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Abstract. For a fixed integer t ≥ 2, we consider the irreducible characters of repre-
sentations of the classical groups of types A, B, C and D, namely GLtn, SO2tn+1, Sp2tn
and O2tn, evaluated at elements ωkxi for 0 ≤ k ≤ t − 1 and 1 ≤ i ≤ n, where ω is a
primitive t’th root of unity. The case of GLtn was considered by D. Prasad (Israel J.
Math., 2016). In this article, we give a uniform approach for all cases. In each case, we
characterize partitions for which the character value is nonzero in terms of what we call
z-asymmetric partitions, where z is an integer that depends on the group. Moreover,
if the character value is nonzero, we prove that it factorizes into characters of smaller
classical groups. The proof uses Cauchy-type determinant formulas for these characters
and involves a careful study of the beta sets of partitions. We also give product formulas
for general z-asymmetric partitions and z-asymmetric t-cores. Lastly, we show that there
are infinitely many z-asymmetric t-cores for |z| ≤ t − 2.
Saaransh (सारांश). इस शोध पत्र में, हम डी.प्रसाद के कायर् को, ɣजन्होंने केवलGLtn के ɡलए ɟकया था, सभी
क्लाɡसकल समूहों के ɡलए करते हैै। एक ɟनɢȮत पूणाǖक t ≥ 2 के ɡलए, हम A, B, C व D प्रकार के क्लाɡसकल
समूहों, अथार्त् GLtn, SO2tn+1, Sp2tn तथाO2tn, के अलघुकरणीय अɢभलक्षणकों केωkxi; 0 ≤ k ≤ t− 1,
1 ≤ i ≤ n पर मूल्यांकन, जबɟक ω इकाई का t-वाँ पूवर्ग मूल है, पर ɟवचार करते हैं। इस लेख में हम सभी
प्रकार के समूहों के ɡलए प्रयोज्य एकमेव दृɠȲकोण प्रदान करते हैं। प्रत्येक प्रकार के ɡलए हम उन ɟवभाजनों को
वɺणʌत करते हैं ɣजनमें अɢभलक्षणकों का मान शून्य नहीं है। यह वणर्न z-असमɠमत ɟवभाजनों, जबɟक z समूह पर
ɟनभर्र करता हुआ एक पूणाǖक है, के माध्यम से ɟकया गया है। अɢभलक्षणकों का मान शून्य न होने कʏ अवȸा में
हम यह भी दशार्ते हैं ɟक इसे छोटे क्लाɡसकल समूहों के अɢभलक्षणकों के गुणनफल के रूप में ȭक्त ɟकया जा
सकता है। हमारी उपपɢȉ इन अɢभलक्षणकों के कॉशी प्रकार के सारɢणक सूत्रों तथा ɟवभाजनों के बीटा समुǴयों
के अध्ययन पर आधाɝरत है। इस लेख में हम z-असमɠमत ɟवभाजनों और z-असमɠमत t-कोरों के गुणन सूत्रों कʏ
भी चचार् करते हैं। अंत में हम यह भी ɡसद्ध करते हैं ɟक यɞद |z| ≤ t − 2 हो तो z-असमɠमत t-कोरों कʏ संख्या
अनंत होगी।
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1 Introduction
The characters of irreducible representations of the classical families of groups, namely the
general linear, symplectic and orthogonal groups are amazing families of symmetric Laurent
polynomials indexed by integer partitions. In particular, the character of the general linear
groups are the Schur polynomials, which are extremely well-studied. They form one of the
most natural bases of the ring of symmetric functions, and are orthonormal with respect to
the standard Hall inner product. For background, see [13].

These families of Laurent polynomials also satisfy nontrivial relations, which are not
well-understood from the point of view of representation theory. For instance, it was shown
in [6] that the Schur polynomial for a rectangular partition in 2n variables specialized to
the last n variables being reciprocals of the first n variables becomes a product of two
other classical characters. In some cases, this is the product of a symplectic and an even
orthogonal character, and in some others, the product of two odd orthogonal characters.
Similar factorization results were obtained in [2] for so-called double staircase partitions,
i.e. partitions of the form (k, k, k − 1, k − 1, . . . , 1, 1) or (k, k − 1, k − 1, . . . , 1, 1). This kind
of factorization was generalized in [1] for a large class of partitions as follows: for any
λ = (λ1, . . . , λn) and any positive integer m ≥ λ1, construct µ = (m + λ1, . . . , m + λn, m −
λn, . . . , m − λ1). Then sµ(x1, . . . , xn, 1/x1, . . . , 1/xn) factors. Such a result was further
generalized to skew-Schur functions, i.e. induced characters, of similar shapes in [3].

