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Rational Ehrhart Theory
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Abstract. The Ehrhart quasipolynomial of a rational polytope P encodes fundamen-
tal arithmetic data of P, namely, the number of integer lattice points in positive in-
tegral dilates of P. Ehrhart quasipolynomials were introduced in the 1960s, satisfy
several fundamental structural results and have applications in many areas of math-
ematics and beyond. The enumerative theory of lattice points in rational (equiva-
lently, real) dilates of rational polytopes is much younger, starting with work by Linke
(2011), Baldoni–Berline–Köppe–Vergne (2013), and Stapledon (2017). We introduce a
generating-function ansatz for rational Ehrhart quasipolynomials, which unifies sev-
eral known results in classical and rational Ehrhart theory. In particular, we define
γ-rational Gorenstein polytopes, which extend the classical notion to the rational set-
ting and encompass the generalized reflexive polytopes studied by Fiset–Kasprzyk
(2008) and Kasprzyk–Nill (2012).

Keywords: rational polytope, Ehrhart quasipolynomial, integer lattice point, rational
Ehrhart series, Gorenstein polytope

1 Introduction

This extended abstract summarizes the main results of [5]. Let P ⊆ Rd be a d-dimen-
sional lattice polytope; that is, P is the convex hull of finitely many points in Zd.
Ehrhart’s famous theorem [10] then says that the counting function ehr(P; n) := |nP∩Zd|
is a polynomial in n, the Ehrhart polynomial of P. Equivalently, the corresponding
Ehrhart series is of the form

Ehr(P; t) := 1 + ∑
n∈Z>0

ehr(P; n) tn =
h∗(P; t)

(1 − t)d+1

where h∗(P; t) ∈ Z[t] is a polynomial of degree ≤ d. More generally, let P ⊆ Rd

be a rational polytope with denominator k, i.e., k is the smallest positive integer such
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that kP is a lattice polytope. Then ehr(P; n) is a quasipolynomial, i.e., of the form
ehr(P; n) = cd(n)nd + · · ·+ c1(n)n + c0(n) where c0, c1, . . . , cd : Z → R are periodic func-
tions. The least common period of c0(n), c1(n), . . . , cd(n) is the period of ehr(P; n); this
period divides the denominator k of P; again this goes back to Ehrhart [10]. Equivalently,

Ehr(P; t) := 1 + ∑
n∈Z>0

ehr(P; n) tn =
h∗(P; t)

(1 − tk)d+1 (1.1)

where h∗(P; t) ∈ Z[t] has degree < k (d + 1).
Because polytopes can be described by a system of linear equalities and inequalities,

they appear in a wealth of areas; likewise Ehrhart quasipolynomials have applications
in number theory, combinatorics, computational geometry, commutative algebra, repre-
sentation theory, and many other areas. For general background on Ehrhart theory and
connections to various mathematical fields, see, e.g., [6].

Our aim is to study Ehrhart counting functions with a real dilation parameter. We
define the rational Ehrhart counting function and the real Ehrhart counting function

rehr(P; λ) :=
∣∣∣λP∩ Zd

∣∣∣ , rehr(P; λ) :=
∣∣∣λP∩ Zd

∣∣∣ ,

where λ ∈ Q or λ ∈ R respectively. As P is a rational polytope, it suffices to compute
rehr(P; λ) at certain rational arguments to fully understand rehr(P; λ); we will (quantify
and) make this statement precise shortly. To the best of our knowledge, Linke [14] initi-
ated the study of rehr(P; λ) from the Ehrhart viewpoint. She proved several fundamental
results starting with the fact that rehr(P; λ) is a quasipolynomial in the real variable λ,
that is,

rehr(P; λ) = cd(λ) λd + cd−1(λ) λd−1 + · · ·+ c0(λ)

where c0, c1, . . . , cd : R → R are periodic functions. As a first running example, the real
Ehrhart counting function of the line segment [1, 2] is rehr([1, 2]; λ) = ⌊2λ⌋ − ⌈λ⌉+ 1.

Linke views the coefficient functions as piecewise-defined polynomials, which allows
her, among many other things, to establish differential equations relating the coefficient
functions. Essentially concurrently, Baldoni–Berline–Köppe–Vergne [1] developed an
algorithmic theory of intermediate sums for polyhedra, which includes rehr(P; λ) as a
special case.

