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Abstract. We introduce a q-deformation that generalises in a single framework previ-
ous works on classical and enriched P-partitions. In particular, we build a new family
of power series with a parameter q that interpolates between Gessel’s fundamental
(q = 0) and Stembridge’s peak quasisymmetric functions (q = 1) and show that it is
a basis of QSym when q /∈ {−1, 1}. Furthermore we build their corresponding mono-
mial bases parametrised with q that cover our previous work on enriched monomials
and the essential quasisymmetric functions of Hoffman.

Résumé. Nous introduisons une q-déformation qui généralise dans un cadre unique
les travaux antérieurs sur les P-partitions classiques et enrichies. En particulier, nous
construisons une famille de séries formelles avec un paramètre q qui interpole entre
les fonctions quasisymétriques fondamentales de Gessel (q = 0) et les fonctions de
pic de Stembridge (q = 1) et montrons qu’il s’agit d’une base de QSym quand q /∈
{−1, 1}. De plus, nous construisons leur bases de monômes associées paramétrées par
q qui généralisent nos travaux sur les monôes enrichis et les fonctions essentielles de
Hoffman.
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1 Introduction

Introduced by Stanley in [6], P-partitions are order preserving maps from a partially
ordered set P to the set of positive integers with many significant applications in al-
gebraic combinatorics. In particular, they are the building block of Gessel’s ring of
quasisymmetric functions (QSym) in [1]. Replacing positive integers by signed ones,
Stembridge introduces in [8] an enriched version of P-partitions to build the algebra
of peaks, a subalgebra of QSym. The generating functions of classical (enriched) P-
partitions on labelled chains are the fundamental (peak) quasisymmetric functions, an
important basis of QSym (the algebra of peaks) related to the descent (peak) statistic on
permutations. More recently, in [3], we redefine these generating functions on weighted
posets to extend their nice properties to the monomial and enriched monomial bases of
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QSym. However the classical and enriched frameworks remained so far separated. We
merge them into one via a new q-deformation of the generating function for enriched
P-partitions that interpolates between Gessel’s and Stembridge’s works.

1.1 Posets and enriched P-partitions

We recall the main definitions regarding posets and (enriched) P-partitions. The reader
is referred to [1, 7, 8] for further details.

Definition 1 (Labelled posets). Let [n] = {1, 2, . . . , n}. A labelled poset P = ([n],<P) is an
arbitrary partial order <P on the set [n].

Definition 2 (P-partition). Let P = {1, 2, 3, . . . } and let P = ([n],<P) be a labelled poset.
A P-partition is a map f : [n] −→ P that satisfies the two following conditions:

1. If i <P j, then f (i) ≤ f (j).

2. If i <P j and i > j, then f (i) < f (j).

The relations < and > stand for the classical order on P. Let LP(P) denote the set of
P-partitions.

Definition 3 (Enriched P-partition). Let P± be the set of positive and negative integers
totally ordered by −1 < 1 < −2 < 2 < −3 < 3 < · · · . We embed P into P± and let
−P ⊆ P± be the set of all −n for n ∈ P. Given a labelled poset P = ([n],<P), an enriched
P-partition is a map f : [n] −→ P± that satisfies the two following conditions:

1. If i <P j and i < j, then f (i) < f (j) or f (i) = f (j) ∈ P.

2. If i <P j and i > j, then f (i) < f (j) or f (i) = f (j) ∈ −P.

Further, let LP±(P) be the set of enriched P-partitions.

Finally recall the weighted variants of posets introduced in [3].

Definition 4 ([3]). A labelled weighted poset is a triple P = ([n],<P, ϵ) where ([n],<P) is a
labelled poset and ϵ : [n] −→ P is a map (called the weight function).

Each node of a labelled weighted poset is marked with its label and weight (Figure 1).

1.2 Quasisymmetric functions

Consider the set of indeterminates X = {x1, x2, x3, . . .}, the ring k [[X]] of formal power
series on X where k is a commutative ring, and let Z ∈ {P, P±}. Given a labelled
weighted poset ([n],<P, ϵ), define its generating function ΓZ ([n],<P, ϵ) ∈ k [[X]] by

ΓZ ([n],<P, ϵ) = ∑
f∈LZ ([n],<P)

∏
1≤i≤n

xϵ(i)
| f (i)|, (1.1)
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2, ϵ(2) = 5

3, ϵ(3) = 2 1, ϵ(1) = 1 4, ϵ(4) = 2

5, ϵ(5) = 2

Figure 1: A 5-vertex labelled weighted poset. Arrows show the covering relations.

where | f (i)| = − f (i) (resp. = f (i)) for f (i) ∈ −P (resp. P). Let Sn be the symmetric
group on [n]. Given a composition, i.e. a sequence of positive integers α = (α1, α2, . . . , αn)
with n entries, and a permutation π = π1 . . . πn of Sn, we let Pπ,α = ([n],<π, α) be the
labelled weighted poset on the set [n], where the order relation <π is such that πi <π πj
if and only if i < j and α is the weight function sending the vertex labelled πi to αi (see
Figure 2). For Z ∈ {P, P±}, its generating function UZ

π,α = ΓZ ([n],<π, α) is called the
universal quasisymmetric function ([3]) indexed by π and α.