In a different direction, Prasad [14] considered factorizations of Schur polynomials in
2n variables where the last n variables were negatives of the first n variables motivated by
a celebrated result of Kostant [10]. He showed that such a factorization is nonzero if and
only if the corresponding 2-core is empty, and if it is nonzero, it factors into characters for
the 2-quotients; see Section 2 for the definitions. He further generalized this result to tn
variables, for t ≥ 2 a fixed positive integer, specialized to (exp(2πιk/t)xj)0≤k≤t−1,1≤j≤n,
obtaining similar results. We will think of these as twisted characters, where the twists are
by all the t’th roots of unity.

We note in passing that Schur polynomials evaluated at roots of unity and their powers
have been considered in [13, 15].

In this work, we generalize Prasad’s results to other classical groups. We consider the
classical groups Sp2tn, O2tn and SO2tn+1 and obtain factorizations for their characters under
the same specialization as that of Prasad. These are stated as Theorem 5, Theorem 8 and
Theorem 9 respectively. Our proofs are more involved for the following reason. For the
general linear group, there is only one possible value of the t-core for which the twisted
character is nonzero, namely the empty partition. For the other classical characters, there
are many possible values of the t-core for which the character is nonzero. We will show that
these are t-cores which can be written in Frobenius coordinates as (α|α+ z), where the value
of z depends on the group, and which we call z-asymmetric partitions. For the study here,
z ∈ {−1, 0, 1}.
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2 Summary of results
Throughout, we fix t ≥ 2. Let ω be a primitive t’th root of unity. We also use n for a fixed
positive integer and let X = (x1, . . . , xn) be a tuple of commuting indeterminates. For any
integer j, we set X j = (xj

1, . . . , xj
n), and for a ∈ R, set aX = (ax1, . . . , axn). Define x = 1/x

for an indeterminate x and write X = (x1, . . . , xn).
Recall that a partition λ = (λ1, . . . , λn) is a sequence of weakly decreasing nonnegative

integers. Any entry of the partition is called a part. The length of a partition λ, which
is the number of positive parts, is denoted by ℓ(λ). By a + λ, we will mean the partition
(a + λ1, . . . , a + λm). For a partition λ and an integer m such that ℓ(λ) ≤ m, define the
beta-set of λ by β(λ) ≡ β(λ, m) = (β1(λ, m), . . . , βm(λ, m)) by βi(λ) = λi + m − i. We
will use the convention that we will write β(λ) whenever m is clear from the context.

Macdonald [13] defines the t-core and t-quotient of a partition using the beta-set and we
recall this construction. For a partition λ of length at most m, let ni(λ) ≡ ni(λ, m), 0 ≤ i ≤
t − 1, be the number of parts of β(λ) congruent to i (mod t) and β

(i)
j (λ), 1 ≤ j ≤ ni(λ) be

the ni(λ) parts of β(λ) congruent to i (mod t) in decreasing order.

Definition 1 ([13, Example I.1.8]). Let λ be a partition with ℓ(λ) ≤ m.

1. The m numbers tj + i, where 0 ≤ j ≤ ni(λ)− 1 and 0 ≤ i ≤ t − 1, are all distinct.
Arrange them in descending order, say β̃1 > · · · > β̃m. Then the t-core of λ has parts
(coret(λ))i = β̃i − m + i.

2. The parts β
(i)
j (λ) may be written in the form tβ̃

(i)
j + i, 1 ≤ j ≤ ni(λ), where β̃

(i)
1 >

· · · > β̃
(i)
ni(λ)

≥ 0. Let λ
(i)
j = β̃

(i)
j − ni(λ) + j, so that λ(i) = (λ

(i)
1 , . . . , λ

(i)
ni(λ)

) is a
partition. Then the t-quotient quot(λ) of λ is λ⋆ = (λ(0), λ(1), . . . , λ(t−1)).

