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Abstract. The box-ball system (BBS) is a cellular automaton that is an ultradiscrete
analogue of the Korteweg–de Vries equation, a non-linear PDE used to model wa-
ter waves. In 2001, Hikami and Inoue generalised the BBS to the general linear Lie
superalgebra gl(m|n). We further generalise the Hikami–Inoue BBS using the Kirillov–
Reshetikhin crystals for ĝl(m|n) devised by Kwon and Okado in 2021, where we find
similar solitonic behaviour under certain conditions.
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1 Introduction

The Takahashi–Satsuma box-ball system (BBS) [10] is an ultradiscrete dynamical system
that can be derived from a discretisation of the soliton solutions to the Korteweg–de
Vries (KdV) equation using a limiting procedure [11]. This ultradiscrete system can be
formulated using the crystal theory of quantum affine algebras [6].

The crystal theoretic formulation makes use of the ‘classical’ crystal Bℓ, which is the
crystal basis of an ℓ-fold symmetric tensor representation of Uq(sln) promoted to the
Kirillov–Reshetikhin (KR) crystal of U′

q(ŝln) [8] by adding 0-arrows. States of the system
are then defined as elements of (Bℓ)

⊗∞. The time evolution of the state is realised as the
action of a row-to-row transfer matrix as q → 0 that is constructed using the unique iso-
morphism between the tensor product of KR crystals called the combinatorial R-matrix,
R : B ⊗ B′ → B′ ⊗ B. The time evolution of a state can be described by repeated appli-
cations of the R-matrix. Like the KdV equation, there exist states with soliton solutions;
that is, states containing objects called solitons that move with speed corresponding to
their length and are stable under collisions (this stability is called scattering).

In 2001, Hikami and Inoue generalised the BBS using crystals for the general linear
Lie superalgebra gl(m|n) and showed that similar behaviour held in this generalised
system [7]. We further generalise the BBS using the KR crystals for ĝl(m|n) developed by
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Kwon and Okado [9]. Such a crystal can be parameterised by a young diagram Y, where
the crystal is identified with the set of semistandard Young tableaux (SSYT) of shape
Y, denoted B(Y). In our generalised BBS, we define states as elements of

(
B(Yr,1)

)⊗∞,
where Yr,1 represents a Young diagram of height r and width 1. We similarly have an R-
matrix giving a bijection of tensor products of crystals B(Yr1,s1)⊗ B(Yr2,s2) → B(Yr2,s2)⊗
B(Yr1,s1). This allows us to define the time evolution of the system in parallel to the
classical case. When r = 1, this is precisely the Hikami–Inoue BBS [7].
Example 1. Consider the Uq(ĝl(3|1)) crystal B(Y2,1). We build the BBS in (B(Y2,1))⊗∞

starting at time t = 0 in the following diagram, where the maximal weight element ( 3
2

)
is represented as a dot.

t = 0 1 1 1
3 3 2

t = 1 1 1 1
3 3 2

t = 2 1 1 1
3 3 2

t = 3 1 1 1
3 2 3

t = 4 1 1 1
3 2 3

The above diagram shows the time evolution of the state after 4 time steps. At time
t = 1, we can see that both 3 3

1 1
and 2

1
have moved with speed proportional to their

length. They collide at times t = 2 and t = 3, before separating into two solitons of the
same lengths at t = 4 (stability under collisions). This demonstrates solitonic behaviour
in our generalised system. Note that, at t = 4, 2 3

1 1
is one step ahead (to the right)

of where 3 3
1 1

would be if there had been no collision. Similarly, 3
1

is one step behind

where 2
1

would be. This phenomenon is called the phase shift and is a shadow of the
nonlinearity.

