B ∼= Cℓ(w) and are indexed by w in the symmetric group
Sn. Their closures Xw := X◦

w are the Schubert varieties and are of interest in combinatorial
algebraic geometry and Lie theory. We refer the reader to [7] for more background.

For I ⊆ J(w) := {j ∈ [n − 1] : w−1(j) > w−1(j + 1)}, let LI ⊆ GLn be the Levi
subgroup of invertible block diagonal matrices

LI
∼= GLd1−d0 × GLd2−d1 × · · · × GLdk−dk−1

× GLdk+1−dk
.

LI acts on Xw; see, e.g., [10, Section 1.2]. This is the main concept of our interest:

Definition 1.1 ([10, Definition 1.8]). Xw is LI-spherical if Xw has an open dense orbit of a
Borel subgroup of LI . If in addition, I = J(w), Xw is maximally spherical.
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The purpose of this extended abstract is to review recent work [10, 11, 9, 3, 8] about
Definition 1.1. We also describe new (as yet, unpublished) progress for other Lie types.

1.2 Levi spherical permutations and the classification theorem

Let G = GLn. Its Weyl group W ∼= Sn consists of permutations of [n] := {1, 2, . . . , n}.
Thus W is generated, as a Coxeter group, by the simple transpositions S = {si = (i i +
1) : 1 ≤ i ≤ n − 1}. The set of left descents is J(w) = {j ∈ [n − 1] : w−1(j) > w−1(j + 1)}
(j ∈ J(w) if j + 1 appears to the left of j in w’s one-line notation). Let ℓ(w) be the Coxeter
length of w. For w ∈ Sn,

ℓ(w) = #{1 ≤ i < j ≤ n : w(i) > w(j)}
is the number of inversions of w.

A parabolic subgroup WI of W is the subgroup generated by a subset I ⊂ S. Further-
more, a standard Coxeter element c ∈ WI is the product of the elements of I listed in some
order. Let w0(I) denote the longest element of WI .

Definition 1.2 ([9, Definition 1.1]). Let w ∈ W and fix I ⊆ J(w). Then w is I-spherical if
w0(I)w is a standard Coxeter element for some parabolic subgroup WI′ of W.

In [10, Conjecture 3.2], a conjectural combinatorial classification of LI-spherical Schu-
bert varieties was stated. In [9] (see Section 3) it was proved that said conjecture is
equivalent to the following theorem of ibid.

Theorem 1.3 ([9, Theorem 1.5]). Let w ∈ Sn and I ⊆ J(w). Xw ⊆ GLn/B is LI-spherical if
and only if w is I-spherical.

The proof uses the theory of Demazure characters and their manifestation in alge-
braic combinatorics, the key polynomials. One of the results used is a classification of
multiplicity-free key polynomials [11, Theorem 1.1]. This is explained in Section 2.

Let us also mention some other related results. Theorem 1.3 is used in C. Gaetz’s [8],
which proves [10, Conjecture 3.8]. Consequently, this gives a pattern avoidance criterion
for maximally spherical Schubert varieties [8, Theorem 1.4, Corollary 1.5]. Earlier work
of D. Brewster–R. Hodges–A. Yong [3] proved a weaker numerical assertion, that

lim
n→∞

Pr[w ∈ Sn, w is I-spherical for some I ⊆ J(w)] = 0,

as well as its geometric counterpart

lim
n→∞

Pr[w ∈ Sn, Xw is LI-spherical for some I ⊆ J(w)] = 0.

However, the proofs in ibid. did not depend on [11] but rather a definition of proper
permutations. Work in preparation of J. Balogh, D. Brewster, and the second author
extend the results of ibid. to other Lie types.

Our focus now turns to extending Theorem 1.3 to other Lie types. In Section 4 we
report on our ongoing project in that direction after [10, 11, 3, 9].
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2 Key polynomials and sphericality

The problem of deciding if a Schubert variety is Levi spherical is closely connected to
the algebraic combinatorics of key polynomials.

