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Abstract. We study parabolic aligned elements associated with the type-B Coxeter
group and the so-called linear Coxeter element. These elements were introduced alge-
braically in (Mühle and Williams, 2019) for parabolic quotients of finite Coxeter groups
and were characterized by a certain forcing condition on inversions. We focus on the
type-B case and give a combinatorial model for these elements in terms of pattern
avoidance. Moreover, we describe an equivalence relation on parabolic quotients of
the type-B Coxeter group whose equivalence classes are indexed by the aligned ele-
ments. We prove that this equivalence relation extends to a congruence relation for
the weak order. The resulting quotient lattice is the type-B analogue of the parabolic
Tamari lattice introduced for type A in (Mühle and Williams, 2019). These lattices have
not appeared in the literature before.

Résumé. Nous étudions les éléments paraboliques alignés associés aux groupes de
Coxeter de type B et à l’élément de Coxeter linéaire. Ces éléments ont été introduits
de façon algébrique en (Mühle et Williams, 2019) pour les quotients paraboliques des
groupes de Coxeter finis, et ils ont été caractérisés par une certaine condition de forçage
sur les inversions. Le cas du type B est considéré, et nous proposons un modèle
combinatoire de ces éléments en termes de motifs exclus. De plus, nous décrivons une
relation d’équivalence dans un quotient parabolique du groupe de Coxeter de type B,
dont les classes d’équivalence sont indicées par les éléments alignés. Nous montrons
que cette relation d’équivalence s’étend à une relation de congruence sur l’ordre faible.
Le quotient ainsi obtenu est un analogue en type B du treillis de Tamari parabolique
introduit par (Mühle et Williams, 2019) pour le type A. Ces treillis ne sont jamais
apparus dans la littérature.
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1 Introduction

Knuth introduced in [7, Section 2.2.1] the family of stack-sortable permutations. These are
permutations that can be converted into the identity permutation by passing through
a stack. Combinatorially, stack-sortable permutations are characterized by avoiding the
pattern 312. Björner and Wachs have interpreted this pattern-avoidance by a certain
forcing of inversions [3, Section 9]. More precisely, a permutation π of {1, 2, . . . , n} avoids
the pattern 312 if and only if for every i < j < k, when π(i) > π(k), we have π(j) > π(k).

Using a root-theoretic approach, Reading generalized this condition to all finite ir-
reducible Coxeter groups W and all Coxeter elements c. The Coxeter group W gen-
eralizes the symmetric group, and the Coxeter element c generalizes the linear order
1 < 2 < · · · < n and the reverse lexicographic order on the transpositions used to de-
scribe the above “forcing” condition. These c-aligned elements of W play an important
role in the very active stream of Coxeter–Catalan combinatorics. First, the number of
c-aligned elements of W is the W-Catalan number (for any choice of Coxeter element c).
Second, the c-aligned elements provide a bijective bridge between c-noncrossing parti-
tions and c-clusters associated with W [12].

On top of that, the c-aligned elements behave nicely from a lattice-theoretic point of
view. Inside the weak order, they form the c-Cambrian lattice, which is semidistributive
and trim. This family of lattices generalizes the famous Tamari lattice [11]. Another
remarkable feature is that these lattices arise from a certain orientation of the 1-skeleton
of the W-associahedron, a polytope associated with the Coxeter group W. In fact, the
W-associahedron is the dual polytope of the c-cluster complex associated with W.

In [10], c-aligned elements, c-noncrossing partitions and c-clusters were generalized
to parabolic quotients of finite irreducible Coxeter groups. In this generalization, some
properties of these objects were conjectured to remain, such as the lattice property of
parabolic c-aligned elements under weak order ([10, Conjecture 35]), and when W is
of coincidental type, the equinumerosity of parabolic c-aligned elements, parabolic c-
noncrossing partitions and parabolic c-clusters ([10, Conjecture 41]). The case of the
symmetric group with c the increasing long cycle was settled in the same article. Fur-
ther research has exhibited remarkable connections between parabolic Coxeter–Catalan
objects associated with the symmetric group, certain Hopf algebras, and the theory of
diagonal harmonics [4]. For more properties of these objects, readers are referred to [5,
8, 9].

