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Abstract. We present a strategy for computing asymptotics of coefficients of d-variate
algebraic generating functions. Using known constructions, we embed the coefficient
array into an array represented by a rational generating functions in d + 1 variables,
and then apply ACSV theory to analyse the latter. This method allows us to give
systematic results in the multivariate case, seems more promising than trying to derive
analogs of the rational ACSV theory for algebraic GFs, and gives the prospect of further
improvements as embedding methods are studied in more detail.

Résumé. Nous présentons une stratégie pour la computation des asymptotiques des
coefficients de d-variable fonctions génératrices algébriques. En utilisant des construc-
tions connues, nous imbriquons le tableau des coefficients dans un tableau qui est
représenté par une fonction génératrice rationnelle en d + 1 variables et puis nous ap-
pliquons la théorie ACSV pour analyser ce dernier. Cette méthode nous permettons
de donner des résultats systématiques dans le cas multivarié, semble plus prometteuse
qu’essayant de dériver un équivalent a la théorie ACSV rationnelle pour les fonctions
génératrices algébriques et elle donne la perspective aux améliorations futurs a mesure
que les méthodes d’imbrications sont étudiées en plus détailles.

Keywords: generating function, ACSV, analytic combinatorics in several variables

1 Introduction

Algebraic generating functions (GFs) occur throughout combinatorics and its applica-
tions. Combinatorial situations that frequently lead to algebraic GFs include: recursive
structures described by context-free languages, such as binary trees and constrained
(random) walks; RNA secondary structures; applications of the kernel method, the
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quadratic method for maps, and generalizations. Our catalog of test problems [14] lists
20 algebraic GFs occurring in the recent research literature, 19 of which are multivariate.
A classic univariate example is the Catalan GF

1—\/1—4x_2axn
- n
2x 10

where a, can be interpreted as the number of noncrossing partitions of {1, ...,n}, binary
trees with n nodes, rooted ordered trees with n edges, Dyck paths of semilength 1, etc.
Asymptotics of coefficients of univariate algebraic GFs, such as this one, can be derived
systematically via the local singularity analysis of Flajolet and Odlyzko [9] combined with
a global analysis of singularities of the GF [10, 4]. Thus the Catalan GF is easily shown
to have nth coefficient asymptotic to 4" /+/7rn3, which in this simple case can be verified
using the explicit formula a, = (2n)!/((n + 1)!n!) and Stirling’s approximation.

However, in more than one variable, there is no such general procedure, and there
are many situations where we genuinely want asymptotic information about specific
coefficients of multivariate GFs. For example, a Schroder tree is a rooted plane tree on n
leaves where each non-leaf vertex has at least two children. The GF encoding the number
am,n of Schroder trees with m leaves and n vertices satisfies the algebraic equation

> o y(V(x,y))?
Vix,y) := A X = XY + Z¥—
(x,y) m;o Y= TG

For large m and n, approximately how many trees with m leaves and 7 vertices are there?
The most obvious method of attack on such a problem is to try to mimic the custom
contour of integration used by Flajolet and Odlyzko. Apart from the PhD thesis work of
Greenwood [13], little has been done in this direction. For the results of that substantial
work to apply, an explicit formula for the GF in the form H~F is required for some
B & Zo. The dominant singularity of 1/H must be a smooth minimal critical point, H
must be analytic near the origin, and H must satisfy some partial derivative constraints
at the critical point. Creating a general method from this seems rather daunting. The
tull version of this paper will include examples where this method will not apply.
Multivariate asymptotics are considerably more difficult to derive than in the uni-
variate case, owing to the much greater range of geometries for the singular set of the
GE. Even rational functions prove highly nontrivial, in sharp contrast to their algorith-
mic analysis in the univariate case. Previous work by Bender, Richmond and Gao [1, 12]
deals with limit laws for multivariate situations including algebraic GFs, but does not
address the detailed asymptotic questions we need here (corresponding in their model to
estimating the probability generating function). However, the long-running ACSV pro-
gram [16] has by now made rational multivariate GFs quite manageable in many cases.
Our main approach here is to embed the array of coefficients of an algebraic GF into a
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higher-dimensional array represented by a rational function, and then use the existing
ACSV theory to derive asymptotics. This idea was suggested in [17] but has barely been
explored since then. Here we make progress toward a systematic method, by classi-
tying all examples in our recently collated test problem collection [14], and presenting
complete results in Section 3 for some of them. Complete details are in the accompa-
nying SAGEMATH worksheet, http://acsvproject.com/AlgSage . ipynb. To compute
asymptotics for the GF f(x):