2.1 Key polynomials

Let Pol := Z[x1, x2, . . . , xn] be the polynomial ring in the indeterminates x1, x2, . . . , xn.
For α = (α1, α2, . . . , αn) ∈ Compn, the key polynomial κα is defined as follows. If α is
weakly decreasing, then κα := ∏i xαi

i . Otherwise, suppose αi > αi+1. Let

πi : Pol → Pol, f 7→ xi f (. . . , xi, xi+1, . . .)− xi+1 f (. . . , xi+1, xi, . . .)
xi − xi+1

,

and κα = πi(κα̂) where α̂ := (α1, . . . , αi+1, αi, . . .).
The operators πi satisfy the relations

πiπj = πjπi (for |i − j| > 1)

πiπi+1πi = πi+1πiπi+1

π2
i = πi;

see [14]. Recall that the Demazure product on Sn is defined by

w ∗ si =

{
wsi if ℓ(wsi) = ℓ(w) + 1
0 otherwise.

.

This product is associative. Then R = (si1 , · · · , siℓ) is a Hecke word of w if w = si1 ∗ si2 ∗
· · · ∗ siℓ . For any w ∈ Sn one unambiguously defines

πw := πi1πi2 · · ·πiℓ ,

where R = (si1 , . . . , siℓ) is a Hecke word of w.
Next, suppose λ = (λ1 ≥ λ2 ≥ . . . ≥ λn) is a partition, and w ∈ Sn. Define

κwλ := κλw−1(1),...,λw−1(n)
.

Therefore, κwλ = πwκλ.
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2.2 Split-symmetry and multiplicity-freeness

We recall some notions from [10, Section 4]. Suppose

d0 := 0 < d1 < d2 < · · · < dk < dk+1 := n

and D = {d1, . . . , dk}. Let ΠD be the subring of Pol consisting of the polynomials that
are separately symmetric in Xi := {xdi−1+1, . . . , xdi} for 1 ≤ i ≤ k + 1. If f ∈ ΠD, f is
D-split-symmetric.

The ring ΠD has a basis of D-Schur polynomials

sλ1,...,λk := sλ1(X1)sλ2(X2) · · · sλk(Xk),

where
(λ1, . . . , λk) ∈ ParD := Pard1−d0 × · · · × Pardk+1−dk

,

and Part is the set of partitions with at most t nonzero-parts. See [10, Definition 4.3,
Corollary 4.4]. Thus, for any f ∈ ΠD there is a unique expression

f = ∑
(λ1,...,λk)∈ParD

cλ1,...,λk sλ1,...,λk . (2.1)

Definition 2.1 ([10, Definition 4.7]). If cλ1,...,λk ∈ {0, 1} for all (λ1, . . . , λk) ∈ ParD, f is
D-multiplicity-free.

Example 2.2 (Vieta’s formulas, a reinterpretation). Let f = ∏n
i=2(x1 + xi). This polynomial

is D-split symmetric for D = {1}, i.e., it is separately symmetric in {x1} and {x2, . . . , xn}.
Then (2.1) is the D-multiplicity-free expansion

f = sn−1(x1)s∅(x2, . . . , xn) + sn−2(x1)s1(x2, . . . , xn) + · · ·+ s∅(x1)s1n−1(x2, . . . , xn). (2.2)

Thinking of f as a monic polynomial in x1 with roots −x2,−x3, . . . ,−xn, (2.2) is just
stating Vieta’s formulas.

Definition 2.1 unifies two disparate concepts of multiplicity-freeness:

(MF1) Suppose f = f (x1, . . . , xn) is symmetric and

f = ∑
λ∈Parn

cλsλ.

Then f is multiplicity-free if cλ ∈ {0, 1} for all λ. This is the case D = ∅. For
example, J. Stembridge [17] classified multiplicity-freeness when f = sµsν. See [10]
for additional references.
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(MF2) Now let
f = ∑

α∈Compn

cαxα ∈ Pol.

f is multiplicity-free if cα ∈ {0, 1} for all α. This corresponds to D = [n − 1].
For instance, recent work of A. Fink-K. Mészáros-A. St. Dizier [6] characterizes
multiplicity-free Schubert polynomials.

In [11, Theorem 1.1], an analogue, for key polynomials, of the aforementioned result
[6] was proved. That key polynomial result plays a role in the proof of Theorem 1.3.

Definition 2.3 (Composition patterns [11, Definition 4.8]). Let

Comp :=
∞⋃

n=1

Compn.

For α = (α1, . . . , αℓ), β = (β1, . . . , βk) ∈ Comp, α contains the composition pattern β if there
exist integers j1 < j2 < · · · < jk that satisfy:

• (αj1 , . . . , αjk) is order isomorphic to β (αjs ≤ αjt if and only if βs ≤ βt),

• |αjs − αjt | ≥ |βs − βt|.
The first condition is the naïve notion of pattern containment, while the second allows
for minimum relative differences. If α does not contain β, then α avoids β. For S ⊂ Comp,
α avoids S if α avoids all the compositions in S.