In this extended abstract, we present a first study of parabolic Coxeter–Catalan objects
associated with the hyperoctahedral group, i.e., the Coxeter group of type B. We start
by setting up a combinatorial model of the elements of the parabolic quotient Hα of
the hyperoctahedral group with respect to some type-B composition α using colored
sign-symmetric permutations, and then describe in Section 3 a particular order on the
relevant inversions we use to describe the forcing conditions that determine the parabolic
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aligned elements, and further characterize them using pattern-avoidance. We then prove
in Section 4 that these parabolic aligned elements in type B form a quotient lattice of
the weak order on the whole parabolic quotient. This quotient lattice is called the type-B
parabolic Tamari lattice, denoted by TamB(α), and has the same lattice-theoretic properties
as the c-Cambrian lattice. We state this as the main result of this extended abstract.

Theorem 1.1. For every type-B composition α, the type-B parabolic Tamari lattice TamB(α) is
a lattice. Moreover, it is a trim and semidistributive quotient lattice of the weak order on the
parabolic quotient Hα.

Most of the proofs are omitted here due to space limitations. These proofs, along
with more details and background, can be found in the full version [6].

2 Basics

2.1 The hyperoctahedral group

For n > 0, we define [n] def= {1, 2, . . . , n} and ±[n] def= {−n,−n+1, . . . ,−2,−1, 1, 2, . . . , n}.
A permutation π of ±[n] is sign-symmetric if π(−i) = −π(i) for all i ∈ [n]. The group of
all sign-symmetric permutations of ±[n] is the hyperoctahedral group of degree n, denoted
by Hn. It is easily checked that

∣∣Hn
∣∣ = 2nn!. We usually represent sign-symmetric

permutations via their long one-line notation, i.e., for π ∈ Hn we write down

π(−n), π(−n+1), . . . , π(−1), π(1), . . . , π(n−1), π(n).

By definition, the left half of this word is determined by the right half. We still want to
keep it because it will be easier to spot the relevant type-B 231-patterns that we introduce
in Section 2.2. For stylistic reasons, we represent negative values by an overbar instead
of a minus sign, and we add a vertical bar between π(−1) and π(1) to emphasize the
symmetry. In case of potential ambiguities, we use commas to separate the entries.

Let [[i]] denote the sign-symmetric permutation that exchanges i and −i, and let ((i j))
denote the one that exchanges i and j (and simultaneously −i and −j). We take

T =
{
[[i]] | 1 ≤ i ≤ n

}
∪
{
((i j)) | 1 ≤ i < j ≤ n

}
∪
{
((−j i)) | 1 ≤ i < j ≤ n

}
.

It is well known that Hn admits the following presentation, where S = {s0, s1, . . . , sn−1}
is the set of generators, and e is the identity:

Hn
def
=

〈
S | s2

i = e, (s0s1)
4 = e, (si, si+1)

3 = e for i > 0, (sisj)
2 = e for j > i + 1

〉
.

This can be realized by taking s0 7→ [[1]] and si 7→ ((i i+1)) for i ∈ [n − 1]. Thus, Hn has
the structure of a Coxeter group. Moreover, every π ∈ Hn can be written as a product of
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elements of S. An S-reduced word for π is such a product with minimum length, and we
denote its length by ℓS(π).

A (right) inversion of π is some t ∈ T such that ℓS(π) > ℓS(πt). A cover inversion of
π is an inversion t of π for which there exists s ∈ S such that sπ = πt. We write Inv(π)
(resp. Cov(π)) for the sets of inversions (resp. cover inversions) of π. The (left) weak order
on Hn, denoted by ≤weak, is the containment order of inversion sets.

