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Horizontal-Strip LLT Polynomials
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Abstract. Lascoux, Leclerc, and Thibon defined a remarkable family of symmetric
functions that are q-deformations of products of skew Schur functions. These LLT
polynomials Gλ(x; q) can be indexed by a tuple λ of skew diagrams. When each skew
diagram of λ is a row, we define a weighted graph Π(λ) associated to λ. We show
that a horizontal-strip LLT polynomial is determined by this weighted graph. When
Π(λ) has no triangles, we establish a combinatorial Schur expansion of Gλ(x; q). We
also explore a connection to extended chromatic symmetric functions.
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1 Introduction

Lascoux–Leclerc–Thibon (LLT) polynomials are symmetric functions Gλ(x; q) indexed
by a sequence λ of skew diagrams, and are actively studied in algebraic combinatorics
and representation theory. Horizontal-strip LLT polynomials generalize Hall–Littlewood
polynomials, which are the Frobenius series of cohomology rings of certain subsets of
the flag variety [7]. The Shuffle Theorem [3] of Carlsson and Mellit gives a positive com-
binatorial formula for ∇(en), the Frobenius series of the space of diagonal harmonics,
in terms of LLT polynomials. Haglund, Haiman, and Loehr [6] proved that Macdonald
polynomials also expand positively into LLT polynomials, which implies that they are
Schur-positive. LLT polynomials are also closely related to chromatic quasisymmetric
functions, defined by Shareshian and Wachs [12].

Although LLT polynomials are known to be Schur-positive through Kazhdan–Lusztig
theory [5, 11], it remains a predominant open problem to give a combinatorial proof.

Problem 1.1. Find a combinatorial Schur expansion of LLT polynomials of the form

Gλ(x; q) = ∑
T∈S

qstat(T)spartition(T). (1.1)
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Because LLT polynomials generalize products of skew Schur functions, for which
characterizing equalities is an area of active research, it is also interesting and challenging
to determine when two LLT polynomials are equal.

Problem 1.2. Characterize those sequences of skew diagrams λ and µ for which we have

Gλ(x; q) = Gµ(x; q). (1.2)

In the unicellular case, meaning that every skew diagram of λ consists of a single
cell, we can associate a unit interval graph Γ(λ) to λ. Huh, Nam, and Yoo [8] proved
a combinatorial Schur expansion of the LLT polynomial Gλ(x; q) whenever Γ(λ) is a
“melting lollipop”, namely

Gλ(x; q) = ∑
T∈SYTn

qwta(T)sshape(T). (1.3)

Moreover, the unicellular LLT polynomial Gλ(x; q) is related by a change of variables to
the chromatic quasisymmetric function of Γ(λ), specifically by the plethysm [3]

(q − 1)−nGλ[x(q − 1); q] = XΓ(λ)(x; q). (1.4)

In particular, this implies that for λ and µ sequences of single cells, we have

Gλ(x; q) = Gµ(x; q) if and only if XΓ(λ)(x; q) = XΓ(µ)(x; q). (1.5)

More generally, we consider the horizontal-strip case, meaning that every skew dia-
gram of λ is a row. We generalize the construction Γ(λ) by defining a weighted interval
graph Π(λ) associated to λ. We prove that a horizontal-strip LLT polynomial is de-
termined by this weighted graph, which provides a powerful sufficient condition for
equality of LLT polynomials.

Theorem 1.3 ([14, Theorem 2.7]). Let λ and µ be sequences of rows.

If Π(λ) ∼= Π(µ), then Gλ(x; q) = Gµ(x; q). (1.6)

We define a statistic on tableaux, denoted cochargeΠ(λ), and we prove the following
combinatorial Schur expansion of Gλ(x; q) whenever the weighted graph Π(λ) has no
triangles.

Theorem 1.4 ([13, Theorem 4.6]). Let λ be a sequence of rows such that Π(λ) is triangle-free.
Then

Gλ(x; q) = ∑
T∈SSYT(α)

qcochargeΠ(λ)sshape(T). (1.7)
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We also show that at q = 1, the horizontal-strip LLT polynomial Gλ(x; q) is related
by a change of variables to the extended chromatic symmetric function XΠ(λ)(x) defined
by Crew and Spirkl [4] for a weighted graph.