Our goal is to add a generating-function viewpoint to [1, 14], one that is inspired
by [16, 17]. Suppose the rational polytope P is given by the irredundant halfspace de-
scription

P =
{

x ∈ Rd : A x ≤ b
}

, (1.2)

where A ∈ Zn×d and b ∈ Zn such that the greatest common divisor of bi and the entries
in the ith row of A equals 1, for every i ∈ {1, . . . , n}.1 We define the codenominator r

1If P is a lattice polytope then we do not need to include bi in this gcd condition.
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of P to be the least common multiple of the nonzero entries of b: r := lcm(b). As we
assume that P is full dimensional, the codenominator is well-defined. Our nomenclature
arises from determining r using duality, as follows. Let P◦ denote the relative interior
of P, and let (Rd)∨ be the dual vector space. If P ⊆ Rd is a rational polytope such that
0 ∈ P◦, the polar dual polytope is P∨ := {x ∈ (Rd)∨ : ⟨x, y⟩ ≥ −1 for all y ∈ P}, and
r = min{q ∈ Z>0 : qP∨ is a lattice polytope}.

We will see in Section 2 that rehr(P; λ) is fully determined by evaluations at rational
numbers with denominator 2r (see Corollary 6 below for details); if 0 ∈ P then we
actually need to know only evaluations at rational numbers with denominator r. Thus
we associate two generating series to the rational Ehrhart counting function, the rational
Ehrhart series and the refined rational Ehrhart series, to a full-dimensional rational
polytope P with codenominator r:

REhr(P; t) := 1 + ∑
n∈Z>0

rehr
(
P;

n
r

)
t

n
r , RREhr(P; t) := 1 + ∑

n∈Z>0

rehr
(
P;

n
2r

)
t

n
2r .

Continuing our comment above, we typically study REhr(P; t) for polytopes such that
0 ∈ P, and RREhr(P; t) for polytopes such that 0 /∈ P.

Section 2 also contains, as a first set of main results, structural theorems about these
generating functions: rationality and its consequences for the quasipolynomial rehr(P; λ)
(Theorem 7 and Theorem 11), nonnegativity theorems (Corollary 10), connections to the
h∗-polynomial in classical Ehrhart theory (Corollary 13), and combinatorial reciprocity
theorems (Corollary 16 and Corollary 17).

One can find a precursor of sorts to our generating functions REhr(P; t) and
RREhr(P; t) in work by Stapledon [16, 17], and in fact this work was our initial mo-
tivation to look for and study rational Ehrhart generating functions. We explain the
connection of [17] to our work in Section 3.

A (d + 1)-dimensional, pointed, rational cone C ⊆ Rd+1 is called Gorenstein if there
exists a point (p0, p) ∈ C ∩ Zd+1 such that C◦ ∩ Zd+1 = (p0, p) + C ∩ Zd+1 (see, e.g.,
[3, 9, 15]). The point (p0, p) is called the Gorenstein point of the cone. We define the
homogenization hom(P) ⊂ Rd+1 of a rational polytope P = {x ∈ Rd : A x ≤ b} as

hom(P) := cone({1} × P) :=
{
(x0, x) ∈ Rd+1 : Ax ≤ x0b , x0 ≥ 0

}
.

For a cone C ⊆ Rd+1, the dual cone C∨ ⊆ (Rd+1)∨ is

C∨ :=
{
(y0, y) ∈ (Rd+1)∨ : ⟨(y0, y), (x0, x)⟩ ≥ 0 for all (x0, x) ∈ C

}
.

A lattice polytope P ⊂ Rd is Gorenstein if the homogenization hom(P) of P is Goren-
stein; in the special case where the Gorenstein point of that cone is (1, q), for some
q ∈ Zd, we call P reflexive [2, 12]. Reflexive polytopes can alternatively be characterized
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as those lattice polytopes (containing the origin) whose polar duals are also lattice poly-
topes, i.e., they have codenominator 1. This definition has a natural extension to rational
polytopes [11]. Gorenstein and reflexive polytopes (and their rational versions) play an
important role in Ehrhart theory, as they have palindromic h∗-polynomials. In Section 4
we give the analogous result in rational Ehrhart theory without reference to the polar
dual (Theorem 23). We will see that there are many more rational Gorenstein polytopes
than among lattice polytopes; e.g., any rational polytope containing the origin in its inte-
rior is rational Gorenstein (Corollary 24). We mention the recent notion of an l-reflexive
polytope P (“reflexive of higher index”) [13]. A lattice point x ∈ Zd is primitive if the
gcd of its coordinates is equal to one. The l-reflexive polytopese are precisely the lattice
polytopes of the form (1.2) with b = (l, l, . . . , l) and primitive vertices; note that this
means P has codenominator l and 1

l P has denominator l.