2.2 Aligned elements

We fix the long cycle c⃗ def
= s0s1 · · · sn−1, whose long one-line notation is

1, n, . . . , 3, 2 | 2, 3, . . . , n, 1.

In [12], N. Reading defined a family of sign-symmetric permutations associated with c⃗,
called the c⃗-aligned elements, characterized in two equivalent ways. Algebraically, a sign-
symmetric permutation π ∈ Hn is c⃗-aligned if, for every 1 ≤ i < k ≤ n, we have:

• if [[i]] ∈ Cov(π), then for all 1 ≤ j < i, we have [[j]] ∈ Inv(π) ;

• if ((i k)) ∈ Cov(π), then for all i < j < k, we have ((i j)) ∈ Inv(π);

• if ((−k i)) ∈ Cov(π), then

– [[i]] ∈ Inv(π),

– ((−j i)) ∈ Inv(π) for all 1 ≤ j < k, j ̸= i,

– ((−k j)) ∈ Inv(π) for all 1 ≤ j < i.

We refer to these implications among inversions and cover inversions as forcing relations.
Combinatorially, π ∈ Hn has a type-B 231-pattern if there exist indices −n ≤ i < j <

k ≤ n such that j, k > 0, π(j) > π(i) and either π(i) = π(k) + 1 or π(i) = 1 = −π(k).
The following result is the starting point of our work.

Proposition 2.1 ([12, Lemma 4.9]). A sign-symmetric permutation π ∈ Hn is c⃗-aligned if and
only if it avoids type-B 231-patterns.

The main purpose of this extended abstract is to generalize this result to parabolic
quotients of Hn together with the appropriate definitions.

2.3 Parabolic Quotients

We are interested in minimal-length representatives of the left cosets of Hn by the sub-
group generated by some J ⊆ S. This parabolic quotient is equivalently defined by

HJ
n
def
=

{
π ∈ Hn | ℓS(πs) > ℓS(π) for all s ∈ J

}
.
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Combinatorially, we can describe the parabolic quotient neatly as follows. Let n > 0.
Consider a composition α = (α1, α2, . . . , αr) of n, i.e., α1 + α2 + · · ·+ αr = n. We define

p0
def
= 0 and pi

def
= α1 + α2 + · · · + αi. There are 2n−1 compositions of n, as we may

map α to {p1, p2, . . . , pr−1} ⊆ [n − 1]. Conversely, the set {k1, k2, . . . , kr−1} ⊆ [n − 1] is
associated with the composition (k1, k2 − k1, k3 − k2, . . . , kr−1 − kr−2, n − kr−1).

A type-B composition of n > 0 is a composition of n with a possible zero-component

α0
def
= 0 at the beginning. A type-B composition is split if it has a zero-component, and

join otherwise. There are 2n type-B compositions of n, because each type-B composition
α is associated with a unique subset Jα ⊆ S, with S the generating set of Hn. The non-
zero components of α determine a subset of {s1, s2, . . . , sn−1} as before, and we add s0
to this set if and only if α is split. Through this bijection, we associate with each type-B
composition α the parabolic quotient H

S\Jα
n of Hn determined by the complement S \ Jα,

also denoted by Hα hereinafter for simplicity. Clearly, if α = (0, 1, 1, . . . , 1), then Hα = Hn.
Let α be a type-B composition with r non-zero components α1, α2, . . . , αr in that order.

As before, we define pi = α1 + α2 + · · ·+ αi, and we set pi
def
= −pi. For i < j, we use the

notation [i, j] def= {i, i+1, . . . , j}. We define Part(α) as the following partition of ±[n]:{
[n, pr−1−1], . . . , [p2, p1−1], [p1, 1], [1, p1], [p1+1, p2], . . . , [pr−1+1, n]

}
(α split),{

[n, pr−1−1], . . . , [p2, p1−1], [p1, p1], [p1+1, p2], . . . , [pr−1+1, n]
}

(α join).