Theorem 1.5. Let λ be a sequence of n rows. The plethystically modified LLT polynomial
Gλ[x(q − 1); q] is divisible by (q − 1)n, and at q = 1 we have(

(q − 1)−nGλ[x(q − 1); q]
)
|q=1 = XΠ(λ)(x). (1.8)

In particular, this implies that for λ and µ sequences of rows, we have that

if Gλ(x; q) = Gµ(x; q), then XΠ(λ)(x) = XΠ(µ)(x). (1.9)

2 Background

A partition σ is a finite nonincreasing sequence of positive integers σ = σ1 · · · σℓ. By
convention, we set σi = 0 if i > ℓ. A skew diagram λ is a subset of Z × Z of the form

λ = σ/τ = {(i, j) : i ≥ 1, τi + 1 ≤ j ≤ σi} (2.1)

for some partitions σ and τ with σi ≥ τi for every i. When τ is empty, we write σ instead
of σ/∅. The elements of λ are called cells and the content of a cell u = (i, j) ∈ λ is the
integer c(u) = j − i. We will focus heavily on rows, which are skew diagrams of the form

R = a/b = {(1, j) : b + 1 ≤ j ≤ a} (2.2)

for some a ≥ b ≥ 0. We denote by ℓ(R) = b and r(R) = a − 1 the smallest and
largest contents of cells in R respectively. Note that ℓ(R) is the content of the leftmost
cell in R, not the length of R, which is |R| = r(R) − ℓ(R) + 1. We also denote by
R+ = (a + 1)/(b + 1) and R− = (a − 1)/(b − 1) the rows obtained by shifting R right or
left respectively by one cell. A semistandard Young tableau (SSYT) of shape λ is a function
T : λ → {1, 2, 3, . . .} that satisfies

Ti,j ≤ Ti,j+1 and Ti,j < Ti+1,j, (2.3)

where we write Ti,j to mean T((i, j)). The weight of T is the sequence w(T) = (w1, w2, . . .),
where wi = |T−1(i)| is the number of times the integer i appears. We denote by SSYTλ

the set of SSYT of shape λ and by SSYT(α) the set of SSYT of weight α. We define the
skew Schur function of shape λ = σ/τ to be

sλ = ∑
T∈SSYTλ

xT, (2.4)



4 F. Tom

where xT is the monomial xw1
1 xw2

2 · · · . When τ is empty, we call sλ a Schur function.

A multiskew partition is a finite sequence of skew diagrams λ = (λ(1), . . . , λ(n)). We
say that λ is unicellular if each λ(i) is a single cell and in keeping with the terminology of
Alexandersson and Sulzgruber [1], we say that λ is a horizontal-strip if each λ(i) is a row.
We denote by

SSYTλ = {T = (T(1), . . . , T(n)) : T(i) ∈ SSYTλ(i)} (2.5)

the set of semistandard multiskew tableaux of shape λ. Two entries T(i)(u) and T(j)(v) with
i < j form an inversion if either

• c(u) = c(v) and T(i)(u) > T(j)(v), or

• c(u) = c(v) + 1 and T(j)(v) > T(i)(u).

We denote by inv(T) the number of inversions of T . Now we define the LLT polynomial [6,
10] as

Gλ(x; q) = ∑
T∈SSYTλ

qinv(T)xT . (2.6)

Example 2.1. The horizontal-strip λ = (4/0, 5/4, 8/5, 6/1), drawn so that cells of the
same content are aligned vertically, two SSYTs S and T of shape λ with their inver-
sions marked by dashed lines, and the corresponding monomials of the LLT polynomial
Gλ(x; q) are given below.