2 Rational Ehrhart Dilations

We assume throughout this article that all polytopes are full dimensional, and call a
d-dimensional polytope in Rd a d-polytope. We note that, consequently, the leading
coefficient of ehr(P; n) is constant (namely, the volume of P), and thus the rational gen-
erating function Ehr(P; t) has a unique pole of order d+ 1 at t = 1. So we could write the
rational generating function Ehr(P; t) with denominator (1 − t)(1 − tk)d; in other words,
h∗(P; t) always has a factor (1 + t + · · ·+ tk−1). For x ∈ R, let ⌊x⌋ (resp. ⌈x⌉) denote the
largest integer ≤ x (resp. the smallest integer ≥ x), and {x} = x − ⌊x⌋.

Example 1. We feature the following line segments as running examples. First, we com-
pute the real Ehrhart counting function.
• P2 :=

[
0, 2

3

]
, codenominator r = 2

rehr(P2; λ) =
⌊2

3 λ
⌋
+ 1 = 2

3 n + 1 if n ≤ λ < n + 3
2 , for some n ∈ 3

2Z>0 .

• P3 := [1, 2], codenominator r = 2

rehr(P3; λ) = ⌊2λ⌋ − ⌈λ⌉+ 1 =


n + 1 if λ = n for some n ∈ Z>0 ,
n if n < λ < n + 1

2 for some n ∈ Z>0 ,
n + 1 if n + 1

2 ≤ λ < n + 1 for some n ∈ Z>0 .

The real Ehrhart function rehr(P3; λ) is not monotone. For example, rehr(P3; 0) = 1,
rehr(P3; 1

4) = 0, rehr(P3; 1
2) = 1. We can see in these examples (and will prove below in

general terms) that rehr(P; λ) is a quasipolynomial in the real variable λ.

Remark 2. If P is a lattice polytope, then the denominator of 1
rP divides r. On the other

hand, the denominator of 1
rP need not equal r, e.g., for P4 := 2P3 = [2, 4].
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Remark 3. If 1
rP is a lattice polytope, its Ehrhart polynomial is invariant under lattice

translations. Unfortunately, this does not clearly translate to invariance of rehr(P; λ).
Consider the line segment [−1, 1] and its translation P4 = [2, 4]. For any λ ∈ (0, 1

4),
rehr([−1, 1], λ) = 1 and rehr(P4, λ) = 0. This observation raises two related questions:
Is there an example of a polytope and a translate with the same codenominator? We
expect not in dimension one. Given a rational polytope P, for which r and P̃ could P =
1
r P̃?

Lemma 4. Let P ⊆ Rd be rational d-polytope. If 0 ∈ P, then rehr(λ) is monotone for λ ∈ Q≥0.

Proposition 5. Let P ⊆ Rd be a rational d-polytope with codenominator r.

(i) The number of lattice points in λP is constant for λ ∈ (n
r , n+1

r ), n ∈ Z≥0.

(ii) If 0 ∈ P, then the number of lattice points in λP is constant for λ ∈ [n
r , n+1

r ), n ∈ Z≥0.

It follows that we can compute the real Ehrhart function rehr from the rational
Ehrhart function:

Corollary 6. Let P ⊆ Rd be a rational d-polytope with codenominator r. Then

rehr(P; λ) =

{
rehr(P; λ) if λ ∈ 1

r Z≥0 ,
rehr(P; ⌊λ⌉) if λ /∈ 1

r Z≥0 ,

where
⌊λ⌉ :=

2j + 1
2r

for
∣∣∣∣λ − 2j + 1

2r

∣∣∣∣ < 1
2r

and j ∈ Z .