Example 2.4. The composition (3, 1, 4, 2, 2) contains (0, 1, 1). It avoids (0, 2, 2).
Define

KM = {(0, 1, 2), (0, 0, 2, 2), (0, 0, 2, 1), (1, 0, 3, 2), (1, 0, 2, 2)}.

Let KMn be those α ∈ Compn that avoid KM.

Theorem 2.5 ([11, Theorem 1.1]). κα is [n − 1]-multiplicity-free if and only if α ∈ KMn.

It is an open problem to classify when κα ∈ ΠD is D-multiplicity-free. (The analogous
question for Schubert polynomials, whose solution would generalize [6] is also open.)

2.3 Geometry to combinatorics connection

This fact from [10] allows us to turn the geometric question of Levi-sphericality into
D-multiplicity-freeness of key polynomials:

Theorem 2.6 ([10, Theorem 4.13]). Let λ ∈ Parn, and w ∈ Sn. Suppose I ⊆ J(w) and
D = [n − 1]− I. Xw is LI-spherical if and only if κwλ is D-multiplicity-free for all λ ∈ Parn.

In view of Theorem 2.6, the following is clearly equivalent to Theorem 1.3.

Theorem 2.7. Let D = [n − 1]− I. w is I-spherical if and only if κwλ is D-multiplicity-free for
all λ ∈ Parn.
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2.4 Proof sketch for Theorem 2.7 (and Theorem 1.3)

We outline the argument from [9]. The “⇒” proof starts with two simple observations:

Lemma 2.8. If w = w0(I)c where c is a standard Coxeter element, then κwλ = πw0(I)κcλ.

For any α ∈ Compn, let

aα1+n−1,α2+n−2,...,αn := det(xλi+n−i
j )1≤i,j≤n.

In particular, ∆n := an−1,n−2,...,0 = ∏1≤j<k≤n(xj − xk) is the Vandermonde determinant.
Define a generalized Schur polynomial sα by

sα(x1, . . . , xn) := aα1+n−1,α2+n−2,...,αn /an−1,n−2,...,1,0. (2.3)

Definition 2.9 ([9, Definition 3.4]). If β = (β1, . . . , βn) ∈ Compn and i < j ∈ [n − 1], define
tij : Compn → Compn by

tij(. . . , βi, . . . , β j, . . .) = (. . . , β j − (j − i), . . . , βi + (j − i), . . .). (2.4)

Also let ti := ti i+1.

This is well-known, and clear from (2.3) and the row-swap property of determinants:

Lemma 2.10. stiα(x1, . . . , xn) = −sα(x1, . . . , xn). If αi+1 = αi + 1 then sα(x1, . . . , xn) = 0.

It follows that:

Lemma 2.11. Let β ∈ Compn, then

πw0(I)(xβ1
1 · · · xβn

n ) ∈ {0,±sα1,...,αk},

where (α1, . . . , αk) ∈ ParD.

Fix γ ∈ ParD. We argue [9, Proposition 5.7] that the set

Pcλ,γ := {β ∈ Compn : [xβ]κcλ ̸= 0 and πw0(I)x
β = ±sγ}

has the structure of a poset isomorphic to an interval in (strong) Bruhat order of the
Young subgroup Sd1−d0 × · · · ×Sdk+1−dk

of Sn. This poset isomorphism is deduced in
part by using combinatorial properties of key polynomials from [1, 5, 12]. The technical
core is to establish a “diamond property” (in the sense of [15]) for Pcλ,γ; this is [9,
Theorem 5.3]. The upshot is that if

Φ : Pcλ,γ → Sd1−d0 × · · · ×Sdk+1−dk

is the aforementioned poset isomorphism, then in fact

πw0(I)x
β = (−1)ℓ(Φ(β))sγ.