The R-matrix can be explicitly calculated with the RSK algorithm, using the modified
Schensted’s Bumping Algorithm outlined in Section 2.1. For our generalised system, we
present conditions that are sufficient for an ‘object’ to move with speed corresponding
to its length; these results are presented in Theorem 14. However, they do not always
have solitonic interactions as illustrated in Example 16. We also investigate the scattering
of two-soliton states and define an explicit structure that is sufficient for stability under
collisions, thus providing sufficient conditions for solitonic behaviour. Moreover, we
describe the phase shift of these solitons in terms of the energy function, analogous to
the classical case. These results are presented in Theorem 15.



SCA for ĝl(m|n) 3

2 Background

The BBS described by Hatayama, Kuniba, Okado, Takagi and Yamada [5, 6] is derived
from type An affine Lie algebra ŝln. In the super context, the structure is derived from
the affine general linear superalgebra ĝl(m|n) and its quantum group Uq(ĝl(m|n)) (in
the sense of [9]). Let I = Ieven ⊔ Iodd be the indexing set of simple roots, where Ieven =
{m − 1, . . . , 1, 1, . . . , n − 1} and Iodd = {0, 0}. It is useful to set I− = {m − 1, . . . , 1} and
I+ = {1, . . . , n − 1}, so that Ieven = I− ⊔ I+. The Dynkin diagram for ĝl(m|n) is:

m − 1 m − 2
· · ·

1 0 1
· · ·

n − 2 n − 1

0

where denotes an isotropic simple root.
The fundamental representation of Uq(ĝl(m|n)) is an (m + n)-dimensional super vec-

tor space V = V+ ⊕ V−. Th representation admits a crystal basis {vb | b ∈ B} with
B = B− ⊔ B+ where B− = {m, m − 1, . . . , 1} and B+ = {1, . . . , n − 1, n}, which gives rise
to the following crystal graph:

m m − 1 · · · 1 1 · · · n − 1 n
m − 1 m − 2 1 0 1 n − 2 n − 1

0

where b′
i−→ b if and only if fivb′ = vb (equivalently, eivb = vb′). For further expla-

nation of crystals for Uq(ĝl(m|n)), see [9]. With the crystal in mind, we can define an
ordering on B by m < · · · < 1 < 1 < · · · < n.

Let V⊗N be the N-th tensor power of the fundamental representation. It can be shown
that all tensor powers with N ≥ 1 are completely reducible. Moreover, the summands
are in bijection with Young diagrams of (m|n)-hook shape [1, 9]. Given a summand W
corresponding to the Young diagram Y, this bijection identifies the crystal basis elements
of W with the semistandard Young tableaux (SSYT) of shape Y. In this context, a tableau
is called semistandard if the rows are weakly (resp. strictly) increasing for indices in I−
(resp. I+) and the columns are weakly (resp. strictly) increasing for indices in I+ (resp.
I−). We refer the reader to Bump and Schilling for more information on SSYT [2]. For
i ∈ Ieven, the action of the crystal operators ei and fi can be computed by a signature rule
similar to that for U′

q(ŝln)-crystals [12]. Let Yr,s be a rectangular Young diagram with
height r and width s and let B(Yr,s) be the set of SSYT of shape Yr,s.
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Take an arbitrary tableau

x =

t11 t12 · · · t1s
t21 t22 · · · t2s

· · · · · · . . . ...
tr1 tr2 · · · trs

∈ B(Yr,s).

We define a function, col by

col(x) = t1s . . . trs︸ ︷︷ ︸
t∗s

· · · t12 . . . tr2︸ ︷︷ ︸
t∗2

t11 . . . tr1︸ ︷︷ ︸
t∗1

.

Moreover, for x, y ∈ B(Yr,s), we define col(x ⊗ y) = col(x) col(y).

Definition 2. For some positive integer d, let x ∈ B(Yr,s)⊗d and let i ∈ Ieven with i = k ∈
I+, (resp. i = k ∈ I−). We define the i-signature, denoted sgi(x), to be the sequence of +
and − obtained by deleting all letters in col(x) which are not k or k + 1 (resp. k or k + 1),
and then replacing all k (resp. k) with a − symbol and replacing all k + 1 (resp. k + 1)
with a + symbol.