λ = T =

1 2 2 3

5

1 1 3

1 4 4 4 5

U =

4 4 4 4

3

1 1 1

2 2 2 2 2

q5x4
1x2

2x2
3x3

4x2
5 q6x3

1x5
2x3x4

4

Some terms of the Schur function expansion of the LLT polynomial Gλ(x; q) are

Gλ(x; q) = q6s5431(x) + q6s544(x) + · · ·+ (q6 + 2q5)s733(x) + · · ·+ 3qs(12)1(x) + s(13)(x).
(2.7)

Note that Gλ(x; q) is Schur-positive, meaning that it is an N[q]-linear combination of
Schur functions. In fact, this property holds in general [5, Corollary 6.9].
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3 A weighted graph description

We now define our weighted graph Π(λ).

Definition 3.1 ([13, Definition 3.1]). Let R and R′ be rows. We define the integer

M(R, R′) =

{
|R ∩ R′| if ℓ(R) ≤ ℓ(R′),
|R ∩ R′+| if ℓ(R) > ℓ(R′).

(3.1)

Note that 0 ≤ M(R, R′) ≤ min{|R|, |R′|}. We can think of M(R, R′) as measuring the
extent to which the rows R and R′ interact. More precisely, M(R, R′) is the maximum
number of inversions that a tableau T ∈ SSYTλ can have between cells in R and R′ [13,
Theorem 3.5].

Definition 3.2 ([13, Definition 3.2]). Let λ = (R1, . . . , Rn) be a horizontal-strip. We define
a weighted graph Π(λ) whose vertices are the rows of λ. The weight of a row Ri is the
number of cells |Ri| and rows Ri and Rj with i < j are joined by an edge of weight
M(Ri, Rj). By convention, we omit edges of weight zero.

Example 3.3. The horizontal-strip λ = (4/0, 5/4, 8/5, 6/1) and the weighted graph Π(λ)
are given below. We have M(R1, R4) = 3, M(R2, R4) = 1, and M(R3, R4) = 2. We have
also drawn the horizontal-strip µ = (5/4, 9/5, 7/2, 3/0), whose weighted graph Π(µ) is
isomorphic to Π(λ).

λ =

R1

R2

R3

R4
4

R1

5

R4

1

R2

3

R3
3

1

2

µ =

Because Π(λ) ∼= Π(µ), it follows from Theorem 1.3 that Gλ(x; q) = Gµ(x; q). More-
over, because the weighted graph Π(λ) is triangle-free, Theorem 1.4 gives a combinato-
rial Schur expansion of Gλ(x; q). We will give the details in Example 3.18.

We now describe some of the tools that were used to prove Theorem 1.3 and Theorem
1.4. The following two operations, cycling and commuting, allow us to move the rows of
λ while preserving both the weighted graph Π(λ) and the LLT polynomial Gλ(x; q).

Proposition 3.4. (Cycling) Let λ = (R1, R2, . . . , Rn) be a horizontal-strip and let κ(λ) =
(R2, . . . , Rn, R−

1 ). Then Gκ(λ)(x; q) = Gλ(x; q).
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Definition 3.5. We say that rows R and R′ commute, denoted R ↔ R′, if we have
M(R, R′) = M(R′, R), and otherwise we write R ↮ R′.

Example 3.6. The pairs of rows on the left and the middle commute and the pair of rows
on the right does not. As a visual description, we have that two rows commute if and
only if they are either disjoint and separated by at least one cell, or if one is contained in
the other.

Lemma 3.7 (Commuting [13, Lemma 3.15]). Let λ = (R1, . . . , Rn) be a horizontal-strip and
let µ = (R1, . . . , Ri+1, Ri, . . . , Rn). If Ri ↔ Ri+1, then Gλ(x; q) = Gµ(x; q).

Remark 3.8. We also prove the converse that if Gλ(x; q) = Gµ(x; q), then Ri ↔ Ri+1 and
therefore Π(λ) ∼= Π(µ). In other words, equalities of LLT polynomials in this case are
precisely characterized by the associated weighted graphs.

We now show how we can use cycling and commuting to prove Theorem 1.3 in the
following very special case, in which Gλ(x; q) is the modified Hall–Littlewood polyno-
mial H̃λ(x; q). This argument captures the spirit of the general proof.