π1, α1 π2, α2 · · · · · · · · · πn, αn

Figure 2: The labelled weighted poset Pπ,α.

Definition 5. Let [1n] denote the composition with n entries equal to 1. For each π ∈ Sn,
let Lπ = UP

π,[1n] and Kπ = UP±
π,[1n]. The power series Lπ (resp. Kπ) are Gessel’s fundamental

(resp. Stembridge’s peak) quasisymmetric functions indexed by the permutation π.

The power series Lπ and Kπ belong to the subalgebra of k [[X]] called the ring of
quasisymmetric functions (QSym), i.e. for any strictly increasing sequence of indices i1 <

i2 < · · · < ip the coefficient of xk1
1 xk2

2 · · · xkp
p is equal to the coefficient of xk1

i1
xk2

i2
· · · xkp

ip
.

Furthermore they are related to two major statistics on permutations. Given π ∈ Sn,
define its descent set Des(π) = {1 ≤ i ≤ n− 1|π(i) > π(i+ 1)} and its peak set Peak(π) =
{2 ≤ i ≤ n− 1|π(i− 1) < π(i) > π(i+ 1)}. The peak set of a permutation is peak-lacunar,
i.e. it neither contains 1 nor contains two consecutive integers.

Proposition 1 ([1, 8]). For any permutation π ∈ Sn, the fundamental quasisymmetric function
Lπ and the peak quasisymmetric function Kπ satisfy

Lπ = ∑
i1≤···≤in;

j∈Des(π)⇒ij<ij+1

xi1 xi2 · · · xin , Kπ = ∑
i1≤···≤in;

j∈Peak(π)⇒ij−1<ij+1

2|{i1,i2,...,in}|xi1 xi2 · · · xin .
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As a result Lπ (Kπ) depends only on n and Des(π) (Peak(π)) and we may use set indices
and write Ln,Des(π) (Kn,Peak(π)) instead of Lπ (Kπ). Furthermore (Ln,I)n≥0,I⊆[n−1] is a basis of
QSym (we assume [−1] = [0] = ∅), and (Kn,I)n≥0,I is a basis of a subalgebra of QSym called
the algebra of peaks when I runs over all peak-lacunar subsets of [n − 1] for all integers n.

Definition 6. Let idn and idn denote the permutations in Sn given by idn = 1 2 3 · · · n and
idn = n n− 1 · · · 1. Given a composition α = (α1, . . . , αn) of n entries, define the monomial
Mα ([1]), essential Eα ([4]) and enriched monomial ηα ([3, 5]) quasisymmetric functions

Mα = UP

idn,α = ∑
i1<···<in

xα1
i1
· · · xαn

in , Eα = UP
idn,α = ∑

i1≤···≤in

xα1
i1
· · · xαn

in ,

ηα = UP±
idn,α = ∑

i1≤···≤in

2|{i1,...,in}|xα1
i1
· · · xαn

in .

Compositions α = (α1, . . . , αn) such that α1 + · · ·+ αn = s are in bijection with subsets
of [s − 1]. For I ⊆ [s − 1], we also use the following alternative indexing for monomial,
essential and enriched monomials. References to s in indices are removed for clarity.

MI = ∑
i1≤···≤is

j∈I⇔ij=ij+1

xi1 · · · xis , EI = ∑
i1≤···≤is

j∈I⇒ij=ij+1

xi1 · · · xis , ηI = ∑
i1≤···≤is

j∈I⇒ij=ij+1

2|{i1,...,is}|xi1 · · · xis .

Proposition 2. Let s ≥ 0. Let I and J be a subset and a peak-lacunar subset of [s − 1]. Then,

LI = ∑
U⊆I

(−1)|U|EU, KJ = ∑
V⊆J

(−1)|V|η(V−1)∪V , (1.2)

where for V peak-lacunar, we set V − 1 = {v − 1|v ∈ V}.

