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Crystals and integrable systems for edge labeled
tableaux
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Abstract. We define an integrable five vertex model whose partition function is the
generating function E* of edge labeled tableau of shape A. Using this, we prove a
Cauchy-type identity. We give a crystal structure on edge labeled tableau to give a
positive Schur expansion of E*.
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1 Introduction

Consider the Lie group G = GL,(C), and fix a maximal torus T of the diagonal matri-
ces with B being the corresponding Borel of upper triangular matrices. The (complex)
Grassmannian Gr(k,n) is a very important object in algebraic geometry, which can be
described as the set of k dimensional hyperplanes in C" or as G/ P, where P is the max-
imal parabolic of k x (n — k) block upper triangular matrices. To study its T-equivariant
cohomology ring H}(Gr(k, n)), the approach of Schubert calculus is to study the Schu-
bert varieties X, which are Zariski closures of the decomposition of Gr(k, n) into (left)
B orbits. In the nonequivariant case, there is an isomorphism from H*®(Gr(k,n)) to sym-
metric functions modulo the ideal (s)(x) | A Z (n —k)¥), where (n — k)* denotes a
k x (n — k) rectangle and s, (x) is the Schur function and the image of the cohomology
class [X,] for X,. In H}(Gr(k,n)), the factorial Schur function s, (x|a) represents [X,].

The Littlewood—Richardson (LR) coefficients are the structure coefficients for Schur
functions s, (x)s,(x) = ¥, cxﬂsv(x) (when a = 0), which have a classical combinatorial
description as certain semistandard tableaux of shape v/A. The problem is more subtle
to compute the LR coefficients for the factorial Schurs with a manifestly positive formula.
An initial solution given by Molev and Sagan [12], but it is not described in terms of skew
tableaux like the usual LR rule. A skew tableau rule was given by Thomas and Yong [17]
by introducing edge labeled tableaux of shape v/A with certain conditions.

Another natural problem is to compute the dual basis 5, (x|a) to the factorial Schur
functions under the Hall inner product, where (s)(x),s;(x)) = d,,. We can motivate this
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geometrically with an alternative way to construct the ring of symmetric functions using
the homology @<, He(Gr(k, 1)), where the product corresponds to the induced map
from the direct sum of two Grassmannians [9, Sec. 1.1]. In order to get a deformation of
symmetric functions from equivariant cohomology desired by Knutson and Lederer [9],
we can only use a single circle S! action. It was shown in [10, Theorem 8.12] that the
Schubert classes correspond to S (x; t), which equals 5) (x|a) with a; = 0 for i < 0 and
a; = t for i > 0, by utilizing back stable Schubert calculus. We remark that s, (x|a) was
tirst studied by Molev [11] and shown to be the generating function of certain tableaux
with the weights being rational functions.
Dual bases must satisfy the Cauchy identity [16, Lemma 7.9.2]. Our first main result
is that the dual basis 5, in finitely many variables, up to a simple overall factor of
1 H]T;Al(l + axyj)~!, is given by the generating function E*(x|a) of edge labeled
tableaux, which we coin the edge Schur functions.

Theorem 1.1. Denote a" := (a;_,_1)icz.,. For N > m + Ay, we have

_ 1
Y sabal-a) [T (U +aw) ' Eymla”) = [1 ——
A 1<k<N 1<i<n iYj

£(A)<min(n,m) 1<j<m 1<j<m

(1.1)

Note that the weight is different than in [17] and is reminiscent of the refined weights
for refined symmetric Grothendieck polynomials [4] from the K-theory of Gr(k,n). For
our proof, we introduce an integrable lattice model such that the commutation of trans-
fer matrices with the model for factorial Schur functions yields the Cauchy identity in
finitely many variables. A consequence of this is E*(x|a) is a symmetric function.

The next natural question in studying E*(x|a) is to determine how they expand in
terms of Schur functions. We compute this by utilizing our second main result (Theo-
rem 4.1), there exists a Ug(sl,)-crystal structure on edge labeled tableaux by breaking
the tableau into diagonals (as opposed to rows or columns as detailed in [6, 13]). An
immediate consequence is a positive Schur expansion of E*#(x|a) by counting high-
est weight elements. We also provide an uncrowding algorithm and conclude this is a
crystal isomorphism by properties of RSK following [2, 6, 13, 14, 15].

This extended abstract is organized as follows. In Section 2, we give the background
on the requisite tableaux and generating functions. In Section 3, we give the lattice
model proving Theorem 1.1. In Section 4, we describe the crystal structure on edge
labeled tableaux and the corresponding uncrowding algorithm.