We define the reduced i-signature, denoted rsgi(x), to be equal to the i-signature, except
with +− pairs (in that order) successively deleted, so that rsgi(x) is of the form

− · · · −︸ ︷︷ ︸
a

+ · · ·+︸ ︷︷ ︸
b

(where a or b can be zero).

For a tableau x ∈ B(Yr,s) and for i ∈ Ieven where i = k ∈ I+ (resp. i = k ∈ I−):

• To evaluate fk(x) (resp. ek(x)), find the rightmost − symbol in rsgi(x) and change
the corresponding k in x to k + 1 (resp. k in x to k + 1 ). If there are no −
symbols, then fk(x) = 0 (resp. ek(x) = 0).

• To evaluate ek(x) (resp. fk(x)), find the leftmost + symbol in rsgi(x) and change
the corresponding k + 1 in x to k (resp. k + 1 in x to k ). If there are no +
symbols, then ek(x) = 0 (resp. fk(x) = 0).

The operators e0 and f0 have a different algorithm:

• If the first occurrence of 1 in col(x) is before the first occurrence of 1, then f0(x)
replaces the corresponding 1 in x with 1 , and e0(x) = 0.

• If the first occurrence of 1 in col(x) is before the first occurrence of 1, then e0(x)
replaces the corresponding 1 in x with 1 , and f0(x) = 0



SCA for ĝl(m|n) 5

Example 3. We will compute e3(x) for

x =
4 3 3
3 1 3
1 2 3

.

Then,
col(x) = 3 3 3 3 1 2 4 3 1
sg3(x) = − − + −

rsg3(x) = − −
.

The rightmost − corresponds to the bolded number below,

col(x) = 3 3 3 3 1 2 4 3 1
rsg3(x) = − − ⇝

4 3 3
3 1 3
1 2 3

,

so we replace this 3 with 4 to get

e3(x) =
4 4 3
3 1 3
1 2 3

.

2.1 Combinatorial R-Matrix and energy function

Consider two Uq(ĝl(m|n))-crystals B(Yr1,s1) and B(Yr2,s2). Then there exists a unique
isomorphism called the combinatorial R-matrix

R : B(Yr1,s1)⊗ B(Yr2,s2) → B(Yr2,s2)⊗ B(Yr1,s1)

that commutes with ei and fi (for all i ∈ I) [9]. To describe the action of the combinatorial
R-matrix, we use a modified version of Schensted’s Bumping Algorithm.

For inserting i ∈ B into a tableau x, which we will denote i → x, the bumping
algorithm is as follows:

1. For i ∈ B+, (resp. i ∈ B−): if none of the boxes in the first column of x are strictly
larger than i (resp. larger than or equal to i) then add a box with i in it at the
bottom of the column.

2. Otherwise, for the topmost j with j > i (resp. j ≥ i) in the first column, replace
j with i . Then, insert j into the second column following analogous steps 1

and 2.

3. Repeat until the bumped number can be put in a new box.
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Example 4.

2 → 3 3 1 3
2 1 2 5

=

2
↓
3 3 1 3
2 1 2 5

=

2
↓

3 3 1 3
2 1 2 5

=

1
↓

3 3 1 3
2 2 2 5

=

2
↓

3 3 1 3
2 2 1 5

=

3
↓

3 3 1 2
2 2 1 5

=
3 3 1 2 3
2 2 1 5

Proposition 5 ([9, Theorem 7.9]). The combinatorial R-matrix maps x ⊗ y to ỹ ⊗ x̃ if and only
if col(y) → x = col(x̃) → ỹ

Example 6. Set,

x =
4 4 3
3 1 3
1 2 3

, y =
3
1
2

, ỹ =
3
1
3

, x̃ =
4 4 1
3 3 2
1 2 3

.