This means, if α is split, that we partition ±[n] into 2r symmetrically placed blocks, and
if α is join, we partition it into 2r − 1 blocks, where the middle block contains positive
and negative integers. This partition also explains the terminology “join” and “split” for
the type-B compositions. The partition given by a join composition has a block joining
positive and negative integers, while the one given by a split composition does not.

For a ∈ [n], we say that a is in the ith α-region if pi−1 ≤ a < pi, where p0 = 0. We
sometimes write ϱα(a) = i in this situation.

Lemma 2.2. For α a type-B composition, a sign-symmetric permutation π ∈ Hn is in Hα if and
only if its long one-line notation, with positions partitioned by Part(α), is increasing in each part.

We use the compositions α(j) = (1, 2) (join) and α(s) = (0, 1, 2) (split) as our running
examples hereinafter. The partition Part(α(j)) has three parts {−3,−2}, {−1, 1}, {2, 3},
while Part(α(s)) has four parts {−3,−2}, {−1}, {1}, {2, 3}. We highlight the parts in

the long one-line notation, for instance 1 3 2 2 3 1 is a member of Hα(s) , while

1 3 2 2 3 1 is not in Hα(j) , because the elements in the central block are decreasing.
The weak order on Hα is simply the restriction of the weak order on Hn restricted to

the subset Hα. Figure 1a shows the weak order on Hα(j) and Figure 1b shows the weak
order on Hα(s) .
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3 2 1 1 2 3

3 1 2 2 1 3

2 1 3 3 1 23 1 2 2 1 3

2 1 3 3 1 23 2 1 1 2 3

1 2 3 3 2 12 3 1 1 3 2

1 2 3 3 2 11 3 2 2 3 1

1 3 2 2 3 1

2 3 1 1 3 2

(a) The weak order on H(1,2).

3 2 1 1 2 3

3 2 1 1 2 3 3 1 2 2 1 3

3 1 2 2 1 3 3 1 2 2 1 3 2 1 3 3 1 2

2 1 3 3 1 2 3 1 2 2 1 3 3 2 1 1 2 3 2 1 3 3 1 2

2 1 3 3 1 2 3 2 1 1 2 3 2 3 1 1 3 2 1 2 3 3 2 1

1 2 3 3 2 1 2 3 1 1 3 2 1 3 2 2 3 1 1 2 3 3 2 1

1 2 3 3 2 1 1 3 2 2 3 1 1 3 2 2 3 1

1 3 2 2 3 1 2 3 1 1 3 2

2 3 1 1 3 2

(b) The weak order on H(0,1,2).

Figure 1: The parabolic quotients with respect to certain type-B compositions of 3
in the weak order. The grey regions indicate congruence classes with respect to the
congruence relation Θα defined in Section 4.

3 Aligned Elements in Hα

The forcing relations from Section 2.2 that determine the c⃗-aligned elements of Hn come
from a certain total order on T together with a decomposition of the roots of Hn, which
are vectors associated with the elements of T that are important in the reflection repre-
sentation of the group Hn. For lack of space, we do not go into detail here. Instead, we
present a uniform construction that works for all type-B compositions of n.

3.1 The c⃗-sorting word of the longest element

By [2, Theorem 4.1], the set Hα has a unique element of maximum length, which is
denoted by πo;α. For our constructions, we are interested in a particular S-reduced word
of πo;α, namely the c⃗-sorting word of πo;α. This is the S-reduced word of πo;α that appears
as far right as possible as a subword in the half-infinite word

∞ c⃗ def
= . . . | sn−1 · · · s1s0 | sn−1 · · · s1s0.