Lemma 3.9 ([14, Lemma 3.15]). Let λ = (R1, . . . , Rn) and µ be horizontal-strips with

M(Ri, Rj) = min{|Ri|, |Rj|} (3.2)

for every 1 ≤ i < j ≤ n. If Π(λ) ∼= Π(µ), then Gλ(x; q) = Gµ(x; q).

Proof sketch. Let λ denote the partition determined by the row lengths of λ and denote
by H(λ) the horizontal-strip (λ1/0, . . . , λn/0). We show that Gλ(x; q) = GH(λ)(x; q),
meaning that the LLT polynomial Gλ(x; q) only depends on λ and therefore only on
the weighted graph Π(λ). By translating all cells by a fixed amount, we may assume
without loss of generality that min{ℓ(Ri) : 1 ≤ i ≤ n} = 0. Let us also assume that λ

has ∑n
i=1 ℓ(Ri) minimal among such horizontal-strips with the same LLT polynomial.

We now claim that ℓ(Ri) = 0 for every 1 ≤ i ≤ n. If not, let j be such that ℓ(Rj) ≥
1 is maximal. For every 1 ≤ i < j, the conditions ℓ(Ri) ≤ ℓ(Rj) and M(Ri, Rj) =
min{|Ri|, |Rj|} will imply that Ri ↔ Rj, and therefore by commuting and cycling we have
that G(R1,...,Rn,R−

j )
(x; q) = Gλ(x; q), contradicting minimality of ∑n

i=1 ℓ(Ri). Therefore, we

have ℓ(Ri) = 0 for every 1 ≤ i ≤ n, and by commuting again we see that Gλ(x; q) =
GH(λ)(x; q). This completes the proof.
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Example 3.10. The idea of the proof of Lemma 3.9 is illustrated below. The row R3, which
has ℓ(R3) maximal, commutes with all rows below, so by commuting and cycling, we
can move it down and then to the left. Continuing in this way, the horizontal-strip λ is
shown to be similar to H(4432) on the right.

λ =

R1

R2

R3

R4

H(4432) =

The general proof of Theorem 1.3 employs this basic technique, along with a com-
prehensive analysis of several cases, to arrange the rows of λ and µ in order to apply
the following recurrence relation of LLT polynomials. We can view it as a deletion-
contraction relation of the corresponding weighted graphs.

Lemma 3.11 (Deletion-Contraction [13, Lemma 3.17]). Let λ = (R1, . . . , Rn) be a horizontal-
strip with ℓ(Ri+1) < ℓ(Ri) and Ri ↮ Ri+1. Define the horizontal-strips

λ′ = (R1, . . . , Ri+1, Ri, . . . , Rn) and (3.3)
λ′′ = (R1, . . . , Ri ∪ Ri+1, Ri ∩ Ri+1, . . . , Rn). (3.4)

Then we have
Gλ(x; q) = qGλ′(x; q)− (q − 1)Gλ′′(x; q). (3.5)

Note that the condition Ri ↮ Ri+1 will mean that Ri ∪ Ri+1 is indeed a row.

Example 3.12. Let λ = (4/0, 5/4, 8/5, 6/1) and note that ℓ(R4) < ℓ(R3) and R3 ↮ R4.
Therefore, letting λ′ = (4/0, 5/4, 6/1, 8/5) and λ′′ = (4/0, 5/4, 8/1, 6/5), we have that

Gλ(x; q) = qGλ′(x; q)− (q − 1)Gλ′′(x; q). (3.6)

The horizontal-strips λ, λ′, and λ′′, and their weighted graphs Π(λ), Π(λ′), and Π(λ′′)
are given below. We can think of Π(λ′) and Π(λ′′) as a deletion and contraction of Π(λ).

λ = λ′ = λ′′ =
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4 5

1

3
3

1

2
4 5

1

3
3

1

1
4 7

1

1
3

1

1

In order to prove Theorem 1.4, we found a combinatorial formula that also satisfies
the deletion-contraction relation (3.5). We now describe the statistic cochargeΠ in our
formula.