Then, R(x ⊗ y) = ỹ ⊗ x̃. Indeed, let us first compute

col(y)→ x = 312 →
4 4 3
3 1 3
1 2 3

= 12 →
4 4 3 3
3 3 1
1 2 3

= 2 →

4 4 3 3
3 3 1
1 2 3
1

=

4 4 3 3
3 3 1
1 2 3
1
2

.

We similarly find that

col(x̃) → ỹ =

4 4 3 3
3 3 1
1 2 3
1
2

.

Remark 7. The R-matrix can be explicitly computed using the RSK algorithm. For more
information of the RSK algorithm, we refer the reader to [3].

Definition 8. We call a function H : B(Yr1,s1) ⊗ B(Yr2,s2) → Z an energy function if, for
all b = x ⊗ y ∈ B(Yr1,s1) ⊗ B(Yr2,s2), we have H( fib) = H(b) and H(eib) = H(b) for
i ∈ I \ {0}, and

H(e0b) = H(b) +


1 in case LL,
0 in case LR or RL,
−1 in case RR,
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where in case LL, e0 applied to both x ⊗ y and R(x ⊗ y) acts on the left factor both times;
in case LR e0 applies to the left factor of x ⊗ y and the right factor of R(x ⊗ y), etc.

The energy function exists and is unique up to additive constant [9]. Moreover, we
can compute the energy function using the bumping algorithm:

Proposition 9 ([9, Theorem 7.9]). Up to additive constant, H(x ⊗ y) is given by the number
of nodes in col(y) → x that are strictly to the right of the max(s1, s2)-th column.

By convention, we will choose the additive constant so that the maximum value
of H is zero. Explicitly, if H̃(x ⊗ y) is given by the number of nodes as in Propo-
sition 9, with additive constant equal to 0, then we define H(x ⊗ y) = H̃(x ⊗ y) −
min(r1, r2)min(s1, s2).
Example 10. Set x and y as in Example 6. We know that

col(y) → x =

4 4 3 3
3 3 1
1 2 3
1
2

.

We have that max(s1, s2) = max(3, 1) = 3, and the number of nodes to the right of the
third column is 1. So, H(x ⊗ y) = 1 − min(r1, r2)min(s1, s2) = −2.

3 Super Box-Ball System

A BBS possesses a vacuum element representing the absence of a ball. We require that
the combinatorial R-matrix act as an identity on this element; that is, if u is the vacuum
element then R(u ⊗ u) = u ⊗ u. We define the vacuum element to be the genuine
highest weight element of B(Yr,1), which will have the desired property. More generally,
the genuine highest weight element for B(Yr,s) has the form

us =

m · · · m
m − 1 · · · m − 1

... . . . ...
m − r + 1 · · · m − r + 1︸ ︷︷ ︸

s

.

The vacuum element is then denoted by u1.
We can think of the elements of B(Yr,1) \ {u1} as representing different balls in the

system. Within the super BBS we have the notion of a state, which consists of B(Yr,1)
elements in a one dimensional lattice. More precisely, a state is of the form

b0 ⊗ b1 ⊗ · · · ⊗ bK ⊗ (u1)
⊗∞ ∈ (B(Yr,1))⊗∞,
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where bi ∈ B(Yr,1) can be any element (including u1).
The state evolves with time by the effect of the carrier which ‘picks up’ and ’puts

down’ particles. The carrier is an element of B(Yr,ℓ), which changes based on its location
in the state, and is initialised as the genuine highest weight element uℓ. The action of
moving the carrier through the state is performed by the combinatorial R-matrix. In
particular, this is performed by functions Ra where

Ra = id⊗ · · · ⊗ id︸ ︷︷ ︸
a

⊗R ⊗ id⊗ id⊗ · · · .