For example, the 3-core and 3-quotient of λ = (4, 2, 2, 1) with m = 4 are (4, 2) and
((1), ∅, ∅) respectively. We note that there is another and slightly different definition of
cores and quotients arising from modular representation theory; see James and Kerber [9,
Chapter 2], for instance. This difference turns out not to be important for us; see Remark 2.
Remark 2. Notice that Macdonald’s definition of the t-quotient depends on m. In particular,
if quot(λ) = (λ(0), . . . , λ(t−1)) and m increases by 1 in Definition 1, the new t-quotient will
be (λ(t−1), λ(0), . . . , λ(t−2)). So, Macdonald suggests that “λ⋆ should perhaps be thought of
as a ‘necklace’ of partitions.”

The (Frobenius) rank of a partition λ, denoted rk(λ), is the largest integer k such that
λk ≥ k. The Frobenius coordinates of λ are a pair of strict partitions, denoted (α|β), of
length rk(λ) given by αi = λi − i and β j = λ′

j − j. For example, the Frobenius coordinates
of (4, 2, 2, 1) are (3, 0|3, 1).
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We write down the explicit Weyl character formulas for the infinite families of classical
groups at the representation indexed by λ = (λ1, . . . , λn). See [7] for more details and
background. The Schur polynomial or general linear (type A) character of GLn is given by

sλ(X) =

det
1≤i,j≤n

(
x

β j(λ)

i

)
det

1≤i,j≤n

(
xn−j

i

) . (2.1)

The odd orthogonal (type B) character of the group SO(2n + 1) is given by

soλ(X) =

det
1≤i,j≤n

(
x

β j(λ)+1/2
i − x

β j(λ)+1/2
i

)
det

1≤i,j≤n

(
xn−j+1/2

i − xn−j+1/2
i

) =

det
1≤i,j≤n

(
x

β j(λ)+1
i − x

β j(λ)

i

)
det

1≤i,j≤n

(
xn−j+1

i − xn−j
i

) . (2.2)

The symplectic (type C) character of the group Sp(2n) is given by

spλ(X) =

det
1≤i,j≤n

(
x

β j(λ)+1
i − x

β j(λ)+1
i

)
det

1≤i,j≤n

(
xn−j+1

i − xn−j+1
i

) . (2.3)

Lastly, the even orthogonal (type D) character of the group O(2n) is given by

oeven
λ (X) =

det
1≤i,j≤n

(
x

β j(λ)

i + x
β j(λ)

i

)
(1 + δλn,0) det

1≤i,j≤n

(
xn−j

i + xn−j
i

) , (2.4)

where δ is the Kronecker delta. There is an extra factor in the denominator because the last
column becomes 2 if λn = 0. Notice that

sλ(x1, . . . , xn) = spλ(x1, . . . , xn) = soλ(x1, . . . , xn) = oeven
λ (x1, . . . , xn) = 0, if n < ℓ(λ).

We will consider classical characters evaluated at elements twisted by all the t’th roots
of unity. The first result in this direction is due to D. Prasad for GLtn [14, Theorem 2]. We
generalize [14, Theorem 2] to other classical characters. We first need some definitions.

Definition 3. Let z be an integer. We say that a partition λ is z-asymmetric if λ =
(α| α + z), in Frobenius coordinates for some strict partition α. More precisely, λ = (α|β)
where βi = αi + z for 1 ≤ i ≤ rk(λ).

Definition 4. A 1-asymmetric partition is said to be symplectic. In addition, if a symplectic
partition is also a t-core, we call it a symplectic t-core.
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Note that the empty partition is vacuously symplectic. For example, the only symplectic
partitions of 6 are (3, 1, 1, 1) and (2, 2, 2), and the first few symplectic 3-cores are (1, 1),
(2, 1, 1), (4, 2, 2, 1, 1) and (5, 3, 2, 2, 1, 1).