1. Preprocess. Adding finitely many terms to f or making a variable substitution may
help attain necessary embedding conditions, and may lead to nicer combinatorial
embeddings, where all coefficients are non-negative. (See Section 3.1.)

2. Embed. Using Proposition 3, encode the coefficients of f(x) as the elementary
diagonal of a rational function F(Y, x) in one additional variable. This step requires
that f is divisible by some variable occurring in f and that the minimal polynomial
for f has a non-zero derivative at the origin. (See Section 2.1.)

3. Identify critical points. If F(Y,x) = G(Y,x)/H(Y,x), use a system of polyno-
mial equations derived from H to identify critical points that may contribute to the
asymptotics. Because of space, we restrict to the case where we can find an em-
bedding where 1/H(Y, x) is combinatorial, allowing us to identify minimal critical
points more easily. We leave more advanced ACSV issues, such as noncombinato-
rial embeddings and critical points at infinity, to follow-up work. (See Section 2.2.)

4. Compute asymptotics. Once the contributing critical points are identified, asymp-
totics may be computed algorithmically. (See our SAGEMATH worksheet.)

2 Basic theory

Let F(x) = Y, a,x" be a GF in d variables that is algebraic with minimal polynomial
P(Y, x). For the Catalan example above, P(Y,x) = xY? — Y + 1.

2.1 Embedding using rational GFs

Proposition 1 ([11]). Suppose that f is a univariate algebraic power series defined by the poly-
nomial P(Y,x), that f(0) = 0, and that 0P/9Y(0,0) # 0. Then f is the diagonal AF of the
power series

Y2Py (Y, Yx)

FOOX) = —5r
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The condition that f(0) = 0 is necessary for the formula, since the constant term
of Y2Py(Y,Yx) is zero. Also, 9P/dY(0,0) # 0 is necessary: it says that the algebraic
function defined by P has a single branch of multiplicity 1 that passes through the origin.

Example 2. The Catalan GF has nonzero constant term, so there are two obvious ways to
apply Proposition 1. Subtracting the constant term yields the embedding into

F (v )_Y(1—2Y2x—2Yx)
X 1= (Y2x+2Yx +x)

We could instead multiply by x to obtain the shifted Catalan GF whose nth coefficient is
a,—1. This yields an embedding into

Y(1—2Y)
Y. =75y

In other words, a,, is the (n,n) coefficient of F; and the (n + 1,1 + 1) coefficient of F,.

There is a substantial lack of uniqueness in the embedding, since adding any bivariate
rational GF with zero diagonal will not change the diagonal.

Proposition 1 in fact generalizes to a less well known result in an arbitrary number
of variables, which also allows for a single branch of higher multiplicity. When d > 3
there are various notions of diagonal. The elementary diagonal of a GF F(x) is the (d — 1)-
variate GF encoding the coefficients from F, where x; and x; have matching powers,

r .13 rq
Zr Aro,ro,13,mrg Xy X3 0" Xy

Proposition 3 ([19], Lemma 2). Suppose that f is an algebraic power series given as a branch
of P(f(x),x) = O, that f is divisible by x1 and that in some neighborhood of 0, there is a
factorization P(Y,x) = (Y — f(x))*u(Y, x) where u(0,0) # 0 and k > 1 is an integer.