We can then define the time evolution operator, Tℓ, by

Tℓ(b)⊗ uℓ = · · · R3R2R1R0(uℓ ⊗ b)

for any state b. This is well-defined because there are finitely many non-vacuum ele-
ments in the state, so we eventually have R(uℓ ⊗ u1) = u1 ⊗ uℓ. The time evolution
operator computes the state for the next time step. Pictorially, we can represent the
computation of the time evolution Tℓ(b1 ⊗ · · · ⊗ bK ⊗ (u1)

⊗∞) =
⊗∞

j=1 b̃j as follows:

b1 b2 bK u1 u1 u1

b̃1 b̃2 b̃K b̃K+1 b̃K+2 b̃K+3

uℓ u(1)
ℓ u(2)

ℓ u(K−1)
ℓ u(K)

ℓ u(K+1)
ℓ u(K+2)

ℓ
· · ·· · ·

where R(u(j)
ℓ ⊗ bj+1) = b̃j+1 ⊗ u(j+1)

ℓ .

Example 11. For Uq(ĝl(3|3)) crystals,

3 3
2 2

3 2
2 3

3 2
1 3

3 3
2 1

3 3
2 2

3 3
2 2

· · ·

2
3

3
1

3
2

3
2

3
2

3
2

3
2

3
2

2
3

3
1

.

That is,

p =
2
3

⊗ 3
1

⊗ u1 ⊗ u1 ⊗ u1 ⊗ · · · =⇒ T2(p) = u1 ⊗ u1 ⊗
2
3

⊗ 3
1

⊗ u1 ⊗ · · · .

Proposition 12. Time evolution operators commute: TℓTℓ′(p) = Tℓ′Tℓ(p).
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The proof of this fact is identical to Theorem 3.1 of [4], and relies on the Yang–
Baxter equation: (R ⊗ 1)(1 ⊗ R)(R ⊗ 1) = (1 ⊗ R)(R ⊗ 1)(1 ⊗ R). This is proved for
Uq(ĝl(m|n))-crystals in [9, Theorem 7.11].

The time evolution operator also respects the crystal structure, i.e., Tℓ commutes with
the crystal operators, with restrictions as outlined in Lemma 13.

Lemma 13. For all i ∈ I \ {0, m − r}, and for a state p, we have that Tℓ(ei(p)) = ei(Tℓ(p))
and Tℓ( fi(p)) = fi(Tℓ(p)).

The proof is similar to Lemma 2.8 in [12]. This lemma allows us to prove results
by only considering the highest weight elements with respect to the Uq(ĝl(m|n))-crystal
where the operators f0, e0, fm−r and em−r have been removed. Note that such a crystal
is isomorphic to a Uq(gl(r))⊗ Uq(gl(m − r, n))-crystal.

4 Solitons

4.1 States with a single soliton

We first consider solitonic behaviour for single soliton states. The following theorem
provides a large class of states which have one of the properties we desire of solitons.
Namely, that speed corresponds to length.

Theorem 14. Let

x =

x11
x21

...
xr1

⊗

x12
x22

...
xr2

⊗ · · · ⊗

x1s
x2s
...

xrs

∈ (B(Yr,1))⊗s.

Suppose the factors of the tensor product in reverse order

x1s · · · x12 x11
x2s · · · x22 x21
... . . . ...

...
xrs · · · xr2 xr1

form a SSYT and that there exists a row number k (1 ≤ k ≤ r) such that

xij < m − r for all j and for i < k,

xij ≥ m − r for all j and for i ≥ k.

Then, (Tℓ)
t(u⊗c

1 ⊗ x ⊗ u⊗∞
1 ) = u⊗(c+t min{s,ℓ})

1 ⊗ x ⊗ u⊗∞
1 for all positive integers t.