Definition 3.13. Let T ∈ SSYTµ(α) be a tableau of shape µ, weight α, and with smallest
entry i. We define the integer

f (T) = max{t : 0 ≤ t ≤ µ1 − µ2, t ≤ αi, T2,j′ > T1,j′+t for all 1 ≤ j′ ≤ µ2}. (3.7)

Informally, f (T) is the maximum number of i’s that we can remove from T so that
no entry moves down when we rectify the resulting skew tableau.

Definition 3.14. Let T ∈ SSYTµ(α) and let i < j. We denote by T|i,j the rectification of
the skew tableau obtained by restricting T to the entries x with i ≤ x ≤ j and we define
the integer

cochargei,j(T) = αi − f (T|i,j). (3.8)

Example 3.15. Two tableaux S and T and their restrictions S|2,4 and T|2,4 are given below.
We have f (S|2,4) = 3 and cocharge2,4(S) = 5 − 3 = 2, and we have f (T|2,4) = 3 because
we must have t ≤ 3, so cocharge2,4(T) = 3 − 3 = 0.

S = 3 4
2 2 3 4 5 5
1 1 1 2 2 2 3 4

S|2,4 = 4
3 3 4
2 2 2 2 2 3 4

T = 4 5
2 2 4 4 5 5
1 1 1 2 3 3 3 3

T|2,4 =
4 4 4
2 2 2 3 3 3 3

Example 3.16. In the case where j = i + 1, the tableau T|i,j has at most two rows and
cochargei,j(T) is the number of entries on the second row of T|i,j.
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Definition 3.17. Let λ be a horizontal-strip such that the corrersponding weighted graph
Π(λ) is triangle-free. We can label the vertices of Π(λ) as v1, . . . , vn so that if i < j < k
and vi is adjacent to vk, then the weight Mj,k of the edge joining vj and vk is the weight
of the vertex vj. Let αi be the weight of the vertex vi and let T ∈ SSYT(α). We define

cochargeΠ(λ)(T) = ∑
i<j

min{Mi,j, cochargei,j(T)}. (3.9)

Example 3.18. The horizontal-strip λ = (4/0, 5/4, 8/5, 6/1) and the weighted graph Π(λ)
with an appropriate labelling are given below. We have M1,3 = 3, M2,3 = 1, and M3,4 = 2.
Note that because v1 and v3 are adjacent, M2,3 is the weight of v2.

λ =

R1

R2

R3

R4 4

R1

v1

5

R4

v3

1

R2
v2

3

R3

v4

3

1

2

To calculate the coefficient of s733, we consider the three tableaux of weight α = 4153
and shape 733 below.

T1 = 4 4 4
3 3 3
1 1 1 1 2 3 3

T2 = 4 4 4
2 3 3
1 1 1 1 3 3 3

T3 = 3 4 4
2 3 3
1 1 1 1 3 3 4

We have

cochargeΠ(λ)(T1) (3.10)

= min{3, cocharge1,3(T1)}+ min{1, cocharge2,3(T1)}+ min{2, cocharge3,4(T1)}
= min{3, 4 − 2}+ min{1, 1}+ min{2, 3} = 2 + 1 + 2 = 5.

Similarly, cochargeΠ(λ)(T2) = 3 + 0 + 2 = 5 and cochargeΠ(λ)(T3) = 3 + 1 + 2 = 6.
Therefore, the coefficient of s733 is (q6 + 2q5).

In the case where Π(λ) is a path, our formula (1.7) takes on a more convenient form.
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Corollary 3.19 ([13, Corollary 4.8]). Let λ be a horizontal-strip whose weighted graph Π(λ)
is the path below.

α1 α2 · · · · · · · · · αn

v1 v2 vn
M1 M2 Mn−1

.

Then the LLT polynomial of λ is

Gλ(x; q) = ∑
T∈SSYT(α)

qcochargeΠ(λ)(T)sshape(T), (3.11)

where cochargeΠ(λ)(T) = ∑n−1
i=1 min{Mi, number of entries in the second row of T|i,i+1}.