In words, ⌊λ⌉ is the element in 1
2r Z with odd numerator that has the smallest Euclidean distance

to λ on the real line. Furthermore, if 0 ∈ P then

rehr(P; λ) = rehr
(
P;

⌊rλ⌋
r

)
.

Theorem 7. Let P ⊆ Rd be a rational d-polytope with codenominator r, and let m ∈ Z>0 such
that m

r P is a lattice polytope. Then

REhr(P; t) := ∑
n∈Z≥0

rehr
(
P;

n
r

)
t

n
r =

rh∗(P; t)(
1 − t

m
r

)d+1

where rh∗(P; t) is a polynomial in Z[t
1
r ] with nonnegative integral coefficients. Consequently,

rehr(P; λ) and rehr(P; λ) are quasipolynomials.
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Our implicit definition of rh∗(P; t) depends on m. We will sometimes use the no-
tation rh∗

m(P; t) to make this dependency explicit. Naturally, one often tries to choose
m minimal, which gives a canonical definition of rh∗(P; t), but sometimes it pays to be
flexible. By usual generatingfunctionology the degree of rh∗

m(P; t) is less than or equal
to m(d + 1)− 1 as a polynomial in t

1
r .

Corollary 8. Let P ⊆ Rd be a rational d-polytope with codenominator r, and let m ∈ Z>0 such
that m

r P is a lattice polytope. Then the period of the quasipolynomial rehr(P; λ) divides m
r , i.e.,

this period is of the form j
r with j | m.

Corollary 9. Let P ⊆ Rd be a rational d-polytope with codenominator r, and let m ∈ Z>0 such
that m

r P is a lattice polytope. Then the period of the quasipolynomial ehr(P; λ) divides m
gcd(m,r) .

Corollary 10. Let P ⊆ Rd be a lattice d-polytope with codenominator r. Then

REhr(P; t) =
rh∗

r (P; t)

(1 − t)d+1

where rh∗
r (P; t) is a polynomial in Z[t

1
r ] with nonnegative coefficients.

For polytopes that do not contain the origin, the following variant of Theorem 7 is
useful. Many of the following assertions come in two versions, one for REhr and one for
the refined rational Ehrhart series RREhr defined below.

Theorem 11. Let P ⊆ Rd be a rational d-polytope with codenominator r, and let m ∈ Z>0 such
that m

2rP is a lattice polytope. Then

RREhr(P; t) := 1 + ∑
n∈Z>0

rehr
(
P;

n
2r

)
t

n
2r =

rrh∗(P; t)(
1 − t

m
2r

)d+1

where rrh∗(P; t) is a polynomial in Z[t
1
2r ] with nonnegative coefficients.

Corollary 12. Let P ⊆ Rd be a lattice d-polytope with codenominator r. The real and rational
Ehrhart functions, rehr(P, λ) and rehr(P, λ), are given by quasipolynomials of period 1.

Corollary 13. If m
r (resp. m

2r ) in Theorem 7 (resp. Theorem 11) is integral we can retrieve the
h∗-polynomial from the rh∗-polynomial (resp. rrh∗-polynomial) by applying the operator Int that
extracts from a polynomial in Z[t

1
r ] the terms with integer powers of t: h∗(P; t) = Int(rh∗(P; t))

(resp. h∗(P; t) = Int(rrh∗(P; t))).
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Figure 1: The cone hom(P3) over
P3 = [1, 2]. The lattice points in
the fundamental parallelepiped
with respect to the lattice 1

4 Z×Z

are (0, 0), ( 1
2 , 1), ( 3

4 , 1), ( 5
4 , 2).

Example 14. Here are the (refined) rational
Ehrhart series of the running examples. Re-
call that the rational Ehrhart series of P in the
variable t can be computed as the Ehrhart se-
ries of 1

rP in the variable t
1
r (resp. the refined

rational Ehrhart as the Ehrhart series of 1
2rP in

the variable t
1
2r ).

• P2 := [0, 2
3 ], r = 2, m = 3

REhr(P2; t) =
1(

1 − t
1
2

) (
1 − t

3
2

) =
1 + t

1
2 + t(

1 − t
3
2

)2

• P3 := [1, 2], r = 2. 1
4P3 = [1

4 , 1
2 ] and m = 4, so

m
2r = 1. See Figure 1.

