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Abstract. In 1992, Loeb considered a natural extension of the binomial coefficients to
negative entries and gave a combinatorial interpretation in terms of hybrid sets. He
showed that many of the fundamental properties of binomial coefficients continue to
hold in this extended setting. Recently, Formichella and Straub showed that these
results can be extended to the q-binomial coefficients with arbitrary integer values
and extended the work of Loeb further by examining arithmetic properties of the q-
binomial coefficients. In this paper, we give an alternative combinatorial interpreta-
tion in terms of lattice paths and consider an extension of the more general weight-
dependent binomial coefficients, first defined by the second author, to arbitrary integer
values. Remarkably, many of the results of Loeb, Formichella and Straub continue to
hold in the general weighted setting. We also examine important special cases of the
weight-dependent binomial coefficients, including ordinary, q- and elliptic binomial
coefficients as well as elementary and complete homogeneous symmetric functions
(with application of these cases to Stirling numbers).
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1 Introduction

Loeb [5] studied a generalization of the binomial coefficients (n
k) =

n!
k!(n−k)! , where n and

k are allowed to be negative integers. He defined them for integers n and k in terms of(
n
k

)
:= lim

ϵ 7→0

Γ(n + 1 + ϵ)

Γ(k + 1 + ϵ)Γ(n − k + 1 + ϵ)
.
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From this definition it follows that the binomial coefficients with integer values satisfy
the recursion (

n
0

)
=

(
n
n

)
= 1 for n ∈ Z , (1.1a)

and for n, k ∈ Z, provided that (n + 1, k) ̸= (0, 0),(
n + 1

k

)
=

(
n
k

)
+

(
n

k − 1

)
, (1.1b)

and they can be fully characterized by this recursion. Loeb introduced a combinatorial
model for these numbers and showed that many properties of binomial coefficients, as
the recursion formula (1.1) and the binomial theorem, remain to be true for negative
arguments. Formichella and Straub [2] generalized these results to q-binomial coeffi-
cients. In [8], the second author introduced weight-dependent binomial coefficients for
nonnegative integers n, k which naturally generalize q-binomial coefficients.

In this extended abstract, we show how the weight-dependent binomial coefficients
can be extended to negative integer values, analogous to the work of Loeb [5] and
Formichella and Straub [2]. We study reflection formulae inspired by an involution
which recently appeared in [9]. We give a combinatorial interpretation of the weight-
dependent binomial coefficients in terms of lattice paths and prove a corresponding
noncommutative weight-dependent generalization of the binomial theorem. As a corol-
lary of the binomial theorem, we obtain convolution formulae analogous to the Chu–
Vandermonde convolution formula. Finally, we study some important special cases of
the weight-dependent binomial coefficients, such as elementary and complete homoge-
neous symmetric functions (with application of these cases to Stirling numbers), and
elliptic binomial coefficients.

2 Weight-dependent commutation relations

2.1 A noncommutative algebra

Let (w(s, t))s,t∈Z be a sequence of invertible variables. We start by defining the noncom-
mutative algebra Cw[x, x−1, y, y−1] which is fundamental to the content of this extended
abstract.

Definition 2.1. For a doubly-indexed sequence of invertible variables
(w(s, t))s,t∈Z, let Cw[x, x−1, y, y−1] be the associative unital algebra over C generated
by x, x−1, y and y−1 and the sequence of invertible variables (w(s, t)±1)s,t∈Z satisfying
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the following relations:

x−1x = xx−1 = 1 (2.1a)

y−1y = yy−1 = 1 (2.1b)
yx = w(1, 1)xy, (2.1c)

xw(s, t) = w(s + 1, t)x, (2.1d)
yw(s, t) = w(s, t + 1)y, (2.1e)

for all s, t ∈ Z.