Given integers λ1 ≥ λ2 ≥ · · · , a Ferrers diagram of shape (λ1, λ2, . . .) is a left-aligned
arrangement of unit boxes, where the ith row consists of i boxes. For two Ferrers dia-
grams λ, µ, the associated skew diagram λ/µ consists of all boxes of λ that are not boxes
of µ. For a type-B composition α of n with non-zero components α1, α2, . . . , αr, we define



Parabolic Tamari Lattices in Linear Type B 7

s1 s0

s2 s1 s0

s2 s1

(a) The skew shape skew
(
(1, 2)

)
.

s1 s0

s2 s1 s0

s2 s1 s0

(b) The skew shape skew
(
(0, 1, 2)

)
.

Figure 2: Skew shapes associated with certain type-B compositions of 3. The colorful
triangles on the left indicate the composition.

the α-shape to be the skew shape skew(α)
def
= λ(α)/µ(α), where the kth entry of µ(α) is

µk
def
= αϱα(k) + αϱα(k)+1 + · · ·+ αr and the kth entry of λ(α) is

λk
def
=

{
2n − α1, if α is join and k ≤ α1,
2n + 1 − k, otherwise.

We now fill skew(α) with elements of S as follows. Let k ∈ [n]. If α is split or k > α1, then
we fill the kth row of skew(α) with the elements s0, s1, . . . from right to left until all boxes in
that row are filled. If α is join and k ≤ α1, then we fill the kth row of skew(α) in the same
way with sα1+1−k, sα1+2−k, . . . instead. We denote by wα the word obtained from reading
the filling of skew(α) from bottom to top, left to right.

Proposition 3.1. For every type-B composition α, the word wα is the c⃗-sorting word of πo;α.

Corollary 3.2. If α is a type-B composition of n with non-zero components α1, α2, . . . , αr, then

ℓS(πo;α) = n2 −
r

∑
i=1

(
αi

2

)
−

{
(α1+1

2 ), if α is join,
0, if α is split.

Figure 2a shows the skew shape skew(α(j)) and Figure 2b shows the skew shape
skew(α(s)), both together with their fillings. It is easy to check that

πo;α(j) = 2 3 1 1 3 2 = s1s0s2s1s0s2s1 = wα(j) ,

πo;α(s) = 2 3 1 1 3 2 = s1s0s2s1s0s2s1s0 = wα(s) .

3.2 The inversion order of πo;α with respect to c⃗

Let w = a1a2 · · · ak be an S-reduced word of some sign-symmetric permutation π ∈ Hn.
For i ∈ [k], we define ti = akak−1 · · · ak−i+1 · · · ak−1ak. By [1, Section 1.3], the inversion
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−2 −3

1

3 2

−3

−2

1

((−3 1)) [[3]]

((−2 1)) ((−3 2)) [[2]]

((1 3)) ((1 2))

(a) The inversion order with respect to the
composition (1, 2).

−2 −3

−1

3 2 1

−3

−2

−1

((1 3)) [[3]]

((1 2)) ((−3 2)) [[2]]

((−3 1)) ((−2 1)) [[1]]

(b) The inversion order with respect to the com-
position (0, 1, 2).

Figure 3: The inversion orders associated with certain type-B compositions of 3.

set of π is then Inv(π) = {t1, t2, . . . , tk}. The total order of Inv(π) induced by w is the
inversion order of π. The inversion order associated with the c⃗-sorting word ωo;α of πo;α
can be obtained from skew(α) as follows.

(i) The first n columns are labeled by πo;α(n), πo;α(n − 1), . . ., πo;α(1) from left to
right. The next n − α1 columns are labeled from n to α1 + 1. If α is split, we label
the remaining α1 columns by α1, α1 − 1, . . . , 1. If α is join, there are no columns left.

(ii) If α is split, then we label the rows by −1, −2, . . ., −n from top to bottom. If α is
join, then we label the first α1 rows by α1, α1 − 1, . . . , 1, and the remaining n − α1
rows by −α1 − 1,−α1 − 2, . . . ,−n.

Now we fill the cells of skew(α). Consider a cell with row label r and column label c.