After this was submitted, we learned that our lattice model for edge Schur func-
tions (3.1) and the corresponding R-matrix (Proposition 3.2) had previously appeared in
the preprint of Gorbounov and Korff [5]. We thank the referee for noting this.
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Figure 1: Crystal B(/A) of the natural representation for U, (sl;,).

2 Tableaux generating functions

Fix a positive integer n, and let [n] := {1,...,n}. A partition A is a weakly decreasing
finite sequence of positive integers, and we draw the Young diagram of A using English
convention. We identify partitions A with 01-sequences by a 1 for every vertical step and
0 for every horizontal step, read from bottom-left to top-right. Boldface letters will de-
note an countably infinite sequence of indeterminates unless otherwise stated and a sub-
script indicates finitely many variables; e.g., x = (x1,xp,...) and x, = (x1,...,%,,0,...).
We make one main exception of a := (...,a_1,ap,a1,...).

Following [18], an edge labeled tableau is a filling of the Young diagram by Z- and
tinite subsets of Z~ on horizontal edges such that rows weakly increase (not including
the edges) and vertical edges strictly increase, where for any set A on an edge, an entry
above is less than min A and an entry below is greater than max A. We consider the top
of the partition to extend infinitely far to the right, which can also hold edge labels. For
skew shapes, we do not allow edge labels only on the top row of boxes that have been
skewed out. The set of semistandard tableaux of (skew) shape A/u, denoted SSYT(A/ ),
is the set of edge labeled tableaux of shape A/ such that no entry appears on any edge.

The factorial Schur functions and edge Schur functions are defined as

syyuxla) = Y J(va—aagji) EME(xla) = Y 1= [T xeajmis

TeSSYT(A/p) a€T TEELT(A/u)a€T  (€ET

where the product over « € T (resp. £ € ET) is all boxes (resp. edge labels in the upper
edge of boxes) in T, where the box is in the i-th row and j-th column. When a = 0, then
sa/u(x) = EMH(x;0) are the usual skew Schur functions.

We recall the crystal structure for sl;, the special linear Lie algebra of traceless n x n
matrices (over C). We use the standard identification of partitions such that £(A) <
n with elements in the dominant weight lattice P* = Z%, by A < Y'; Aje;, where
{€; | i € [n]} is the standard basis of Z". A crystal graph will be an edge-colored
by [n — 1] colors, weighted, directed graph. A highest weight crystal will be a (weakly)
connected component of crystal graph for a tensor power of the crystal B(A;) given in
Figure 1. We define B = B(A1)%F as the crystal graph with vertices B(A1)* and an edge

by ® -+ ®b; = b, ®---®Db] by the signature rule: Replace each i and i + 1 with — and
+ respectively, and successively deleting any (+—)-pairs (in that order) until obtaining
a sequence — - -- —+ - - - +. Let j_ be the index for the rightmost — remaining, and set

hi®@-- @b @@=k - Ri+|®- - @b,
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where there is no edge if there is no such —. Define the weight of an element b € B as
17, x{", where g; is the number of entries equal to i. Our tensor product convention
tollows [3], which is opposite of [7, 8]. See [3] for additional information on crystals.

A highest weight element is a source of the crystal graph. For a highest weight crystal,
there exists a unique A € P* such that wt(b) = x*, which is the crystal basis of a
quantum group U, (sl,) module V(A) [8]. Moreover, the character of a crystal B is

chB:= ) wt(b).
beB
It is a classical fact that ch B(A) = s, (x,). Hence, we can identify elements of B(A) with
SSYT(A) with max entry n under admissible reading words [7, Theorem 7.3.6], where for
any fixed box b, we read every box to its northeast after b. We will use a nonstandard
reading word by reading along diagonals from bottom-to-top, where along each diago-
nal we read from bottom-to-top. This gives us an injection rwd: B(A/u) — B(A1)®A/H,

Example 2.1. Under the reading word described above, we have

1123
415]|6
- Ts9 > ®7|®8|® 4915|891 |®]6|®|2|®]3

3 Lattice model

A state in a five vertex model is a (potentially infinite) square grid with vertices a subset
of Z? and labels {0,1} on each edge such that around each vertex satisfies one of five
possible configurations. We can assign a Boltzmann weight to each possible vertex, and the
Boltzmann weight of a state is the product of the Boltzmann weights of each vertex. The
partition function of a vertex model is the sum of the Boltzmann weights of all possible
states. This assignment of Boltzmann weights to vertices is called an L-matrix (we can
consider the Boltzmann weight of the other local configurations to be 0). We can realize
L-matrix at position (i,j) as a linear map in End(H; ® V;), where H; = C? is the i-th
quantum space and V; = C? is the j-th physical space. For more information, we refer
the reader to [1].