Multiplicity-freeness of κwλ then follows from this (mild extension of a) result of V. De-
odhar [4], thus completing the (sketch) proof of ⇒:
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Lemma 2.12 ([9, Lemma 5.6]). Let S := Sd1−d0 × · · · ×Sdk+1−dk
be a Young subgroup of

Sn. Suppose [u, v] ⊂ S is an interval. Then

∑
u≤w≤v

(−1)ℓ(uw) =

{
1 if u = v
0 otherwise

(2.5)

Sketch proof of Theorem 2.7 “⇐”: Now suppose w is not I-spherical. By Proposition 3.4,
u := w0(I)w contains either a 321 pattern or a 3412 pattern. We select a suitable λ

depending on which pattern u contains. Then we show that κwλ has multiplicity. This
is achieved using Kohnert’s rule for key polynomials [12] combined with some further
analysis of the poset Puλ (defined similarly to Pcλ above).

The following example, illustrates the ⇒ argument.

Example 2.13. Let w = 265439871 and λ = 987654321. Then J(w) = {1, 3, 4, 5, 7, 8} and
let I = J(w). Thus w0(I) = 216543987 and w factors as w0(I)c with c the standard
Coxeter element c = 134567892 = s2s3s4s5s6s7s8. Additionally, c−1 = 192345678 and
w−1 = 915432876. This yields α = cλ = 918765432, and wλ = 195678234.

Since D = [9]− I = {2, 6}, the key polynomial κwλ = κ195678234 ∈ ΠD is separately
symmetric in the sets of indeterminates {x1, x2}, {x3, x4, x5, x6}, {x7, x8, x9}.

By [10, Theorem 4.13(II)], the fact that c is a standard Coxeter element implies that
κcλ is [n − 1]-multiplicity-free. Now we consider the term x981765432 that appears in κcλ.

Observe πw0(I)(x981765432) = s98,1765,432 = −s98,6265,432 = s9,6535,432 = −s98,6544,432,
where in each step we have underlined the swaps from applying Lemma 2.10.

The β ∈ Compn such that the monomial xβ of κcλ satisfies πw0(I)(xβ) = ±s98,6544,432,
along with the signs they contribute, are:

[9, 8, 1, 7, 6, 5, 4, 3, 2] : −1, [9, 8, 2, 7, 6, 4, 4, 3, 2] : 1, [9, 8, 6, 2, 6, 5, 4, 3, 2] : 1,

[9, 8, 4, 7, 3, 5, 4, 3, 2] : 1, [9, 8, 6, 3, 6, 4, 4, 3, 2] : −1, [9, 8, 6, 5, 3, 5, 4, 3, 2] : −1,

[9, 8, 4, 7, 4, 4, 4, 3, 2] : −1, [9, 8, 6, 5, 4, 4, 4, 3, 2] : 1.

These elements form the poset Pcλ,γ=98,6544,432 which is shown in Figure 1 and is isomor-
phic to the interval [id, s3s4s5] in Bruhat order. The associated coefficients sum to zero,
agreeing with the preceding discussion on the Möbius function.

3 Another definition of I-spherical elements

Let Φ be a finite crystallographic root system, with positive roots Φ+, and simple roots
∆ = {α1, . . . , αr}. Let W be its finite Weyl group with corresponding simple generators
S = {s1, s2, . . . , sr}, where we have fixed a bijection of [r] := {1, 2, . . . , r} with the nodes
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•
98,6544,432

•98,4744,432 •
98,6364,432

• 98,6535,432

•98,2764,432 •
98,4735,432

• 98,6265,432

•
98,1765,432

t3 t4 t5

t35 t4

t36 t35 t3

Figure 1: The poset Pcλ,γ for c = 234567918, λ = 987654321, γ = 986544432, I =

{1, 3, 4, 5, 7, 8} with some edges labeled.

of the Dynkin diagram G. Let Red(w) be the set of the reduced expressions w = si1 · · · sik ,
where k = ℓ(w) is the Coxeter length of w. The left descents of w are

J(w) = {j ∈ [r] : ℓ(sjw) < ℓ(w)}.

For I ∈ 2[r], let GI be the induced subdiagram of G. Write GI =
⋃m

z=1 C(z) as its de-
composition into connected components. Let w(z)

0 be the longest element of the parabolic
subgroup WI(z) generated by I(z) = {sj : j ∈ C(z)}. This general-type definition of
I-spherical was proposed in [10]:

Definition 3.1 ([10, Definition 1.1]). Let w ∈ W and fix I ⊂ J(w). Then w is I-spherical if
there exists R = si1 · · · siℓ(w)

∈ Red(w) such that

• #{t | it = j} ≤ 1 for all j ∈ [r]− I, and

• #{t | it ∈ C(z)} ≤ ℓ(w(z)
0 ) + #vertices(C(z)) for 1 ≤ z ≤ m.