We prove this theorem by direct computation using the RSK insertion algorithm for
the R-matrix.
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4.2 Scattering of two solitons

Consider a state containing two solitons of different lengths such that the longer soli-
ton is positioned to the left of the shorter soliton. If these two solitons are sufficiently
distanced, they behave separately and move as shown in the Subsection 4.1. They con-
tinue to propagate in this way until the longer soliton becomes ‘too close’ to the shorter
soliton, where they collide.

In contexts analysed by other authors, such as ŝln [6], colliding solitons interact to
form two new solitons of the same length but with the longer soliton now on the right.
This behaviour is called scattering. We have already seen scattering for ĝl(m|n) solitons
in Example 1. This subsection is devoted to describing sufficient conditions for when a
state will exhibit solitonic behaviour.

Let u be a SSYT, and let u↓ denote the bottom row of u, and u↑ denote the other rows
of u. We will only consider the case where u↓ only has entries greater than or equal to
m − r, and u↑ only has entries strictly less than m − r (where r is the height of u). In the
notation from Theorem 14, we are only considering the case where k = r.

Theorem 15. Let U and V be elements of (B(Yr,1))⊗d1 and (B(Yr,1))⊗d2 respectively, with
d1 > d2. Assume U and V satisfy the assumptions of Theorem 14 with k = r. Let

p = · · · ⊗ U ⊗ · · · ⊗ V ⊗ · · ·

where the ellipses (· · · ) represent omitted vacuum states. If t is a sufficiently large integer and
ℓ > d2, then

(Tℓ)
t(p) = · · · ⊗ Ṽ ⊗ · · · ⊗ Ũ ⊗ · · ·

for some Ṽ ∈ (B(Yr,1))⊗d2 and Ũ ∈ (B(Yr,1))⊗d1 . The elements U and V are related to Ũ and
Ṽ via their SSYT. Let u, v, ṽ, ũ be the SSYT corresponding to U, V, Ṽ, Ũ, respectively. Then,

ṽ↑ ⊗ ũ↑ = R(u↑ ⊗ v↑) and ṽ↓ ⊗ ũ↓ = R(u↓ ⊗ v↓).

The phase shift is given by δ = 2d2 + H(u↓ ⊗ v↓) + H(u↑ ⊗ v↑).

By Lemma 13, it is sufficient to prove the theorem for highest weight states. By
Proposition 12, we have that (Tℓ)

t = (Td2+1)
−t′(Tℓ)

t(Td2+1)
t′ . Therefore, if we prove

the theorem for Td2+1 and choose t′ sufficiently large (so that the solitons have already
collided), we can prove the theorem in the general case. With these simplifications, we
can then proceed by direct (and tedious) computation. The assumption that k = r is
essential:
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Example 16. Consider a state composed of elements from the Uq(ĝl(3|3)) crystal B(Y2,1).

t = 0 2 1 1
1 1 1

t = 1 2 1 1
1 1 1

t = 2 2 1 1 1
1 3 1 2

t = 3 1 1 2 1 1
3 2 3 1 2

t = 4 1 1 2 1 1
3 2 3 1 2

We observe that the two objects 1 1
2 1 and 1

1 satisfy Theorem 14 with k = 1. But upon
collision they are unstable.

However, the assumptions of Theorem 15 are not necessary, and there exist two-
soliton states not satisfying these assumptions.
Example 17. Consider the following time evolution of a BBS composed of elements from
the Uq(ĝl(4|1))-crystal with r = 2:

t = 0 1 1 1
2 2 2

t = 1 1 1 1
2 2 2

t = 2 1 1 1
2 2 2

t = 3 1 1 1
2 2 2

We observe that the two objects 2 2
1 1

and 2
1

satisfy Theorem 14 with k = 1 and are stable

upon collision. However, 2 2
1 1

and 2
1

do not satisfy the assumptions of Theorem 15.
Remark 18. States with an arbitrary number of solitons can be reduced to multiple colli-
sions of two solitons. Moreover, it is a consequence of the Yang–Baxter equation that the
states after all collisions have occurred are independent of the order of collisions.
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