For a partition of length at most tn, let σλ ∈ Stn be the permutation that rearranges the
parts of β(λ) such that

βσλ(j)(λ) ≡ q (mod t),
q−1

∑
i=0

ni(λ) + 1 ≤ j ≤
q

∑
i=0

ni(λ), (2.5)

arranged in decreasing order for each q ∈ {0, 1, . . . , t− 1}. We will denote our indeterminates
by (X, ωX, ω2X, . . . , ωt−1X), where we recall that X = (x1, . . . , xn). To state our results, it
will be convenient to define, for λ = (λ1, . . . , λk), the reverse of λ as rev(λ) = (λk, . . . , λ1).
Further, if µ = (µ1, . . . , µj) is another partition such that µ1 ≤ λk, then we write the
concatenated partition as (λ, µ) = (λ1, . . . , λk, µ1, . . . , µj).

Theorem 5. Let λ be a partition of length at most tn indexing an irreducible representation of
Sp2tn and quot(λ) = (λ(0), . . . , λ(t−1)). Then the Sp2tn-character spλ(X, ωX, . . . , ωt−1X)
is given as follows.

1. If coret(λ) is not a symplectic t-core, then spλ(X, ωX, . . . , ωt−1X) = 0.

2. If coret(λ) is a symplectic t-core with rank r, then

spλ(X, ωX, . . . , ωt−1X) = (−1)ϵ1 sgn(σλ) spλ(t−1)(Xt)
⌊ t−3

2 ⌋
∏
i=0

s
µ
(1)
i
(Xt, Xt

)

×

so
λ(

t
2−1)(Xt) t even,

1 t odd,

(2.6)

where

ϵ1 = −
t−2

∑
i=⌊ t

2⌋

(
ni(λ) + 1

2

)
+

{
n(n+1)

2 + nr t even,
0 t odd,

and µ
(1)
i = λ

(t−2−i)
1 +

(
λ(i), 0,− rev(λ(t−2−i))

)
has 2n parts for 0 ≤ i ≤

⌊ t−3
2

⌋
.

So, nonzero Sp2tn characters are a product of characters of smaller groups, of which there
are ⌊(t − 1)/2⌋ GL2n characters, one Sp2n character and, if t is even, one additional SO2n+1
character. One can show that the only 2-cores are self-conjugate. Therefore, this character
when t = 2 is nonzero if and only if core2(λ) = ∅.
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Example 6. For t = 2, Theorem 5 says that the character of the group Sp(4) (n = 1) of the
representation indexed by the partition (a, b), a ≥ b ≥ 0, evaluated at (x,−x) is nonzero if
and only if a and b have the same parity. If a and b are both odd, then

sp(a,b)(x,−x) = −sp( b−1
2 )(x2) so( a+1

2 )(x2),

and if a and b are both even, then

sp(a,b)(x,−x) = sp( a
2 )
(x2) so( b

2 )
(x2).

Notice that all the characters on the right-hand side are for the groups Sp(2) and SO(3),
and in both cases, the partitions indexing them are the 2-quotients and of length 1.

Definition 7. A (−1)-asymmetric partition is said to be orthogonal. In addition, if an
orthogonal partition is also a t-core, we call it an orthogonal t-core.

Our notion of an orthogonal partition is same as Macdonald’s double of α [13, p. 14], and
Garvan–Kim–Stanton’s doubled partition of α, denoted αα [8, Sec. 8]. The first few orthog-
onal 3-cores are (2), (3, 1), (5, 3, 1, 1) and (6, 4, 2, 1, 1), which are precisely the conjugates
of the symplectic 3-cores listed earlier. Then our result for factorization of even orthogonal
characters is as follows.

Theorem 8. Let λ be a partition of length at most tn indexing an irreducible representation
of O2tn and quot(λ) = (λ(0), . . . , λ(t−1)). Then the O2tn character oeven

λ (X, ωX, . . . , ωt−1X)
is given as follows.

1. If coret(λ) is not an orthogonal t-core, then oeven
λ (X, ωX, . . . , ωt−1X) = 0.

2. If coret(λ) is an orthogonal t-core with rank r, then

oeven
λ (X, ωX, . . . , ωt−1X) = (−1)ϵ2 sgn(σλ) oeven

λ(0) (Xt)
⌊ t−1

2 ⌋
∏
i=1

s
µ
(2)
i
(Xt, Xt

)

×
{
(−1)∑n

i=1 λ
(t/2)
i soλ(t/2)(−Xt) t even,

1 t odd,

(2.7)

where

ϵ2 = −
t−1

∑
i=⌊ t+2

2 ⌋

(
ni(λ)