Such an R is called an I-witness.

Definition 1.2 makes sense in the general context as well. However, that notion differs
from Definition 3.1 in type D4 and F4 (although we suspect they are equivalent for Bn
and Cn types). Nevertheless, this next proposition says that Definition 3.1 is, in general,
“close” to Definition 1.2.
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Proposition 3.2 ([9, Proposition 2.6]). If w ∈ W is I-spherical (in the sense of Definition 3.1),
then there exists an I-witness R of w of the form R = R′R′′ where R′ ∈ Red(w0(I)) and
R′′ ∈ Red(w0(I)w).

Moreover, in type A, the two notions are indeed equivalent:

Theorem 3.3 ([9, Theorem 1.3]). Definitions 1.2 and 3.1 are equivalent for W = Sn.

Proof sketch: The ⇒ direction is clear.
For the converse recall that w ∈ Sn contains the pattern u ∈ Sk if there exists

i1 < i2 < · · · < ik such that w(i1), w(i2), . . . , w(ik) is in the same relative order as
u(1), u(2), . . . , u(k). Furthermore w avoids u if no such indices exist.

Proposition 3.4 ([18]). A permutation w ∈ Sn is a product of distinct generators, i.e., a
standard Coxeter element in some parabolic subgroup, if and only if w avoids 321 and 3412.

Assume w is I-spherical with some I-witness. By Proposition 3.2 and Definition 3.1,
we write w = w0(I)u such that there is a reduced word R′′ = si1 · · · siℓ(u) of u such that

• sdi appears at most once in R′′; and

• #{m | dt−1 < im < dt} < (dt−dt−1+1
2 )− (dt−dt−1

2 ) = dt − dt−1 for 1 ≤ t ≤ k + 1.

By Proposition 3.4, it remains to show that u = w0(I) · w avoids 321 and 3412. This is
established by direct considerations.

4 A (new) classification conjecture for all Lie types

Let G be a complex, connected, semisimple Lie group. Fix a choice B Borel subgroup and
its maximal torus T. The generalized flag variety is G/B. Its Weyl group is W ∼= N(T)/T;
it is generated by simple reflections S = {s1, s2, . . . , sr} as in Section 3. The Schubert
varieties BwB/B are indexed by w ∈ W. For I ⊆ J(w), there is a parabolic subgroup
PI ⊃ B. Let LI be the standard Levi subgroup of PI . As explained in [10, Section 1.2],
Definition 1.1 extends verbatim to this more general setting. This is the main conjecture
of this report:

Conjecture 4.1. Let I ⊆ J(w). Xw is LI-spherical if and only if w ∈ W is I-spherical (in the
sense of Definition 1.2).

We claim (details omitted here) that Theorem 2.6 generalizes to this context, with the
exception that the key polynomial is replaced by the more general notion of Demazure
character Dw,λ where λ ∈ Q[Λ] is a weight, that is ⟨λ, αi⟩ ∈ Z. Dw,λ is an element of
the weight ring, i.e. the Laurent polynomial ring generated by formal exponentials e±ω

where ω is a fundamental weight associated to G.
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Using SageMath we are able to check in the classical types Bn, Cn, Dn (n ≤ 6) that
for a fixed dominant integral weight λ(n) (that depends only on n), w is not I-spherical
if and only if Dw,λ(n) is not multiplicity-free as an LI-character. This gives a complete
verification of the “⇒” direction of Conjecture 4.1 for these low-rank cases; it also gives
nontrivial evidence for the converse.

Since we have already remarked that Definition 3.1 and Definition 1.2 disagree in
type D4, it follows that [10, Conjecture 1.9] is false for G = SO8. This disproves the
general version of the general-type conjecture of [10].

Now, we have further evidence for “⇐”:

Theorem 4.2. Conjecture 4.1 “⇐” holds for G = Sp2n (type Cn).

The proof also should extend to type Dn. We now sketch the type Cn argument. The
main idea is to use the fact that G = Sp2n may be realized as the fixed point locus of an
involution σ on H = SL2n. We recall this construction and refer the reader to [13, Section
6] for additional details. Define the block matrix

E =

[
0 J
−J 0

]
,

where J is the n× n matrix with 1’s on the antidiagonal and 0’s elsewhere. Let σ : H → H
be the map that sends A to E(AT)−1E−1. Then

G = {A ∈ H|ATEA = E} = {A ∈ H|E(AT)−1E−1 = A} = Hσ.