2 A q-deformed generating function for P-partitions

Equation (1.1) and Propositions 1 and 2 exhibit the strong similarities between enriched
and classical P-partitions. As we will see, both are special cases of a more general theory.
Looking at Equation (1.1), one may notice that the generating function does not depend
on the sign of f (i). Let ω be the map that sends the element i of a labelled weighted
poset ([n],<P, ϵ) and an enriched P-partition f to the contributing monomial in Γ. That
is, ω(i, f ) = xϵ(i)

| f (i)|. As proposed by Stembridge, the value of ω does not depend on the
sign of f . We break this assumption and write for an additional parameter q:

ω(i, f , q) = xϵ(i)
f (i) if f (i) ∈ P, ω(i, f , q) = qxϵ(i)

− f (i) if f (i) ∈ −P.
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Definition 7. Let q ∈ k (the base ring of the power series). The q-generating function for
enriched P-partitions on the weighted poset ([n],<P, ϵ) is

Γq([n],<P, ϵ) = ∑
f∈L

P± ([n],<P)
∏

1≤i≤n
ω(i, f , q) = ∑

f∈L
P± ([n],<P)

∏
1≤i≤n

q[ f (i)<0]xϵ(i)
| f (i)|, (2.1)

where [ f (i) < 0] = 1 if f (i) < 0 and 0 otherwise.

This definition covers the case of Gessel (q = 0) with no negative numbers allowed
and the one of Stembridge (q = 1) where the sign of f is ignored in the generating
function. Define also the q-universal quasisymmetric function

Uq
π,α = Γq([n],<π, α). (2.2)

Proposition 3. Let q ∈ k, π ∈ Sn and α = (α1, α2, . . . , αn) be a composition with n entries.
Then,

Uq
π,α = ∑

i1≤i2≤···≤in;
j∈Peak(π)⇒ij−1<ij+1

q|{j∈Des(π)|ij=ij+1}|(q + 1)|{i1,i2,...,in}|xα1
i1

xα2
i2
· · · xαn

in . (2.3)

Proof. Let ([n],<π, α) be the weighted chain poset associated to π ∈ Sn and to the com-
position α with n entries. Consider an enriched P-partition f ∈ LP±([n],<π) and an
a ∈ P. All the i ∈ [n] satisfying | f (πi)| = a form an interval [j, k] = {j, j + 1, . . . , k} for
some positive integers j and k. By Definition 3, we have [j, k]∩Peak(π) = ∅. As a result,
there exists l such that πj > · · · > πl < · · · < πk. We have f (πj) = · · · = f (πl−1) = −a,
f (πl+1) = · · · = f (πk) = a and f (πl) ∈ {−a, a}. The two contributions in xa are

x
αj+αj+1+···+αk
a [ql−j + ql−j+1] = (q + 1)ql−jx

αj+αj+1+···+αk
a .

Note that l − j = {i ∈ Des(π)|| f (πi)| = a} to complete the proof.

The nice formula for the product of two generating functions of chain posets extends
naturally to this q-deformation. Recall the definition of coshuffle from [3]:

Definition 8. Let π ∈ Sn and σ ∈ Sm be two permutations. Let α and β be two com-
positions with n and m entries, respectively. The coshuffle of (π, α) and (σ, β), denoted
(π, α) (σ, β), is the set of pairs (τ, γ) where

• τ ∈ Sn+m is a shuffle of π and n + σ = (n + σ1, n + σ2, . . . , n + σm), and

• γ is a composition with n + m entries, obtained by shuffling the entries of α and β

using the same shuffle used to build τ from the letters of π and n + σ.

Example 1. (132, (2, 1, 2)) is a coshuffle of (12, (2, 2)) and (1, (1)).
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Proposition 4. Let q ∈ k, let π and σ be two permutations in Sn and Sm, and let α =
(α1, . . . , αn) and β = (β1, . . . , βm) be two compositions with n and m entries. The product
of two q-universal quasisymmetric functions is given by

Uq
π,αUq

σ,β = ∑
(τ,γ)∈(π,α) (σ,β)

Uq
τ,γ. (2.4)

Proof. The proof is similar to [3, Theorem 3].

3 Enriched q-monomials

3.1 Definition, relation to q-universal quasisymmetric functions and
product formula

We introduce a new basis of QSym that generalises the essential and enriched monomial
quasisymmetric functions in Definition 6.

Definition 9 (Enriched q-monomials). Let q ∈ k and α be a composition with n entries.
The enriched q-monomial indexed by α is defined as

η
(q)
α = Uq

idn,α. (3.1)

As an immediate consequence of Definition 9, one has η
(0)
α = Eα and η

(1)
α = ηα.