RREhr(P3; t) =
1 + t

1
2 + t

3
4 + t

5
4

(1 − t)2 .

Applying the operater Int yields the Ehrhart series, Ehr(P3; t) = 1
(1−t)2 , as described in

Corollary 13.

Remark 15. For a rational d-polytope P ⊆ Rd with denominator k, the sum of the
coefficients of the h∗-polynomial equals d!kd+1 vol(P) (see, e.g., [6, Example 3.34], [7,
Section 4.5]). This implies the sum of the rh∗

m-coefficients equals d!md+1 vol(1
rP) =

d!md+1r−d vol(P).

We recover the reciprocity result for the rational Ehrhart function of rational poly-
topes proved by Linke [14, Corollary 1.5].

Corollary 16. Let P ⊆ Rd be a rational d-polytope. Then (−1)d rehr(P;−λ) equals the number
of interior lattice points in λP, for any λ > 0.

Let P ⊆ Rd be a rational d-polytope and set rehr(P◦; λ) := |λP◦ ∩ Zd|. We define the
(refined) rational Ehrhart series of the interior of a polytope as follows:

REhr(P◦; t) := ∑
λ∈ 1

r Z>0

rehr(P◦; λ)tλ , RREhr(P◦; t) := ∑
λ∈ 1

2r Z>0

rehr(P◦; λ)tλ ,

where r as usual denotes the codenominator of P.
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Corollary 17. Let P ⊆ Rd be a rational d-polytope. The (refined) rational Ehrhart series of the
open polytope P◦ have the rational expressions

REhr(P◦; t) =
rh∗

m(P
◦; t)(

1 − t
m
r

)d+1 and RREhr(P◦; t) =
rrh∗

m(P
◦; t)(

1 − t
m
2r

)d+1 ,

where rh∗
m(P

◦; t) and rrh∗
m(P

◦; t) are polynomials in Z[t
1
r ] and Z[t

1
2r ], respectively. The (refined)

rational Ehrhart series fulfill the reciprocity relations

REhr(P◦; t) = (−1)d+1 REhr
(
P;

1
t

)
and RREhr(P◦; t) = (−1)d+1 RREhr

(
P;

1
t

)
.

The rh∗- and rrh∗-polynomials of the polytope P and its interior P◦ are related by

rh∗
m(P

◦; t) =
(

t
m
r

)d+1
rh∗

m

(
P;

1
t

)
and rrh∗

m(P
◦; t) =

(
t

m
2r

)d+1
rrh∗

m

(
P;

1
t

)
.

3 Stapledon

We recall the setup from [17]. Let P ⊆ Rd be a lattice d-polytope with codenominator r
and 0 ∈ P. Let ∂ ̸=0(P) denote the union of facets of P that do not contain the origin.
In order to study all rational dilates of the boundary of P, Stapledon introduces the
generating function

WEhr(P; t) := 1 + ∑
λ∈Q>0

∣∣∣∂ ̸=0(λP) ∩ Zd
∣∣∣ tλ =

h̃(P; t)

(1 − t)d ,

where h̃(P; t) is a polynomial in Z[t
1
r ] with fractional exponents. The generating function

WEhr is closely related to the (rational) Ehrhart series: for any ω ∈ Q>0, the truncated
sum 1+ ∑ω

λ∈Q>0 |∂ ̸=0(λP)∩Zd| equals the number of lattice points in ωP. Proposition 5
allows us to discretize this sum:

Corollary 18. Let P ⊆ Rd be a lattice d-polytope with codenominator r and 0 ∈ P. The number
of lattice points in ωP equals 1 + ∑λ∈ 1

r Z>0, λ<ω |∂ ̸=0(λP) ∩ Zd|.

Similarly, h̃(P; t) is related to h∗(1
rP; t

1
r ) and to rh∗

m(P; t), as we show in Lemma 19.

Recall that we use rh∗
m(P; t) to keep track of the denominator of REhr(P; t) = rh∗

m(P;t)
(1−t

m
r )d+1

.

Lemma 19. Let P ⊆ Rd be a lattice d-polytope with codenominator r such that 0 ∈ P. Let k be
the denominator of 1

rP. Then

rh∗
k(P; t) = h∗

(
1
r
P; t

1
r

)
=

(
1 − t

k
r

)d+1(
1 − t

1
r

)
(1 − t)d

h̃(P; t) .
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Remark 20. Lemma 19 corrects [17, Remark 3], which was missing the factor between
h∗(1

rP; t
1
r ) and h̃(P; t).