2

)
+

{
n(n+t−1)

2 + nr t even,
(t−1)n

2 t odd,

and µ
(2)
i = λ

(t−i)
1 +

(
λ(i), 0,− rev(λ(t−i))

)
has 2n parts for 0 ≤ i ≤

⌊
t−1

2

⌋
.
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Lastly, we consider the odd orthogonal case. It will turn out that the notion of an ‘odd-
orthogonal partition’ is the same as being self-conjugate, or equivalenty, 0-asymmetric. The
first few self-conjugate 3-cores are (1), (3, 1, 1), (4, 2, 1, 1) and (6, 4, 2, 2, 1, 1). Our result for
factorization of odd orthogonal characters is as follows.
Theorem 9. Let λ be a partition of length at most tn indexing an irreducible representation
of SO2tn+1. Then the SO2tn+1 character soλ(X, ωX, . . . , ωt−1X) is given as follows.

1. If coret(λ) is not self-conjugate, then soλ(X, ωX, . . . , ωt−1X) = 0.

2. If coret(λ) is self-conjugate with rank r, then

soλ(X, ωX, . . . , ωt−1X) = (−1)ϵ3 sgn(σλ)
⌊ t−2

2 ⌋
∏
i=0

s
µ
(3)
i
(Xt, Xt

)

×

so
λ(

t−1
2 )(Xt) t odd,

1 t even,

(2.8)

where

ϵ3 = −
t−1

∑
i=⌊ t

2⌋

(
ni(λ) + 1

2

)
+

{
nr t odd,
0 t even,

and µ
(3)
i = λ

(t−1−i)
1 +

(
λ(i), 0,− rev(λ(t−1−i))

)
has 2n parts for 0 ≤ i ≤

⌊ t−2
2

⌋
.

We give sketch of the proof of Theorem 5 in Section 4. The proofs of Theorems 8 and 9
follow similar ideas and are skipped. The details can be seen in [4].
Remark 10. It might seem that the results of Theorems 5, 8 and 9 are not well-defined
because of Remark 2. More precisely, the lack of symmetry of the t-quotients on the right
hand sides of these theorems might cause some worry. However, since changing n → n + 1
will change the length of the partition λ by tn, the order of the quotients remains unchanged.
Remark 11. In some cases, the Schur functions s

µ
(j)
i
(Xt, Xt

) appearing on the right hand
sides of Theorems 5, 8 and 9 for j ∈ [3] respectively factorize further into characters of other
classical groups, but we do not understand this behavior fully. Whenever µi can be written
as ρ1 + (ρ,− rev(ρ)) or ρ1 + (1 + ρ,− rev(ρ)) for a partition ρ of length at most n, such
a factorization occurs by the results in [1]. In that case sµi is either a product of two odd
orthogonal characters or an even orthogonal and a symplectic character.

It is natural to ask if there are infinitely many symplectic, orthogonal and self-conjugate
t-cores. As we have seen, there are no symplectic or orthogonal 2-cores and all 2-cores are
self-conjugate. For t ≥ 3, it has been proved [8] that there are infinitely many self-conjugate
t-cores. Our last result gives a generalisation.
Theorem 12. There are infinitely many symplectic and orthogonal t-cores for t ≥ 3.

We give sketch of the proof of Theorem 12 in Section 5.
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3 Background results
We now state the main results we will need for proving our theorems. See [4] for detailed
proofs. For a partition λ of length at most m, we see that

ni(λ, m) = ni(coret(λ), m), 0 ≤ i ≤ t − 1. (3.1)

We now use the beta set of partitions to classify z-asymmetric partitions; see Definition 3.
Let Pz be the set of z-asymmetric partitions and Pz,t be the set of z-asymmetric t-cores.

Lemma 13. Let λ = (α|β) be a partition of length at most m and rank r. Then the following
statements are equivalent.

1. λ ∈ Pz.

2. an integer ξ between 0 and m − z − 1 occurs in β(λ) if and only if 2m − z − 1− ξ does
not.

3. β(λ) is obtained from the sequence (α1 + m, . . . , αr + m, m − 1, . . . , 1, 0) by deleting the
numbers m − z − 1 − αr > m − z − 1 − αr−1 > · · · > m − z − 1 − α1 lying between 0
and m − 1.