More is true. Let BH be the Borel subgroup of upper triangular matrices in H, and TH
the subgroup of diagonal matrices. Setting BG = Bσ

H and TG = Tσ
H, BG and TG are,

respectively, a Borel subgroup and maximal torus in G.
Let WH = NH(TH)/TH be the Weyl group of H and WG = NG(TG)/TG be the Weyl

group of G. Then NG(TG) = NH(TH)
σ, and hence there is a canonical injection ι : WG ↪→

WH. Identifying WG with its image under ι gives

WG = {(a1, . . . , a2n) ∈ S2n|ai = 2n + 1 − a2n+1−i for i ∈ [2n]}.

For w = (a1, . . . , a2n) ∈ WG, let ex(w) := |{i ∈ [n]|ai > n}|.

Proposition 4.3 ([13, Proposition 6.1.0.1]). For w = (a1, . . . , a2n) ∈ WG, we have ℓG(w) =
1
2(ℓH(ι(w)) + ex(w)), where ℓG(w) is the Coxeter length of w ∈ WG (and similarly for ℓH(w)).

Corollary 4.4. If wG
0 and wH

0 are the long elements in WG and WH (resp.) then ι(wG
0 ) = wH

0 .

Let σ : [2n] → [2n] be the map which sends i to 2n − i. The canonical injection
ι : WG ↪→ WH is the group homomorphism [2, Section 8.1] with

ι(si) =

{
sisσ(i) if i < n
si if i = n

. (4.1)
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For w ∈ WG, denote the set of left descents of w as JG(w). Denote the set of left
descents of ι(w) ∈ WH, as JH(w). The map σ induces a map, which we also denote σ,
from P([2n]), the power set of [2n], to itself. Let ι : P([n]) 7→ P([2n])σ be the map that
sends S ∈ P([n]) to T ⊆ P([2n])σ where i ∈ T if and only if i ∈ S.

This is proved using the exchange property of Bruhat order and Proposition 4.3:

Lemma 4.5. Let w ∈ WG. Then ι(JG(w)) = JH(w) ∈ P([2n])σ.

Using Corollary 4.4 and Lemma 4.5 one shows:

Proposition 4.6. Let w ∈ WG and let IG ⊆ JG(w) with IH ⊆ JH(w) such that ι(IG) = IH ∈
P([2n])σ. Then w is IG-spherical implies ι(w) is IH-spherical.

Proof of Theorem 4.2: Let IH ⊆ JH(w) such that ι(IG) = IH ∈ P([2n])σ. If w is IG-spherical,
then ι(w) is IH-spherical by Proposition 4.6. By Theorem 1.3, Xι(w) is LIH -spherical. By
[16, Theorem 2.1.2], this is equivalent to the existence of a Borel subgroup BLH in LIH

such that BLH has finitely many orbits in Xι(w). Then, as a set, Xι(w) =
⋃

1≤k≤z BLH · xk for
some z ∈ Z>0 and x1, . . . , xz ∈ Xι(w). Now, Xw = Xι(w) ∩ G/BG [13, Proposition 6.1.1.2],
and therefore, set-theoretically,

Xw =

( ⋃
1≤k≤z

BLH · xk

)
∩ G/BG (4.2)

Suppose that BLH · xk ∩ G/BG ̸= ∅. Modifying xk if necessary, we may assume without
loss that xk ∈ G/BG. The parabolic subgroup PIG = Pσ

IH
and its Levi LIG = Lσ

IH
. Further,

BLG := Bσ
LH

is a Borel in LIG . We claim that BLH · xk ∩ G/BG = BLG · xk. Proving this claim
completes our proof since then (4.2) implies BLG has finitely many orbits in Xw, which
by [16, Theorem 2.1.2] is equivalent to Xw being LIG-spherical.
(⊆) We have BLG · xk ⊆ BLH · xk ∩ G/BG since BLG ⊆ BLH and BLG ⊆ stabG(Xw).
(⊇) Let b ∈ BLH . Suppose that bxk ∈ G/BG. Let xk be a coset representative of xk in G.
Then bxk ∈ G/BG implies bxk ∈ G. This implies xT

k bTEbxk = E which further implies
bTEb = (xT

k )
−1E(xk)

−1 = ExkE−1E(xk)
−1 = E. Thus b ∈ Bσ

LH
= BLG .
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