Remark 21. In [16, Equation (14)] and [17, Equation (6)], Stapledon shows that we have
h∗(P; t) = Ψ(h̃(P; t)), where Ψ :

⋃
r∈Z>0

R[t
1
r ] → R[t] is defined by Ψ(tλ) = t⌈λ⌉. In

the case of a lattice polytope with m
r ∈ Z we give a different construction to recover

the h∗-polynomial from the rrh∗- and rh∗-polynomial by applying the operator Int (see
Corollary 13). Lemma 19 shows that, after a bit of computation, these two constructions
are equivalent.

Remark 22. For a lattice d-polytope P ⊆ Rd with codenominator r, 0 ∈ P, and denomi-
nator of 1

2rP equal k, we can relate rrh∗(P; t) and h∗( 1
2rP; t

1
2r ) in a similar way. We again

write rrh∗
k(P; t) to emphasize that it is the numerator of rrh∗

k (P;t)

(1−t
k
2r )d+1

. Then

rrh∗
k(P; t) = h∗

(
1
2r

P; t
1
2r

)
=

(
1 − t

k
2r

)d+1(
1 − t

1
2r

)
(1 − t)d

h̃(P; t) .

4 Gorenstein Musings

Our main goal in this section is to extend the notion of Gorenstein polytopes to the
rational case. A rational d-polytope P ⊆ Rd is γ-rational Gorenstein if hom( 1

γP) is
a Gorenstein cone. In this paper we explore this definition for parameters γ = r and
γ = 2r, other parameters are still to be investigated. The archetypal r-rational Gorenstein
polytope is a rational polytope that contains the origin in its interior, see Corollary 24.
The definition of γ-rational Gorenstein does not require that the origin is contained in
the polytope, hence, it does not require the existence of a polar dual. A lattice polytope
P is 1-rational Gorenstein if and only if it is a Gorenstein polytope in the classical sense.

Analogous to the lattice case, the following theorem shows that a polytope containing
the origin is r-rational Gorenstein if and only if it has a palindromic rh∗-polynomial. Let
P = {x ∈ Rd : A x ≤ b} be a rational d-polytope, as in (1.2). We may assume that there
is an index 0 ≤≤ n such that bj = 0 for j = 1, . . . , i and bj ̸= 0 for j = i + 1, . . . , n; thus
we can write P as follows:

P =

{
x ∈ Rd : ⟨aj, x⟩ ≤ 0 for j = 1, . . . , i

⟨aj, x⟩ ≤ bj for j = i + 1, . . . , n

}
, (4.1)

where aj are the rows of A.

Theorem 23. Let P = {x ∈ Rd : A x ≤ b} be a rational d-polytope with codenominator r and
0 ∈ P, as in (1.2) and (4.1). Then the following are equivalent for g, m ∈ Z≥1 and m

r P a lattice
polytope:
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(i) P is r-rational Gorenstein with Gorenstein point (g, y) ∈ hom(1
rP).

(ii) There exists a (necessarily unique) integer solution (g, y) to

−⟨aj, y⟩ = 1 for j = 1, . . . , i

bj g − r ⟨aj, y⟩ = bj for j = i + 1, . . . , n .

(iii) rh∗(P; t) is palindromic:

t(d+1)m
r −

g
r rh∗

m

(
P;

1
t

)
= rh∗

m(P; t) .

(iv) (−1)d+1t
g
r REhr(P; t) = REhr(P; 1

t ).

(v) rehr(P; n
r ) = rehr(P◦; n+g

r ) for all n ∈ Z≥0.

(vi) hom(1
rP)

∨ is the cone over a lattice polytope, i.e., there exists a lattice point (g, y) in
hom(1

rP)
◦ ∩ Zd+1 such that for every primitive ray generator (v0, v) of hom(1

rP)
∨

⟨(g, y) , (v0, v)⟩ = 1 .