In the following, we restrict the just defined algebra Cw[x, x−1, y, y−1] to Cw[x, y, y−1]
(where we omit the generator x−1 and relation (2.1a)) or to Cw[x, x−1, y] (where we
omit the generator y−1 and relation (2.1b)), respectively. In addition we find it con-
venient to work in the extensions of these algebras to the algebras of formal power
series Cw[[x, x−1, y, y−1]], Cw[[x, y, y−1]] and Cw[[x, x−1, y]] (keeping the same relations).
Note that expressions of the form (x + y)n with n < 0 do not have a unique power
series expansion in Cw[[x, x−1, y, y−1]]. For n < 0 we have to decide how to expand
(x + y)n, say as (x + y)n = ((1 + xy−1)y)n as an element in Cw[[x, y, y−1]], or rather as
(x + y)n = (x(1 + x−1y))n as an element in Cw[[x, x−1, y]], respectively. By default, we
shall always choose the algebra of formal power series Cw[[x, y, y−1]] and only resort to
Cw[[x, x−1, y]] if we explicitly mention that.

For l, m ∈ Z ∪ {±∞} we define products of (possibly noncommutative) invertible
variables Aj as follows:

m

∏
j=l

Aj =


Al Al+1 · · · Am if m > l − 1
1 m = l − 1
A−1

l−1A−1
l−2 · · · A−1

m+1 if m < l − 1.

(2.2)

Especially for the reflection formulae it will be necessary to define sgn(n) for n ∈ Z,
following [2], as

sgn(n) =

{
1 if n ≥ 0,
−1 if n < 0.

(2.3)

For s, t ∈ Z and the sequence of invertible weights (w(s, t))s,t∈Z we define

W(s, t) :=
t

∏
j=1

w(s, j). (2.4)

We refer to the w(s, t) as small weights, whereas to the W(s, t) as big weights.
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Lemma 2.2. Let (w(s, t))s,t∈Z be a doubly-indexed sequence of invertible variables, and x and
y invertible variables together forming the associative algebra Ax,y = Cwx,y [x, x−1, y, y−1] where
wx,y(s, t) = w(s, t). Then the following six homomorphisms are involutive algebra isomorphisms.

ϕy,x : Ax,y → Ay,x with wy,x(s, t) = w(t, s)−1, (2.5a)

ϕx−1,y : Ax,y → Ax−1,y with wx−1,y(s, t) = w(1 − s, t)−1, (2.5b)

ϕx−1,x−1y : Ax,y → Ax−1,x−1y with wx−1,x−1y(s, t) = w(1 − s − t, t)−1, (2.5c)

ϕx,y−1 : Ax,y → Ax,y−1 with wx,y−1(s, t) = w(s, 1 − t)−1, (2.5d)

ϕx−1,y−1 : Ax,y → Ax−1,y−1 with wx−1,y−1(s, t) = w(1 − s, 1 − t), (2.5e)

ϕy−1x,y−1 : Ax,y → Ay−1x,y−1 with wy−1x,y−1(s, t) = w(s, 1 − s − t)−1. (2.5f)

The involution (2.5c) appeared in the work of the second and third author in [9,
Lemma 2].

It is straightforward to check that the simultaneous replacement of wx,y(s, t) (s, t ∈ Z),
x and y in (2.5a)–(2.5f) by wx′,y′(s, t), x′ and y′, respectively, again satisfies the conditions
in (2.1). As a consequence, given an identity in w(s, t), x and y, a new valid identity can
be obtained by applying the isomorphism ϕ to each of the occurring variables, where in
both identities the variables satisfy the same commutation relations (2.1). We will apply
such isomorphisms in the proofs of Lemma 2.3 and Theorem 2.10.

The following rule for interchanging powers of x and y is an extension to integer
values of a corresponding lemma in [8, Lemma 1]:

Lemma 2.3. For all k, ℓ ∈ Z we have

ykxℓ =

(
ℓ

∏
i=1

k

∏
j=1

w(i, j)

)
xℓyk =

(
ℓ

∏
i=1

W(i, k)

)
xℓyk.

Proof. The case k, ℓ ≥ 0 is already given in [8] and is easy to prove by induction; we
therefore omit the proof. For k ≥ 0 and ℓ < 0 we combine the involution (2.5b) with the
k, ℓ ≥ 0 case and by the definition of products (2.2) we obtain:

ykxℓ = yk(x−1)−ℓ =

(
−ℓ

∏
i=1

k

∏
j=1

w(1 − i, j)−1

)
(x−1)−ℓyk =

(
ℓ

∏
i=1

k

∏
j=1

w(i, j)

)
xℓyk.