Example 3.20. Let λ be a horizontal-strip with exactly two rows, so that Π(λ) is

a b

vi vj

M

for some a ≥ b ≥ M, where (i, j) is either (1, 2) or (2, 1), so α = (a, b) or α = (b, a)
respectively. In either case, for each 0 ≤ k ≤ b, there is a unique tableau Tk with content
α and shape (a + b − k)k. Therefore, by Corollary 3.19, the LLT polynomial is

Gλ(x; q) =
b

∑
k=0

qmin{M,k}s(a+b−k)k = s(a+b) + · · ·+ qMs(a+b−M)M + · · ·+ qMsab. (3.12)

4 Further directions

We would like to extend our results toward Problem 1.1 and Problem 1.2 to more general
weighted graphs Π(λ) or more general multiskew partitions λ. Another direction is
to consider expansions into k-Schur functions s(k)λ , which are Schur-positive functions
introduced by Lapointe, Lascoux, and Morse [9]. They presented several conjecturally
equivalent definitions based on different desired properties, and Blasiak, Morse, Pun,
and Summers [2] proved that these definitions are equivalent by showing that a class of
Catalan symmetric functions satisfies all of these properties.

Conjecture 4.1. Let λ be a multiskew partition whose cells have contents in {1, . . . , k} for some
k. Then there are polynomials cµ(q) ∈ N[q] such that

ωGλ(x; q) = ∑
µ

cµ(q)s
(k)
µ . (4.1)



Horizontal-Strip LLT Polynomials 11

Alternatively, we could consider Macdonald polynomials, which expand positively
into LLT polynomials and therefore into Schur functions, but for which a combinatorial
formula is open.

Problem 4.2. Find a combinatorial Schur expansion of Macdonald polynomials of the form

H̃λ(x; q, t) = ∑
T∈S

qstat1(T)tstat2(T)spartition(T). (4.2)

It would also be interesting to explore the connection to chromatic symmetric and
quasisymmetric functions. The results (1.4) and Theorem 1.5 suggest that an extended
chromatic quasisymmetric function, defined for a weighted graph and incorporating a
parameter q, could generalize both results and unify all of these ideas. We pose the
following problem.

Problem 4.3. Let Π be a vertex-weighted and edge-weighted graph. Define an extended chro-
matic quasisymmetric function XΠ(x; q) such that

• XΠ(x; q) is manifestly quasisymmetric,

• if Π has all vertex weights 1 and all edge weights 0 or 1, we recover the chromatic qua-
sisymmetric function,

• if q = 1, we recover the extended chromatic symmetric function,

• XΠ(x; q) satisfies a deletion-contraction relation, and

• if Π = Π(λ) for a horizontal-strip λ = (R1, . . . , Rn), then we have the plethystic rela-
tionship

XΠ(x; q) = (q − 1)−nGλ[x(q − 1); q], (4.3)

which in particular implies that for horizontal-strips λ and µ, we have that

Gλ(x; q) = Gµ(x; q) if and only if XΠ(λ)(x; q) = XΠ(µ)(x; q). (4.4)

Note that if Π = Π(λ) for a horizontal-strip λ, then (4.3) can be taken as the defini-
tion of XΠ(x; q), but it would be interesting to define XΠ(x; q) in terms of colourings
for general weighted graphs. The flexibility of a weighted graph allows us to con-
sider a deletion-contraction relation, which exists for chromatic polynomials but not
for the chromatic symmetric functions of unweighted graphs. This may be a key innova-
tion to the main open problems of chromatic symmetric functions, namely the Stanley–
Stembridge conjecture or its refinement, the Shareshian–Wachs conjecture, which we can
equivalently state as follows.
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Problem 4.4. Let λ be a unicellular multiskew partition. Note that in this case, the chromatic
quasisymmetric function XΠ(λ)(x; q) is in fact symmetric. Find a combinatorial elementary
symmetric function expansion of XΠ(λ)(x; q) of the form

XΠ(λ)(x; q) = ∑
θ∈AO(Π(λ))

qasc(θ)epartition(θ)(x) (4.5)

for some statistic partition(θ) on acyclic orientations θ of the graph Π(λ).
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