Then f is the elementary diagonal of the rational function F given by

F(Y, %) = Y2Py(Y,Yx1,%2,...,%4)
" kP(Y, Yxy, X0, Xg)

Example 4. A bivariate refinement of the Catalan GF is the Narayana GF

Glx,y) i= 5 (1= 3= 1) = 1= 2xy+ 1) + 2 - 12),

which enumerates noncrossing partitions by set size and number of blocks, rooted or-
dered trees by edges and leaves, Dyck paths by semilength and number of peaks, efc.
The minimal polynomial P(Y, x,y) = xY2 —Y(1 —x(y — 1)) + 1 specializes to the Catalan
case on setting y = 1.



Multivariate Algebraic Asymptotics 5

Now G(x,y) — 1 satisfies the hypotheses of Proposition 3 with k = 1 (with respect to
the variable x), and hence embeds into
(1—(2Y?x+ Yxy+Yx))Y
(1—(Y2x+Yxy+Yx+uxy))

As expected, if we set y = 1, this GF specializes to F; in Example 2. Similarly, if we
instead multiply by x before embedding, we obtain

Y(1-2Y—Yx(y—1))
1—x—=Y—-Yx(y—1)’

which specializes to F, in Example 2.

More generally, we must separate the branches of the algebraic function, which re-
quires more work, undertaken for example in [19]. We intend to consider this case in
a companion paper. For now, we concentrate only on cases where the hypotheses of
Proposition 3 are met, which turns out to be almost all of the examples in [14].

2.2 Basics of ACSV

We give a very brief overview of this (by now standard) material, and refer to [15, 16]
for full details. Given a rational d-variate GF in the form F = G/H with a power series
expansion at the origin, we may often derive asymptotics as follows. First represent the
coefficient of x” := x]' - - - x// via the Cauchy Integral Formula with domain of integration
a small torus (product of circles) centered at the origin. We then expand this torus via
a homothety until we reach a minimal critical point (a type of point with algorithmically
checkable properties) lying on the boundary of the domain of convergence. Replacing
by a local residue integral we may evaluate this using stationary phase methods. In the
case where the minimal critical point w is a smooth point of the variety H = 0, this leads
directly to an asymptotic expansion for r = n - T with ¥ € (0,0) fixed as n — o

XTF(x) ~ w ™ Y aylr|-D727K,
k>0

where the coefficients can be determined algorithmically in terms of derivatives of G
and H, and w and a; vary with T. The simplest explicit formula in terms of G and H
is only for k = 0, but the rational GFs we obtain via the embedding procedures above
always have agp = 0 [18]. Computer algebra implementations computing coefficients ay
are built into SAGEMATH [20].

Another key observation is that if 1/ H is combinatorial (all its coefficients are nonneg-
ative), then minimal singularities exist and for each minimal critical point w, the point
(lws],...|w4]) is also a minimal critical point. If the series is aperiodic (the subgroup
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generated by the support is all of Z%) then there is a unique minimal critical point. In
particular, if H = 1 — K where K is an aperiodic polynomial with nonnegative coeffi-
cients, which is the case in many of our examples below, for each direction there is a
unique minimal critical point supplying asymptotics in that direction, and it is strictly
minimal and lies in the positive orthant.

In the general noncombinatorial case, it can be hard to determine the contributing
points. Minimal points are still desirable because the contour shifting implicit in the
above description is still guaranteed to work in the noncombinatorial case. Yet, mini-
mal points need not exist, and algorithmically determining them is considerably harder.
Much recent work has been done, using Morse theory, to deal with this case. In this arti-
cle we discuss only examples that can be manipulated until a combinatorial embedding
is found, leaving the asymptotic analysis for noncombinatorial cases for a future article.

3 Worked examples

We categorize the examples in [14] according to the type of embedding obtained. We
present a single illustrative example in each category in full detail, and give less detail
in other cases. Full computations are given in the accompanying SAGEMATH worksheet.

3.1 Notes on preprocessing

Assuming that we have an algebraic power series f, there are two main hypotheses
needed before we can embed using Proposition 3. They are: (H1) f is divisible by some
variable occurring in f and (H2) dP/9dY does not vanish at the origin.