The remaining cases can be proved in the same manner by applying the involutions
(2.5d) and (2.5e) to the k, ℓ ≥ 0 case.

2.2 Weight-dependent binomial coefficients with integer values

Let the weight-dependent binomial coefficients or w-binomial coefficients be defined by

w

[
n
0

]
=

w

[
n
n

]
= 1 for n ∈ Z , (2.6a)
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and for n, k ∈ Z, provided that (n + 1, k) ̸= (0, 0),

w

[
n + 1

k

]
=

w

[
n
k

]
+

w

[
n

k − 1

]
W(k, n + 1 − k). (2.6b)

Example 2.4 (n = −1). Using induction for k ≥ 0 and k < 0 we obtain that the weight-
dependent binomial coefficient for n = −1 gives

w

[
−1
k

]
= (−1)ksgn(k)

k

∏
j=1

W(j,−j),

where sgn(k) is defined in (2.3).

Before stating the general binomial theorem, let us extend the lattice path model of [7]
to integer values n, k ∈ Z. Let a (weighted) hybrid lattice path be a sequence of (weighted)
steps in the xy-plane starting at the origin (0, 0) and ending at (n, m) with n, m ∈ Z

using the following steps:

1. If n, m ≥ 0, we use north and east steps ( , ) ,

2. if n ≥ 0 and m < 0, we use south steps and east-south step combinations ( , )
and every path starts with a south step,

3. if n < 0 and m ≥ 0, we use north-west step combinations and west steps ( , )
and every path starts with a west step,

4. if n, m < 0, there are no allowed steps.

(0, 0)

Figure 1: The possible steps of a hybrid lattice path.
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Figure 1 shows the possible steps of a hybrid lattice path. The arrows indicate the
direction of the steps. Note that in the region m < 0 ≤ n every east step has to be
followed by a south step and in the region n < 0 ≤ m every north step has to be followed
by a west step. We give weights to hybrid lattice paths by assigning the following weights
to each of the respective steps

(s, t − 1)

(s, t)

1

(s, t)

(s, t + 1)

1

.
(s − 1, t) (s, t)

W(s, t)

.
(s − 1, t) (s, t)

W(s, t)−1

and, if we highlight the step combinations by rounded corners,

(s, t − 1)

(s − 1, t) (s, t)
W(s, t)

(−1)
(s, t − 1)

(s − 1, t) (s, t)
W(s, t)−1

(−1)

.

The weight of a path P, w(P), is defined as the product of the weights of all its steps.

Example 2.5. Figure 2 shows a hybrid lattice path in the area n, m ≥ 0 with weight
W(1, 0) · 1 · W(2, 1) · 1 · W(3, 2) · W(4, 2) = w(2, 1)w(3, 1)w(3, 2)w(4, 1)w(4, 2). Paths in
this area correspond to (ordinary) weighted lattice paths. The left side of Figure 3 shows

w(2, 1) w(3, 1) w(4, 1)

w(3, 2) w(4, 2)

W(1, 0)

W(2, 1)

W(3, 2) W(4, 2)

1

1

(0, 0)

Figure 2: A hybrid lattice path in the area n, m ≥ 0.

a hybrid lattice path in the area m < 0 ≤ n with weight 1 ·W(1,−1) · (−1) · 1 ·W(2,−3) ·
(−1) = (−1)2w(1, 0)−1w(2, 0)−1w(2,−1)−1w(2,−2)−1. The right side of Figure 3 shows
a hybrid lattice path in the area n < 0 ≤ m with weight W(0, 0)−1 · (−1) · W(−1, 1)−1 ·
W(−2, 1)−1 · (−1) · W(−3, 2)−1 = (−1)2w(−1, 1)−1w(−2, 1)−1w(−3, 1)−1w(−3, 2)−1.