Lemma 14. For |z| ≥ t − 1, the empty partition is the only t-core in Pz,t.

Now we state the constraints satisfied by ni(λ), 0 ≤ i ≤ t − 1, for a z-asymmetric t-core
λ of length at most tn.

Lemma 15. Let λ be a t-core of length at most tn and 0 ≤ z ≤ t − 2. Then λ ∈ Pz,t if and
only if

ni(λ) + nt−z−1−i(λ) =2n for 0 ≤ i ≤ t − z − 1,
and ni(λ) =n, t − z ≤ i ≤ t − 1.

(3.2)

Since coret(λ)
′ = coret(λ′) [13, Example I.1 8(e)], we have the following corollary.

Corollary 16. Let λ be a t-core of length at most tn and 2 − t ≤ z ≤ −1. Then λ ∈ Pz,t
if and only if

ni(λ) + nt−z−1−i(λ) =2n for − z ≤ i ≤ t − 1,
and ni(λ) =n, 0 ≤ i ≤ −z − 1.

(3.3)

We now see how to compute the rank of a t-core from its beta-set.

Lemma 17. Let λ be a partition of length at most tn. For z ∈ {−1, 0, 1}, if coret(λ) is a
z-asymmetric t-core, then

rk(coret(λ)) =
⌊ t−z−2

2 ⌋
∑
i=0

|ni(λ)− n|.
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We now state the determinant identities for block matrices, which we need to prove
our character identities. We note that we have not found our identities in Krattenthaler’s
treatises [11, 12]. The first is an elementary computation.
Lemma 18. For i = 1, . . . , k, let Ti be matrices of order ℓi × mi such that ℓ1 + · · ·+ ℓk =
m1 + · · ·+ mk = d. Define block-diagonal and block-antidiagonal matrices

U :=


T1

T2 0
. . .

0 Tk

 and V :=


T1

0 T2

. . .

Tk 0

 .

Then

det(U) = (−1)∑1≤i<j≤k mimj det(V) =


0 if ℓi ̸= mi for some i,

k

∏
i=1

det(Ti) otherwise.

Lemma 18 is used in the proof of the following result, which is the common ingredient in
the proofs of Theorems 5, 8 and 9.
Lemma 19. Suppose u1, . . . , uk are positive integers summing up to kn. Further, let(
γi,j
)

1≤i≤k,1≤j≤k+1 be a matrix of parameters such that γi,k+1 = γi,k, 1 ≤ i ≤ k and Γ
be the square matrix consisting of its first k columns. Let Uj and Vj be matrices of order
n × uj for j ∈ [k]. Finally, define a kn × kn matrix with k × k blocks as

Π :=
( (

γi,2j−1Uj − γi,2jVj
)

1≤i≤k
1≤j≤⌊ k+1

2 ⌋

(
γi,2k+2−2jUj − γi,2k+1−2jVj

)
1≤i≤k

⌊ k+3
2 ⌋≤j≤k

)
.

1. If up + uk+1−p ̸= 2n for some p ∈ [k], then det Π = 0.

2. If up + uk+1−p = 2n for all p ∈ [k], then

det Π = (−1)Σ(det Γ)n
⌊ k+1

2 ⌋
∏
i=1

det Wi, (3.4)

where

Wi =


(

Ui −Vk+1−i

−Vi Uk+1−i

)
1 ≤ i ≤

⌊
k
2

⌋
,(

U k+1
2
− Vk+1

2

)
k odd and i = k+1

2 ,

and

Σ =
⌊ k

2⌋
∑
i=1

(n + ui) +


0 k even,

n
k−1

2

∑
i=1

ui k odd.
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4 Sketch of proof of Theorem 5
Using the formula in (2.3), we consider the symplectic polynomial spλ(X, ωX, . . . , ωt−1X).
We first compute the factorization for the numerator. Permuting the columns of the deter-
minant in the numerator by σλ from (2.5) and applying certain blockwise row operations,
the numerator becomes

sgn(σλ)det


0 t(Aλ

t−1,1 − Aλ
t−1,1)

(
ωp(q+1)Aλ

q,1 − ωp(q+1)Aλ
q,1

)
1≤p≤t−1
0≤q≤t−2

0

 , (4.1)

where Aλ
q,1 =

(
x

β
(q)
j (λ)+1

i

)
1≤i≤n

1≤j≤nq(λ)

and Aλ
q,1 =

(
x

β
(q)
j (λ)+1

i

)
1≤i≤n

1≤j≤nq(λ)

.