If f does not vanish at the origin, then H1 cannot apply. In the univariate case, we
can remedy this by subtracting the constant term or multiplying by the variable, as we
showed above for the Catalan example. More generally, for the first approach we can
subtract initial terms of the power series expansion of f. The following result gives a
simple necessary condition for this to work. Let x]‘? = (x1,..., Xi-1,0, %41, ., Xg)-

Proposition 5. If f — fo satisfies H1 with respect to the variable x;, for some polynomial fo, then
f(x7) is a polynomial.

Proof. If we substitute x; = 0, then we need f (x]o) — fo (x]o) to be identically zero. O

Note that if we already satisfy H1 but still apply such an additive substitution, then the
truth value of H2 will not change. To see this, write f = f — fy and denote its minimal
polynomial by P. Then dP/dY evaluated at the origin is equal to dP/dY evaluated at
x=0,Y = fp(0) = 0. Thus in this case such a substitution is unnecessary if our goal is
simply to embed. However as we see in Section 3.2.4, the nature of the rational function
that we embed into may change, and this may be useful.
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In all dimensions, the second method of multiplicative substitution results in something
satisfying H1. The Catalan example shows that we may also satisfy H2. However the
situation seems quite tricky: the ternary tree analog of the shifted Catalan GF is defined
by Y2 — xY + x? = 0, and this does not satisfy H2. We do not pursue this approach
further in the present article, for space reasons and because it seems less promising.

There is a third trick we can use. Assuming we already have f(0) = 0 but H1 is not
satisfied, we can make a monomial substitution. For example, in two variables we may
have (x,z) — (x,xz). This ensures that every term is now divisible by x, so H1 holds
for the transformed GF f(x,z) = f(x,xz). Furthermore there is no change in the truth
value of H2, since the minimal polynomial of f is P(Y,x,xz) and this does not change
the value of dP/0Y evaluated at the origin. We do need to keep more careful track of
the relation between the indices in the original power series and the rational function.

3.2 Embedding is combinatorial after additive substitution

In 6 of our 20 catalogued examples, we can immediately embed into a combinatorial
GF once we remove the constant term, and in 4 examples a similar approach with more
terms works. In addition to the examples shown below, the catalog examples #8 (Eu;
refinement of noncrossing partitions), #9 (Doslic et al.; RNA secondary structures), #13
(Flajolet and Sedgewick; patterns in trees), #14 (the Narayana numbers), #16 (new and
old leaves), and #19 (Bousquet-Mélou and Rechnitzer; bar graphs) lie in this category.

3.2.1 A univariate algebraic family [14, Example 4]
As a warm-up we deal with a univariate problem. In [3], Callan studied the family
1—ax — /1 —2ax + (a2 — 4b)x2

2bx? ’

for constants 2 and b. Let f(x) = G(x) — 1, and observe that f satisfies the minimal
polynomial

G(x) := Gap(x) =

P(Y,x) = x*bY? + (2bx® + ax — 1)Y + (x2b + ax).
Since Py (0,0) # 0, we can use Proposition 3 to embed f in the GF
_ Y?Py(Y,xY) (1— (2Y%bx? 4+ 2Y?bx? + Yax))Y

P(Y,xY)  1—(Y3bx2+2Y2bx2 + Ybx2 + Yax + ax)’

We look at the coefficients of F in the direction r = [1, 1] since [x"]f(x) = [Y"x"]F(Y, x).
Let H(Y, x) be the denominator of F(Y,x). Then, critical points satisfy the system of
equations {H =0, xHy;— YHy = 0}. When b # a?,4?/4, this system yields two points:

(H):< Vi —M‘b)wm:( Vi NM)
VT @ V)a—2vh) b )T T a+Vh)a+2vh) b )