(i) If r > 0 and c > 0, then we fill this cell by ((r c)). This only happens when α is join,
in which case we necessarily have r < c.

(ii) If r < 0 and c = −r, then we fill this cell by [[r]].

(iii) If r < 0 and c > 0 with c > −r, then we fill this cell by ((−c −r)).

(iv) If r < 0 and c > 0 with c < −r, then we fill this cell by ((r c)).

(v) If r < 0 and c < 0, then we fill this cell by ((−c −r)). By construction, we are in the
first n columns, thus r < c.

Proposition 3.3. The filling of skew(α), read from top to bottom and right to left, yields the
inversion order of πo;α with respect to its c⃗-sorting word.

Figure 3a shows the filling of the skew shape skew(α(j)) with inversions, and Figure 3b
shows that of skew(α(s)). The corresponding inversion order of α(j) is

((1 2)) ≺ ((1 3)) ≺ [[2]] ≺ ((−3 2)) ≺ ((−2 1)) ≺ [[3]] ≺ ((−3 1)),
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while that of α(s) is

[[1]] ≺ ((−2 1)) ≺ ((−3 1)) ≺ [[2]] ≺ ((−3 2)) ≺ ((1 2)) ≺ [[3]] ≺ ((1 3)).

This can also be checked directly using the c⃗-sorting words wα(j) and wα(s) .

3.3 Aligned elements of Hα

We now put everything together and define the c⃗-aligned elements of Hα. A sign-
symmetric permutation π ∈ Hα is c⃗-aligned if, for all 1 ≤ i < k ≤ n, we have

(1) if [[i]] ∈ Cov(π), then [[j]] ∈ Inv(π) for all 1 ≤ j < i with ϱα(j) < ϱα(i);

(2) if ((i k)) ∈ Cov(π), then ((i j)) ∈ Inv(π) for all i < j < k with ϱα(i) < ϱα(j) < ϱα(k);

(3) if ((−k i)) ∈ Cov(π), then

(3a) [[i]] ∈ Inv(π) when i > α1 or α is split,

(3b) ((−j i)) ∈ Inv(π) for 1 ≤ j < k with ϱα(j) < ϱα(k) when α is split or j > α1,

(3c) ((j k)) ∈ Inv(π) when j ≤ α1, j ̸= i and α is join,

(3d) ((−k j)) ∈ Inv(π) for 1 ≤ j < i with ϱα(j) < ϱα(i) when α is split or j > α1,

(3e) ((j i)) ∈ Inv(π) when i > j > α1 and α is join.

The alignment condition can be expressed combinatorially as pattern avoidance. For
k ∈ ±[n], we define

k+ def
=

{
k + 1, if k ̸= −1,
1, if k = −1.

Let π ∈ Hα. A type-B (α, 231)-pattern is a triple (i, j, k) with −n ≤ i < j < k ≤ n such that
i, j, k are in different α-regions, j > 0, π(i) = π(k)+ and{

π(i) < π(j), when α is split or j > α1,
π(j) < π(k), when α is join and j ≤ α1.

Proposition 3.4. For any type-B composition α of n, it holds that π ∈ Hα is c⃗-aligned if and
only if it does not have a type-B (α, 231)-pattern.

Consider π = 2 3 1 1 3 2 ∈ H(1,2). We can check easily that ((−3 2)) ∈ Cov(π),
but ((1 3)) /∈ Inv(π). This violates Condition (3c) above, and π is therefore not c⃗-aligned.
This is, equivalently, witnessed by the (α(j), 231)-pattern in positions (−2, 1, 3).
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3 2 1 1 2 3

3 1 2 2 1 3

2 1 3 3 1 23 1 2 2 1 3

2 1 3 3 1 23 2 1 1 2 3

1 2 3 3 2 1

1 2 3 3 2 11 3 2 2 3 1

1 3 2 2 3 1

2 3 1 1 3 2

(a) The lattice TamB
(
(1, 2)

)
.