Proposition 5. With the notation of Definition 9, one has

η
(q)
α = ∑

i1≤i2≤···≤in

(q + 1)|{i1,i2,...,in}|xα1
i1

xα2
i2
· · · xαn

in . (3.2)

Proof. This is a direct consequence of Proposition 3.

Interestingly, one may express general q-universal quasisymmetric functions in terms
of the η

(q)
α . To state this result we need the following definition.

Definition 10. Let α = (α1, . . . , αn) be a composition with n entries. For any integer
1 ≤ i ≤ n − 1, we let α↓i denote the following composition with n − 1 entries:

α↓i = (α1, . . . , αi−1, αi + αi+1, αi+2, . . . , αn).

Furthermore, for any subset I ⊆ [n − 1], we set

α↓I =

((
· · ·

(
α↓ik

)
· · ·

)↓i2
)↓i1

,

where i1, i2, . . . , ik are the elements of I in increasing order. Finally, if I and J are two
subsets of [n − 1], with J being peak-lacunar, then we set α↓I↓↓J = α↓K, where K =
I ∪ J ∪ (J − 1).
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Theorem 1. Let π ∈ Sn be a permutation and α be a composition with n entries. The q-universal
quasisymmetric function Uq

π,α may be expressed as a combination of the enriched q-monomials:

Uq
π,α = ∑

I⊆Des(π)
J⊆Peak(π)

I∩J=∅

(−q)|J|(q − 1)|I|η(q)
α↓I↓↓J . (3.3)

Proof. For any subset V ⊆ [n − 1], set V = [n − 1] \ V. Then, (2.3) becomes1

Uq
π,α = ∑

K⊆Des(π)
∑

i1≤i2≤···≤in
j∈Des(π)\K⇒ij−1≤ij<ij+1

j∈K∩Peak(π)⇒ij−1<ij=ij+1

j∈K∩Peak(π)⇒ij−1≤ij=ij+1

q|K|(q + 1)|{i1,i2,...,in}|xα1
i1

xα2
i2
· · · xαn

in

= ∑
K⊆Des(π)

U⊆Des(π)\K
J⊆K∩Peak(π)

q|K|(−1)|U|+|J| ∑
i1≤i2≤···≤in

j∈U∪K∩Peak(π)∪K∩Peak(π)\J⇒ij−1≤ij=ij+1
j∈J⇒ij−1=ij=ij+1

(q + 1)|{i1,i2,...,in}|xα1
i1

xα2
i2
· · · xαn

in

= ∑
K⊆Des(π)

U⊆Des(π)\K
J⊆K∩Peak(π)

q|K|(−1)|U|+|J| ∑
i1≤i2≤···≤in

j∈U∪K\J⇒ij−1≤ij=ij+1
j∈J⇒ij−1=ij=ij+1

(q + 1)|{i1,i2,...,in}|xα1
i1

xα2
i2
· · · xαn

in .

If we set I = U ∪ K \ J and U′ = I \ U = K \ J, then |U′| = |K| − |J| and I ⊆ Des(π) \ J.
Thus, the above computation becomes

Uq
π,α = ∑

U′⊆I
I⊆Des(π)
J⊆Peak(π)

I∩J=∅

q|U
′|+|J|(−1)|U

′|+|I|+|J| ∑
i1≤i2≤···≤in

j∈I⇒ij−1≤ij=ij+1
j∈J⇒ij−1=ij=ij+1

(q + 1)|{i1,i2,...,in}|xα1
i1

xα2
i2
· · · xαn

in .

Summing over U′ yields formula (3.3).

Corollary 1. Let α = (α1, . . . , αn) and β = (β1, . . . , βm) be two compositions. Let α β be the
multiset of compositions obtained by shuffling α and β. As in [3], given γ ∈ α β, let Sβ(γ) be
the set of the positions of the entries of β in γ. Set furthermore Sβ(γ)− 1 = {i − 1|i ∈ Sβ(γ)}.
Then,

η
(q)
α η

(q)
β = ∑

γ∈α β;
I⊆Sβ(γ)

J⊆(Sβ(γ)\(Sβ(γ)−1))\{1}
I∩J=∅

(q − 1)|I|(−q)|J|η(q)
γ↓I↓↓J . (3.4)

Proof. Corollary 1 is a consequence of Theorem 1, Equation (3.1) and Proposition 4.
1We understand ij−1 to be 0 whenever j = 1.
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3.2 Relation to the monomial and fundamental bases

We consider the alternative indexing with sets proposed at the end of Section 1.2. Given
a set of positive integers I ⊆ [s − 1], the enriched q-monomial may be written as

η
(q)
I = ∑

i1≤···≤is
j∈I⇒ij=ij+1

(q + 1)|{i1,...,is}|xi1 · · · xis .