F(Y,x)
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All critical points are smooth because the system of equations {H =0, xHy —YHy =
0, Hy = 0} has no solutions. The coordinates of (Y3, x2) are always positive for any choice
of a,b > 0, and this point is strictly minimal. We now use, for example, [15, Theorem 5.2]
to find an asymptotic expansion for the coefficients of F(Y,x). We end up with

b_3/4
2/

Note that when b = a2 or b = 4% /4, the non-dominant critical point is no longer relevant,
but a similar analysis yields the same asymptotic formula.
We compare this to the asymptotic expansions derived using [9, Corollary 2]. The

[Y'x"|F(Y,x) = n=32(a +2Vb)"+32 1 O(n=¥/?). (3.1)

original GF G(x) has a unique algebraic singularity at x = m for a,b > 0. Addition-
ally, if ¢y = m and ay, = ﬁg, then as x — a;,
£\ 172
V1= 20x + (2 — 4b)x2 ~ /&y (1 . “—) V(@ — 1) (a2 — 4b).
1

This implies that as n — co

1/4
120+ (@2 = 0)22 = = a4 20 O,

Plugging this expansion into the equation for G(x) gives a matching asymptotic expres-
sion to Equation (3.1).

3.2.2 Dissections [14, Example 10]

Drmota [7, page 376] enumerates dissections of polygons (where the polygons have a
marked edge) using a bivariate GF A(x,y), where x counts the number of vertices in
the polygon, and y counts the total number of edges in the dissection. He gives the
following minimal polynomial for A:

Alx,y) =2y’ (1+ A(x,y)* +xy(1+ A(x,y)) - Ax,y).
Since A is divisible by x, using Proposition 3 immediately we embed into

(1— (2Y%xy? +2Y2xy +2Yxy? + Yxy) )Y
1—(Y2xy? + Y2xy + 2 Yxy? + Yxy + xy?) -

F(Y,x,y) =

We note that [x""y(1=P)"A(x,y) = [YP"xP"y(-P)"|F(Y,x,y), and find that there is a
single smooth critical point in this direction:

oo (122 pGp =17 (1-2p)
(Y, ,y)—< D f(l_zp)3’(3p—1)(1—p)>'
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This critical point has positive coordinates when 1/3 < p < 1/2. This corresponds to the
range of p-values where A(x,y) has positive coefficients. It is clear from the denominator
of F that in this case, the critical point is strictly minimal. Thus for 1/3 < p < 1/2:

o (1) V1- 1 1—p)l-r " 1
1y AY) = 27TP2\/3PP— 1 n? <(1 - 2p§2‘4’fz;zﬂ - 1)3P‘1> o <ﬁ) '

3.2.3 Assembly trees [14, Example 15]

Béna and Vince [2] define the concept of assembly tree of a graph and show that the
(exponential) GF for the number of assembly trees of the complete bipartite graph K;; is

flay) =Y asy* =1—/(1—x2+(1-y? 1.

Note that f(0,y) = y and f(x,0) = x; indeed, the first order Maclaurin expansion is
x +y. We replace f by f := f — x —y, which obviously has no effect on asymptotics of
coefficients, and we can embed f via Proposition 3 into

(1—-(Yx+Y+y))Y
1—(Yx+xy+Y/24y)
Here, we analyse the direction r = [p, p, (1 — p)] for variables (Y, x,y) and p € (0,1),

and obtain a pair of smooth critical points, only one of which is strictly minimal with
positive coordinates. Let & := 1+ 4p — 4p?. This leads to the asymptotic formula

VA+OVE-28(1+E2) 4 .<(\/§—2p+3) _ (1—{—(1—2;7)\/5)’[))”_'_0(1).

F(Y,x,y) =

4rtp(1—p) 2\ 4(1—p)? 4p? n’
For example, when p = 1/2 we are looking at the diagonal case K;;, and obtain

1 1 1
FYI) = e 6+ 4V2) 10 ().

This agrees with [2, Theorem 4.11] in the exponential rate, but not in the constant —
ours is correct, as we confirmed by numerical checks.