Given two points A, B ∈ Z2, let PZ(A → B) be the set of all hybrid lattice paths from
A to B.
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. .

w(1, 0)−1 w(2, 0)−1

w(2,−1)−1

w(2,−2)−1

W(1,−1)

W(2,−3)

1

1

(−1)

(−1)

(0, 0)

w(−1, 1)−1w(−2, 1)−1w(−3, 1)−1

w(−3, 2)−1

W(0, 0)−1

W(−1, 1)−1W(−2, 1)−1

W(−3, 2)−1

(−1)

(−1)

(0, 0)

Figure 3: A hybrid lattice path in the area m < 0 ≤ n (left) and a path in the area
n < 0 ≤ m (right). The (diagonal) step combinations are indicated by rounded corners.

Theorem 2.6. Let n, k ∈ Z. Then,

∑
P∈PZ((0,0)→(k,n−k))

w(P) =
w

[
n
k

]
. (2.7)

This theorem can be proven by showing that the sum fulfills the relations (2.6). Fig-
ure 1 also shows that some points are not reachable by using the possible steps of a
hybrid lattice path. In terms of the weight-dependent binomial coefficients, this corre-
sponds to

w

[
n
k

]
= 0 for 0 ≤ n < k, k < 0 ≤ n or n < k < 0, (2.8)

which can be proven by induction.

Example 2.7. By setting w(s, t) = 1 for all s, t ∈ Z, the generating function of hybrid
lattice paths is given by the binomial coefficients with integer values defined by (1.1) [5].
By setting w(s, t) = q for all s, t ∈ Z, we obtain a q-weighting of hybrid lattice paths with
the generating function given by the q-binomial coefficients with integer values defined
in [2]. Note that Loeb and also Formichella and Straub interpret ordinary and q-binomial
coefficients with arbitrary integer values combinatorially in terms of subsets of hybrid
sets [2, 5]. In the full article [4] we show that these are in one-to-one correspondence
with hybrid lattice paths.

Remark 2.8. Note that we could also give weights to hybrid lattice paths by assigning
weights to the boxes between the path and the x-axis (see Figures 2 and 3). In the
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w(s, t) = q case this corresponds to the q-counting of paths according to area. We
refer the reader to [4] for more details. We further mention that the considered model
makes it possible to establish bijective proofs of the following reflection and convolution
formulae. We also omit these proofs here.

2.3 Reflection formulae

In order to generalize the reflection formulae in [2], we introduce the reflection weights

ŵ(s, t) :=wy,x(s, t) = w(t, s)−1 (2.9)

w̃(s, t) :=wx−1,x−1y(s, t) = w(1 − s − t, t)−1, (2.10)

w̆(s, t) :=wy−1x,y−1(s, t) = w(s, 1 − s − t)−1. (2.11)

for s, t ∈ Z from the involutions in Lemma 2.2.

Theorem 2.9. Let n, k ∈ Z and ŵ(s, t), w̃(s, t) and w̆(s, t) as above with s, t ∈ Z. Then,

w

[
n
k

]
=

ŵ

[
n

n − k

] k

∏
j=1

W(j, n − k) (2.12)

= (−1)n−ksgn(n − k)
w̃

[
−k − 1
−n − 1

] n−k

∏
j=1

W(n + 1 − j, j)−1 (2.13)

= (−1)ksgn(k)
w̆

[
k − n − 1

k

] k

∏
j=1

W(j,−j). (2.14)

The theorem can be proven by showing that all expressions satisfy the same recur-
rence relations and initial conditions. One can also prove the theorem bijectively in terms
of weighted hybrid lattice paths.

2.4 An extension of the noncommutative binomial theorem

We are now ready to state the weight-dependent noncommutative binomial theorem for
integer values which generalizes the results of [2], [5] and [8]. The proof, which we omit,
uses induction on n as well as the involution (2.5a) and the reflection formula (2.12).