We will now give a lattice model on [1] x Z whose partition function is E*#(x,;a).
The L-matrix L;; at position (i, ]) is defined as

0 1 0 0 1
T ST SR ST
0 1 0 1 0 (3.1)

1+ ajx; 1 X; 1 X;
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Next, we describe the boundary conditions, where the top and bottom edges are the 01-
sequence for the partitions A and p, respectively. To see that the partition function is
EM#(x,;a), it is sufficient to consider a single row, which is equivalent to restricting to
at single letter, say x;. We identify diagonals of the tableau with the vertical lines in the
lattice model. We note that there is a unique state in this model, every vertex outside of
the [—¢(A), Ay — 1] vertical lines are fixed, and the placement of edge labels correspond
to the choice of monomial in (1 + a;x;).

Example 3.1. We restrict to the finite lattice [1] x [—4, 4], which means we set a; = 0 for
all i > 4. For the partitions A = (3,3,1) and u = (3,2), the only possible state is

a_4 a_3 a_q ap aq an as ag

The Boltzmann weight of this state is (1 + a_1x;)(1 + a3x;)(1 + asx;)x?. To translate this
to edge labeled tableaux, note that we can add an i to the edges along the diagonals with
index —1, 3 and 4, which are also the upper edges of boxes with those contents.

-
-

Note that we have the same partition function with the lattice [1] x [—k, 4] for any k > 3.

The lattice model perspective also makes it clear how to derive the notion of edge
labeled tableau for skew shapes so that we have the branching rule

EME(x,yla) = Y EM(yla)E"/*(x|a).
uCvCa

This model is integrable, which means the following holds.
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Proposition 3.2 ([5]). There exists an R-matrix given by

X0

0 0 10 0 0
0 X X 0 00 & 0
Ri,j(xi/xj): X X — 01 1_& 0 EEl’ld(Hl®H])
O 0 x]‘
00 o0 X
0 0 0 >< ; i/ ij

satisfying the Yang—Baxter equation: for any fixed boundary, the partition functions are equal:

Xi

ST =TT O Ryl x) Lin () Ly () = Ly () L () R (x5, ;) ).

x] I Xj —

A consequence of Proposition 3.2 is E*(x|a) is a symmetric function by repeatedly
using the Yang-Baxter equation (this is known as the train argument).

To prove Theorem 1.1, we need a model whose partition function is the factorial
Schur function s, (x| —a). We will use the model from [19], which is also integrable,
with the [-matrix

@{ﬂo 0 0
10 0 O
l 0 @‘Iﬂo 00 1 0 End(H @ V)
K 01 x+a; 0 e
0 ‘{“o
00 0 1
0 0

if
: 1),
1

In this model, we use Z>( x [n] with the left boundary all being 1.

The goal is to attach the vertex model for s) (x| —a) with a vertex model for E*(x|a),
pass them through each other by the train argument, and then be able to easily com-
pute the resulting partition function. However, we cannot use the “natural” model for
E*(x|a). Instead we use a “dual” model, whose L*-matrix is formed by rotating the ver-
tices 180 degrees and interchanging 0 <+ 1 along the quantum space (horizontal edges):

0 1 0 1 0
O%O 19%1 19%1 1%0 0%1
0 1 0 0 1
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For this model, we note that when we restrict to any sufficiently large [—N, N] x [n], the
left and right boundary conditions are all 1.

We call a single row of a vertex model a transfer matrix (with no boundary conditions),
and denote the transfer matrix using the L*-matrix (resp. /-matrix) by T* (resp. t). Unlike
more classical cases of vertex models, our model for E*/#(x|a) depends on the number
of a; # 0 for i > 0. We also will make a technical assumption that [x;| < 1 so that no
infinite products can occur. This yields the following key relation.

Proposition 3.3. Let a; = 0 for all i > 1 and |x| < 1. Then T*(y)t(x) = (1 — xy)t(x)T*(y).