If coret(λ) is not a symplectic t-core, then by Lemma 15 for z = 1 and (3.1), either
nt−1(λ) ̸= n or ni(λ) + nt−2−i(λ) ̸= 2n for some i ∈

{
0, 1, . . . ,

⌊ t−2
2

⌋}
. In the first case,

using Lemma 18, the determinant in (4.1) is 0. In the second case the determinant is 0 by
Lemma 19 and therefore, in both cases,

spλ(X, ωX, . . . , ωt−1X) = 0.

If coret(λ) is a symplectic t-core, then by Lemma 15 for z = 1 and (3.1), nt−1(λ) = n and
ni(λ)+ nt−2−i(λ) = 2n, i ∈

{
0, 1, . . . ,

⌊ t−2
2

⌋}
. Using Lemma 19, we get the factorization for

the determinant in the numerator. Evaluating at the empty partition, we get the factorization
for the determinant in the denominator. The symplectic character is thus given by

(−1)ϵ1 sgn(σλ)spλ(t−1)(Xt)
⌊ t−3

2 ⌋
∏
i=0

s
µ
(1)
i
(Xt, Xt

)×

so
λ(

t
2−1)(Xt) t even,

1 t odd.

Here ϵ1 has the same parity as

−
t−2

∑
i=⌊ t

2⌋

(
ni(λ) + 1

2

)
+

{
n(n+1)

2 + nr t even,
0 t odd,

where we have used Lemma 17 with z = 1 for the rank r. This completes the proof.
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5 Generating functions
We now state the enumerative results for z-asymmetric partitions defined in Definition 3.
See [4] for the proofs. We first recall that the limiting infinite product is given by

(a; q)∞ =
∞

∏
j=0

(1 − aqj). (5.1)

Proposition 20. Let z ≥ 0. The number of z-asymmetric partitions of m is equal to the
number of partitions of m with distinct parts of the form 2k + 1 + z, k ≥ 0.

As a corollary, we have an expression of the generating function for z-asymmetric partitions.
Since the number of z-asymmetric partitions of m is equal to the number of −z-asymmetric
partitions of m, we have the following corollary.

Corollary 21. For z ∈ Z, ∑
λ∈Pz

q|λ| = ∏
k≥0

(1 + q|z|+1+2k) = (−q|z|+1; q2)∞.

We now move on to enumerating z-asymmetric partitions which are also t-cores. Recall
from Lemma 14 that there are no nontrivial partitions if |z| > t − 2.

Theorem 22. Let 0 ≤ z ≤ t − 2. Represent elements of Z⌊ t−z
2 ⌋ by

(
z0, . . . , z⌊ t−z−2

2 ⌋
)

and

define b ∈ Z⌊ t−z
2 ⌋ by b⃗i = t − z − 1 − 2i. Then there exists a bijection ϕ : Pz,t → Z⌊ t−z

2 ⌋
satisfying |λ| = t|| ⃗ϕ(λ)||2 − b⃗ · ⃗ϕ(λ), where · represents the standard inner product.

Define the Ramanujan theta function [5, Equation (18.1)], f (a, b) =
∞

∑
n=−∞

a
n(n+1)

2 b
n(n−1)

2 .

Let pz,t(m) be the cardinality of partitions in Pz,t of size m.

Corollary 23. For 0 ≤ z ≤ t − 2, we have

∑
m≥0

pz,t(m)qm =
⌊(t−z−2)/2⌋

∏
i=0

f (q2i+z+1, q2t−2i−z−1).

We remark that the special case of z = 0 (i.e. self-conjugate t-cores) in Corollary 23 was
obtained by Garvan–Kim–Stanton [8, Equations (7.1a) and (7.1b)]. Thus, our result can be
viewed as a generalization of theirs for symplectic t-cores, leading to an immediate proof of
Theorem 12 for symplectic t-cores. Since the number of symplectic t-cores is same as the
number of orthogonal t-cores, there are infinitely many orthogonal t-cores as well.
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