3 2 1 1 2 3

3 2 1 1 2 3 3 1 2 2 1 3

3 1 2 2 1 3 2 1 3 3 1 2

2 1 3 3 1 2 3 1 2 2 1 3

2 1 3 3 1 2 3 2 1 1 2 3

1 2 3 3 2 1

1 2 3 3 2 1 1 3 2 2 3 1

1 3 2 2 3 1

2 3 1 1 3 2

(b) The lattice TamB
(
(0, 1, 2)

)
.

Figure 4: The type-B parabolic Tamari lattices associated with certain type-B composi-
tions of 3.

Now take π′ = 1 2 3 3 2 1 ∈ H(0,1,2). There, we see that [[3]] ∈ Cov(π′), but
[[1]] /∈ Inv(π′). This violates Condition (1) above, and π′ is thus not c⃗-aligned, which is
again manifested in the (α(s), 231)-pattern in positions (−3, 1, 3).

We denote by Hα(231) the set of elements of Hα avoiding type-B (α, 231)-patterns. By
Proposition 3.4, this is also the set of c⃗-aligned elements of Hα. The type-B parabolic Tamari

lattice is the partially ordered set TamB(α)
def
=

(
Hα(231),≤weak

)
. This name is justified in

the next section. Figure 4a shows TamB
(
(1, 2)

)
and Figure 4b shows TamB

(
(0, 1, 2)

)
.

4 The parabolic Tamari lattice as a quotient lattice

Let n > 0. By [2, Theorem 4.1], the partially ordered set
(
Hα,≤weak

)
is a lattice for every

type-B composition α of n. We now construct a congruence relation on
(
Hα,≤weak

)
that

exhibits TamB(α) as a quotient lattice. Key to this construction is the following lemma.

Lemma 4.1. For every π ∈ Hα there exists a unique element π↓ ∈ Hα(231) with Inv(π↓) ⊆
Inv(π) such that Inv(π↓) is maximal by inclusion for any such element.
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We may therefore consider the assignment π 7→ π↓ as a map from Hα to Hα(231). By
construction, the elements of Hα(231) are the fixed points of this map. We also define an
equivalence relation Θα on Hα by taking (σ, π) ∈ Θα if and only if σ↓ = π↓.

Sketch of proof of Theorem 1.1. The lattice property of TamB(α) is a direct consequence of
Lemma 4.1. Indeed, one consequence of Lemma 4.1 is that the map π 7→ π↓ is order-
preserving. As a consequence, Hα(231) is closed under taking joins. Since the identity
belongs to Hα(231), the poset TamB(α) has a unique smallest element. This is enough to
guarantee that it is a lattice.

Moreover, it follows that the equivalence classes of Θα form intervals in
(
Hα,≤weak

)
.

The bottom elements of these intervals are precisely the members of Hα(231). Finally,
we prove that the map that sends π ∈ Hα to the top element of the interval induced by
elements equivalent to π in Θα is also order-preserving. In view of [11, Section 3], this is
enough to conclude that Θα is a congruence relation on

(
Hα,≤weak

)
. The corresponding

quotient lattice is isomorphic to TamB(α).
Thanks to the quotient property, the semidistributivity of TamB(α) is inherited from

that of the weak order on Hα. For the trimness of TamB(α), given the semidistributivity,
by [13, Theorem 1.4], we only need to show that TamB(α) is extremal in the sense that
the number of join-irreducible elements equals the maximum length of a maximal chain.
Extremality is established by showing that each suffix of the c⃗-sorting word of πo;α is
in Hα(231) and that for each inversion t ∈ Inv(πo;α) there exists a unique π ∈ Hα(231)
whose only cover inversion is t.

In Figures 1a and 1b we highlight the equivalence classes with grey boxes. The reader
is invited to check that the weak order on representatives of these equivalence classes is
isomorphic to the lattices shown in Figures 4a and 4b respectively.
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