The equivalence of (i) and (vi) is well known (see, e.g., [4, Definition 1.8] or [8, Ex-
ercises 2.13, 2.14]). As usual there is a version of Theorem 23 for the refined rational
Ehrhart series and the rrh∗-polynomial. Here, the polytopes under consideration are not
required to contain the origin. Except for minor differences, the statement and proof are
the same as that of Theorem 23 so we omit them, see [5, Theorem 27].

Corollary 24. Let P ⊆ Rd be a rational d-polytope with codenominator r. If 0 ∈ P◦, then P is
r-rational Gorenstein with Gorenstein point (1, 0, . . . , 0) and rh∗(P; t) is palindromic.

Example 25. We check the Gorenstein criterion for the running example P2 :=
[
0, 2

3

]
,

where r = 2 and m = 3. Then rh∗
3(P2; t) = 1 + t

1
2 + t, which is palindromic. Therefore, P2

is 2-rational Gorenstein with Gorenstein point (g, y) = (4, 1) ∈ hom(1
2P2).

Example 26. The Haasenlieblingsdreieck ∆ := conv{(0, 0), (2, 0), (0, 2)} is not Gorenstein in
the classic (integral) setting, but it is 2-rational Gorenstein: we compute

REhr(P, t) =
1(

1 − t
1
2

)3 =
1 + 3t

1
2 + 3t + t

3
2

(1 − t)3 .

Example 27. The triangle ∇ := conv{(0, 0), (0, 1), (3, 1)} has codenominator 1. It is not
1-rational Gorenstein as |∇◦ ∩ Z2| = 0 and |(2∇)◦ ∩ Z2| = 2. One can easily check
that the points (1, 1) and (2, 1), which appear simultaneously as interior lattice points
in hom(∇), do not satisfy the first type of equations in Theorem 23 (ii). Note that these
equations are independent of height in the cone.
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Corollary 28. (i) If 0 ∈ P◦, then P is also 2r-rational Gorenstein with the same Gorenstein
point (1, 0 . . . , 0) (see Corollary 24).

(ii) If 0 ∈ P and P is r-rational Gorenstein, then P is also 2r-rational Gorenstein.

(iii) If P is 2r-rational Gorenstein and the first coordinate g of the Gorenstein point (g, y) is
even, then P is also r-rational Gorenstein.

-2-2 -1-1 11 22 33 44 55 66 77 88 99 1010 1111

11

22

33

44

55

66

77

88

00

Figure 2: hom( 1
4P3).

This could be generalized to ℓr-rational Gorenstein poly-
topes for ℓ ∈ Z>0. However it is not clear that computation-
ally this would provide any new insights to the (rational)
Ehrhart theory of the polytopes.

Example 29. We check the Gorenstein criterion for P3 :=
[1, 2], where r = 2, m = 4, and rrh∗

4(P3; t) = 1 + t
2
4 + t

3
4 + t

5
4 .

The polynomial rrh∗
4(P3; t) is palindromic and therefore P3

is 4-rational Gorenstein. The Gorenstein point is (g, y) =
(3, 1) and is highlighted in orange in Figure 2. The other
lattice points hom(1

4P3)
◦ ∩Z2 are marked in black. Observe

that (3, 1) + hom(1
4P3) ∩ Z2 = hom(1

4P3)
◦ ∩ Z2.

Example 30 (A polytope that is not 2r-rational Gorenstein).
Let P5 = [1, 4]. Then r = 4 and 2r = 8, so 1

2rP5 = [1
8 , 1

2 ].
The first lattice point in the interior of the cone hom(1

8P5)
is (g, y) = (3, 1). However, (3, 1) does not satisfy Condition
(ii) from Theorem 23; it is at lattice distance 5 from one of
the facets of hom(1

8P5).

Remark 31. The codegree of a lattice polytope is defined as dim(P) + 1 − deg(h∗(t)).
Analogously, in the rational case, we define the rational codegree of rh∗

m(P; t) to be

m
r
(dim(P) + 1)− deg(rh∗

m(P; t)),

where the degree of rh∗
m(P; t) is its (possibly fractional) degree as a polynomial in t. Like-

wise, the rational codegree of rrh∗
m(P; t) is defined as m

2r (dim(P) + 1)− deg(rrh∗
m(P; t)).

As in the integral case, it holds that the rational codegree of rh∗(P; t) is the smallest
integral dilate of 1

rP containing interior lattice points.
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