3.2.4 Schroder trees by leaves and vertices [14, Example 17]

Recall this class from the introduction. Using Proposition 3 on the minimal polynomial
for V (with respect to the variable y) will yield a noncombinatorial embedding. Instead,
we use the embedding F(Y,x,y) for V(x,y) — xy. Checking in the (Y, x,y) direction
r= (p,p,(1—p)) for p € (1/3,1/2) (corresponding to non-zero coefficients) yields a
single strictly minimal critical point with positive coordinates. Then, we obtain

(1 V3r—1 1 (1—2p)*r—2 " 1
IV =5 2 e (g ) O )
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3.3 Embedding is combinatorial after a monomial substitution

When the trick of subtracting a polynomial from f does not work, we can move to
another level. In 2 of our 20 examples, a monomial substitution is effective.

3.3.1 Bivariate generalization of Catalan numbers [14, Example 7]

The next example comes from [5]. Let

_ (2n+4m)!
g m) = e+ 1)1
with corresponding GF
0 oo . o _~\2
L(x,z) — Z Z g(m,q)xmzq _ (1 Z) (1 Z) 4x'
qg=0m=0 2x

Then L(0,0) # 0 and Proposition 5 rules out simple additive substitutions, since
L(x,0) is the Catalan GF and L'Hopital’s rule shows that L(0, z) is also not a polynomial.
Instead we change variables by replacing z by xz. Then L(x, xz) — 1 satisfies

P = Y2x+sz+2Yx+xz—Y+x,
which leads to the embedding

E(Y, x,2) = 1— (2Y%x + Yxz +2Yx)Y
M2 =T (Y2x 4+ Yxz +2Yx + xz + x)’

where [x"zF|L(x,z) = [Y"T*x" k2" F(Y, x, z). Rescaling so n -+ k becomes 1, we consider
[xPz(1=P)"|L(x,z) for a constant p € (0,1) as n — co. This corresponds to analysing
[Y"x"z(1=P)"|F(Y,x,z), giving us the direction ¥ = (1,1,(1 —p)). There is a single
smooth strictly minimal critical point with positive coordinates in this direction, yielding

n
pi(1=p)n _ Vi-p? 1 (ldp (1-p) 1
[xP"'z |L(x,z) =y 2 \i=p 20 +0 3 )

3.3.2 Bicolored Motzkin Paths [14, Example 18]

In [8, Lemma 2.1], Elizalde derives the GF for bicolored Motzkin paths. Here, such
a path starts and ends at the x-axis, never passes below the x-axis, and takes steps
U=(1,1),D = (1,-1), and two (colored) types of horizontal steps, H; = (1,0) and
H; = (1.0). Let ay,,, be the number of such paths with m total U or Hj steps and n total
D or H; steps. Then
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Using Proposition 3 on M(x, xy) — 1 gives the asymptotic formula

_ 1 1 ((1-p)22\" 1
pry, (1=p)n) A1 - - - (= -
[x y ] (X, y) 27'[(1 - p)zpz nz < pZP + O n3 .

4 Further discussion

We believe we have shown that our strategy for computing asymptotics of multivariate
algebraic series is a good one. Further developments in ACSV theory, some already near
completion, will allow analysis of noncombinatorial embeddings. We intend to take this
up in a future work, and some cases will be challenging. For example, bilateral Schroder
paths from (0,0) to (n,n) having k North steps are enumerated by

1

G(t,z) =
(t,2) V1 — 2z — 4tz + 22,

The embedding F(Y,t,z) found by using Proposition 3 and attaching z to Y yields no
affine critical points in any relevant direction.

We note further that Furstenberg and Safonov are not the only relevant authors for
embedding procedures. For example, Denef and Lipshitz [6] give a somewhat more
complicated method, which when applied to the example x/+/1 — x yields, instead of
the rather difficult to analyse embedding given by Proposition 1, the simple GF 2xY /(1 —
x —Y). This indicates a brighter future for the general program of computing multvariate
asymptotics by reducing the algebraic to the rational case.
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