Theorem 2.10. Let n, k ∈ Z and x, y be invertible variables satisfying the commutation relations
(2.1), then we have

(x + y)n = ∑
k≥0 w

[
n
k

]
xkyn−k in Cw[[x, y, y−1]] or (2.15)

(x + y)n = ∑
k≤n w

[
n
k

]
xkyn−k in Cw[[x, x−1, y]]. (2.16)
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2.5 Convolution formulae

In [8], the second author derived a weight-dependent generalization of the Chu–Vander-
monde convolution formula (

n + m
k

)
=

k

∑
j=0

(
n
j

)(
m

k − j

)

Given Theorem 2.10, we can expand (x + y)n+m and (x + y)n(x + y)m using (2.15) for all
n, m ∈ Z to obtain the following weight-dependent convolution formula by comparing
the coefficients of xkyn+m−k for k ≥ 0. The proof is similar to the proof of [8, Corollary
1] and therefore we omit the details.

Corollary 2.11. Let n, m ∈ Z and k ≥ 0. For the binomial coefficients in (2.6), defined by the
doubly-indexed sequence of indeterminate weights (w(s, t))s,t∈Z, we have the following formal
identity in C[(w(s, t))s,t∈Z]:

w

[
n + m

k

]
=

k

∑
j=0 w

[
n
j

] (
xjyn−j

w

[
m

k − j

]
yj−nx−j

) k−j

∏
i=1

W(i + j, n − j). (2.17)

The above identity is formal because it contains noncommuting variables x and y
defined by (2.1), which cancel after shifting all weights in

w

[ m
k−j
]
.

By expanding (x + y)n+m and (x + y)n(x + y)m using (2.16) and comparing coeffi-
cients as before, we obtain a second w-Chu–Vandermonde convolution formula.

Corollary 2.12. Let n, m ∈ Z and k ≤ n + m. For the binomial coefficients in (2.6), defined
by the doubly-indexed sequence of indeterminate weights (w(s, t))s,t∈Z, we have the following
formal identity in C[(w(s, t))s,t∈Z]:

w

[
n + m

k

]
=

n

∑
j=k−m w

[
n
j

] (
xjyn−j

w

[
m

k − j

]
yj−nx−j

) k−j

∏
i=1

W(i + j, n − j). (2.18)

If n + m < k < 0, both sides of the equation vanish, therefore (2.18) is true for all
k < 0. This equation generalizes an identity in [2, Lemma 4.9]. There, the corresponding
identity is limited to the case n, m, k < 0 whereas Corollary 2.12 is even true if n, m are
positive or have mixed signs.

In the case sgn(n) = sgn(m), these identities translate into convolutions of hybrid
lattice paths corresponding to a diagonal [4, 8]. In the case sgn(n) ̸= sgn(m), we were
able to prove these identities combinatorially by applying a sign-reversing involution
using hybrid lattice paths, see [4]. For brevity, the details are omitted here.
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3 Specializations

In Example 2.7 we have already seen the specializations w(s, t) = 1 and w(s, t) = q. In
these cases, the w-binomial coefficient corresponds to the ordinary and q-binomial coeffi-
cients, respectively. Corollaries include reflection formulae, a noncommutative binomial
theorem, convolution formulae and a combinatorial model in terms of hybrid lattice
paths for these specializations. We can also get corresponding corollaries for other spe-
cializations of the weights. In this section we list some interesting specializations; most
of the details are omitted here but are provided in the full paper [4].

3.1 Elementary and complete symmetric functions

In [1], Damiani, D’Antona and Loeb define generalized complete homogeneous symmet-
ric functions and elementary symmetric functions over hybrid sets. For our purposes it
suffices to use the following simplified definitions. (See [1] for a more extensive dis-
cussion.) Let {a1 · · · an} denote an n-element hybrid new set (defined in [5]) consisting
of the elements a1, a2, . . . , an with multiplicity 1 if n > 0, consisting of the elements
a0, a−1, . . . , an+1 with multiplicity −1 if n < 0 or it is the empty set if n = 0. We define,
for all n, k ∈ Z, the elementary symmetric function ek(n) = ek({a1 · · · an}) and the complete
homogeneous symmetric function hk(n) = hk({a1 · · · an}), provided (n + 1, k) ̸= (0, 0), by

ek(n + 1) = ek(n) + an+1ek−1(n) and hk(n) = hk(n − 1) + anhk−1(n)

with initial conditions, for n ∈ Z,

e0(n) = 1, en(n) =
n

∏
i=1

ai and h0(n) = 1, hn(1) = sgn(n)an
1 .