The proof is essentially the existence of a solution of the Yang—Baxter equation with

S0 00 y 0 0 0

R(x,y) = ° X >< 0 = °0 oy 0 € End(H® H").
0 :><: :><i 0 01 1—xy O
0 0 0 0

:><: o o0 1/.
. Y
1
Multiplying by the R-matrix, the train argument yields equal partition functions for

i1 I i3 iy i5 i1 I 13 iy s

ki ky k3 ky ks - ki ky k3 ky ks -

On the left side, as the weight of the R-matrix is 1, we have T*(y)t(x). The right side
has potentially two possible configurations:

i1 iy i3 g I3 - i1 I 13 iy s

ki ko ks ks ks - ki ko ks ki ks -

However, from our assumptions, we note that the Boltzmann weight of for any state of
the left configuration must be 0. The claim follows from the weight of the S3-matrix.
To finish the proof of Theorem 1.1 is repeatedly applying Proposition 3.3 and noting
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there is a unique state on one side that contributes a factor of [Tj<x<n ITi<j<m (1 + axy;)):

e e o o

4 Crystal structure

We define our crystal structure on edge labeled tableaux by extending the reading for a
box b with an entry b and a set A = {a; < - -- < a;} on the edge below b as

T

b = (g |@- Qa1 |®| b — blay|---|ax

A
pa\

We read the tableau following the reading word rwd using this description for each box.
We define the crystal structure by using the signature rule with this reading word.
This generally gives a valid edge labeled tableau with the following exception:

—— i 3
ili| —— |plrl

IJ

where p = i+ 1. Note that normally we would change the left i to and i + 1, which
would not be an edge-labeled tableau. It is straightforward to see that this is the same
operation after taking the reading word, which yields the following.

Theorem 4.1. The set of edge labeled tableau of shape A/ is a highest weight Uy (sly,)-crystal.
Moreover, the function E* ¥ (x,|a) is Schur positive.

Example 4.2. Let A = (3,2). For any n > 3, we have

E3(xp)a) = s3p(xn) + (a_p + a_q + ag + a1)sz (X)) + a1533(xy) + Z a;s4p + HOT.

i>1
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We have the following crystals for the coefficients a_1, ag, and a; for n = 3:

1[1]2] . [1]1][3] . [1]1]3
L l2]2 (212 513
11— 3 3
2102 2
3 \111]1121122
5]3 153 5]3
1l1]2] , [1]1]38] , [1]1]3
2 . 2 2
1;1/
213 2 1
\1%1]1%21222
3(3 303 303
1 1 1
11212 , [1{213] , [1]|2]|3
.23 1213 3]3
111/
20317 —= 1 1
T 1 J1f2f2] . [2]2]2
- 3]3 3|3
KR
23301
T RN
223J] 2 Jl
2 227 2 L1237 2
T EEEe . hEne
22 20217 7

\1
»~|3]3
1 1
/2'33
1 1
/Zv 3
1]2]2]
3037

1
\ .
3

PN

Next, we construct an analog of the uncrowding bijection in analogy to [2, 6]. In this
case, given our reading word, we will perform the uncrowding along diagonals, which
requires a little more care. For simplicity, we index the diagonals so the first diagonal

has content 1 — £(A).

Definition 4.3 (Uncrowding algorithm). We proceed along diagonals starting from the

RSK

lower-left box. Start with (Py, Qo) = (©,D). For the i-th diagonal D;, let P; = P;_1 <—
rwd(D;) denote the RSK inser’gion (see, e.g. [16, Ch. 7]). We construct the recording
tableau Q; as the skew shape u?) /v(1), where u(!) is the shape of P; and v(/) are the boxes
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of A up to the i-th diagonal (counted from the lower-left box) and slid up into a straight
shape. The entries of Q; are those of Q;_; shifted appropriately and then any remaining
empty cells are filled with an i.

Example 4.4. Consider the edge labeled tableau

1)1 A2E
2(2%
T =
313
415
5
Under the uncrowding algorithm, we have
1 315
(Po, Qo) = @,@ &K 54 = 5 KEssa| [ ] &L
5 1
12
213
312 213
- , &Ko =34, & 61
415 -3
415 3
5 1
5 1
11116 111124 6
2|2 2|2
—[3]3]| |, KK _13]3]6] , 6| = (P, Q)
414 414
515 113 515 113

Now we need to describe the inverse algorithm; in particular, we need to describe
which which cells to remove as we will use inverse RSK at each step. We proceed by
removing the diagonals in reverse order but starting with the cell at the bottom of the
corresponding column. We also remove any cell labeled by i if we are at the i-th diagonal
from the bottom, the result of which becomes an edge label and can be placed in a unique
way such that the result is an edge labeled tableau.

We let €(A/u) denote the set of recording tableaux obtained by applying the un-
crowding algorithm. We do not currently have a characterization of these tableaux other
than they will have shape A/u. We leave this as an open question.

Theorem 4.5. Uncrowding Y: ELT(A) — |,cA SSYT(p) x €(A/ ) is a crystal isomorphism,
where the crystal operators on the image act only on SSYT ().
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This gives an alternative proof of Theorem 4.1. It would be good to describe this using

a formulation analogous to the alternative descriptions for uncrowding given in [14, 15].
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