Note that in [1] these were only defined for k ≥ 0. From these recurrence relations it is
natural to choose as weights w(s, t) = as+t

as+t−1
. In this case we have

w
[ n

k ] = ek(n)∏k
i=1 a−1

i .
The second natural choice of the weights is w(s, t) = at+1

at
. In this case we have

w
[ n

k ] = hk(n − k + 1) sgn(k) a−k
1 .

3.2 Generalized Stirling numbers

Here we define weighted integers w[n] :=
w
[ n

1 ], and consider α to be some parameter.
By generalizing the generating functions for the Stirling numbers, we define for n ≥ 0
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α-shifted weighted Stirling numbers of the first and the second kind, respectively, by

(t − w[α])(t − w[α + 1]) · · · (t − w[α + n − 1]) =
n

∑
k=0

sα
w(n, k)tk and (3.1a)

tn =
n

∑
k=0

Sα
w(n, k)(t − w[α])(t − w[α + 1]) · · · (t − w[α + k − 1]), (3.1b)

Note that we recover the original Stirling numbers when α = 0 and w(s, t) = 1 for all
s, t ∈ Z (so w[n] = n). From (3.1), we can derive the recurrence relations

sα
w(n, k) = sα

w(n − 1, k − 1)− w[α + n − 1]sα
w(n − 1, k) and (3.2a)

Sα
w(n, k) = w[α + k]Sα

w(n − 1, k) + Sα
w(n − 1, k − 1). (3.2b)

Given the initial conditions sα
w(n, n) = Sα

w(n, n) = 1, sα
w(n, 0) = ∏n

i=1(−w[α + i − 1]) and
Sα

w(n, 0) = sgn(n)w[α]n for n ∈ Z the recurrence relations (3.2), provided (n, k) ̸= (0, 0),
define sα

w(n, k) and Sα
w(n, k) for all integer values of n and k. As a result, we obtain

sα
w(n, k) = en−k({(−w[α]) · · · (−w[α + n − 1])}),

Sα
w(n, k) = hn−k({(w[α]) · · · (w[α + k])}),

for any n, k ∈ Z.

3.3 Elliptic binomial coefficients

A very important specialization of the weights in [8], which also served as a major
motivation for the present work, is the “elliptic” specialization. Define the modified Jacobi
theta function by

θ(x; p) := ∏
j≥0

(
(1 − pjx)(1 − pj+1/x)

)
, θ(x1, . . . , xℓ; p) =

ℓ

∏
i=1

θ(xi; p),

where x, x1, . . . , xℓ ̸= 0 and |p| < 1. We define the theta shifted factorial as

(x; q, p)k =
k−1

∏
i=0

θ(xqi; p), (x1, x2, . . . , xℓ; q, p)k =
ℓ

∏
i=1

(xi; q, p)k,

where the first product is defined for all integers k by (2.2). An elliptic function is a func-
tion of a complex variable that is meromorphic and doubly periodic. It is well known
that elliptic functions can be written as quotients of modified Jacobi theta functions [6].

We can now choose the weights

wa,b;q,p(s, t) :=
θ(aqs+2t, bq2s+t−2, aqt−s−1/b; p)
θ(aqs+2t−2, bq2s+t, aqt−s+1/b; p)

q (3.3)
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to obtain for all n, k ∈ Z the elliptic binomial coefficients, first defined for n, k ≥ 0 in [7],[
n
k

]
a,b;q,p

:=
(q1+k, aq1+k, bq1+k, aq1−k/b; q, p)n−k

(q, aq, bq1+2k, aq/b; q, p)n−k
. (3.4)

Note that the elliptic versions of Corollaries 2.11 and 2.12 are equivalent to Frenkel and
Turaev’s 10V9 summation [3] (see also [6, Theorem 2.3.1.]). This provides a combinatorial
interpretation of this summation formula which is a fundamental identity in the theory
of ellipic hypergeometric series.
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