Proposition 6. Let I ⊆ [s − 1] be a set of positive integers. One has

η
(q)
I = ∑

I⊆J
(q + 1)s−|J|MJ . (3.5)

Theorem 2. Let q ∈ k be such that q + 1 is invertible. The family of enriched q-monomial
quasisymmetric functions

(
η
(q)
s,I

)
s≥0,I⊆[s−1]

is a basis of QSym. Furthermore

(q + 1)s−|J|MJ = ∑
J⊆I

(−1)|I\J|η
(q)
I . (3.6)

Proof. Follows from Equation (3.5) by Möbius inversion.

We develop further the properties of the enriched q-monomial basis of QSym.

Proposition 7. Let s be a positive integer and I ⊆ [s − 1]. One may expand the enriched
q-monomials in the fundamental basis as

η
(q)
I = (q + 1) ∑

J⊆[s−1]
(−1)|J|(−q)|J\I|LJ . (3.7)

Proof. The expression above is a consequence of Equation (3.5) and the expansion of
monomial quasisymmetric functions in the fundamental basis (see, e.g., [1]).

Proposition 8. Let s be a positive integer, J ⊆ [s − 1] and let q ∈ k. Then,

(q + 1)sLJ = ∑
I⊆[s−1]

(−1)|I|(−q)|I\J|η
(q)
I . (3.8)

Equations (3.7) and (3.8) expand the fundamental and enriched q-monomial bases in
terms of one another, and thus suggest a duality relation between the two. Let QSyms
be the vector subspace of QSym containing the homogeneous quasisymmetric functions
of degree s. Define f : QSyms → QSyms as the k-linear map that sends each LI to η

(q)
I

for I ⊆ [s − 1]. Then f 2 is a scaling by (q + 1)s+1 (that is, f 2 = (q + 1)s+1 id). Moreover,

f (MI) = (q + 1)|I|+1M[s−1]\I for any I ⊆ [s − 1].
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3.3 Antipode

For an integer s and a subset I ⊆ [s − 1], we set s − I = {s − i|i ∈ I}. The antipode of
QSym (see [2, Chapter 5]) can be defined as the unique k-linear map S : QSym → QSym
that satisfies

S (MI) = (−1)s−|I| ∑
(s−I)⊆J

MJ .

Proposition 9. Assume that q is invertible in k, and let p =
1
q

. Then, for I ⊆ [s − 1],

S
(

η
(q+1)
I

)
= (−q)s−|I| η

(p)
s−I . (3.9)

Proof. This can be derived from Equation (3.7).

4 A q-interpolation between Gessel and Stembridge qua-
sisymmetric functions

4.1 q-fundamental quasisymmetric functions

We introduce a new family of quasisymmetric functions that interpolate between Ges-
sel’s fundamental and Stembridge peak quasisymmetric functions and show that it is a
basis of QSym in all but the Stembridge case.

Definition 11 (q-fundamental quasisymmetric functions). Let π be a permutation in Sn
and q ∈ k. Define the q-fundamental quasisymmetric function indexed by Des(π) as

L(q)
n,Des(π)

= Uq
π,[1n]

. (4.1)

Let I be a subset of [n − 1]. Set I + 1 = {i + 1|i ∈ I}, and let Peak(I) = I \ (I + 1) \
{1} the peak-lacunar subset obtained from I (so Peak(I) = Peak(π) for every π ∈ Sn

satisfying Des(π) = I). One recovers immediately that for q = 0, L(0)
n,I = Ln,I is the Gessel

fundamental quasisymmetric function indexed by the set I. For q = 1, L(1)
n,I = Kn,Peak(I) is

the Stembridge peak function indexed by the relevant peak-lacunar set. In the sequel we
remove the reference to n in indices when it is clear from context. Proposition 2 admits
a nice generalisation to this q-deformation.

Theorem 3. Let I ⊆ [n − 1] and q ∈ k. The q-fundamental quasisymmetric functions may be
expressed in the enriched q-monomial basis as

L(q)
I = ∑

J⊆I
K⊆Peak(I)

J∩K=∅

(−q)|K|(q − 1)|J|η(q)
J∪(K−1)∪K . (4.2)
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Proof. This a consequence of Equation (3.3).

Proposition 10. Recall the antipode S of Section 3.3. Let q ∈ k be invertible, and set p = 1
q .

Let I ⊆ [n − 1], and set n − I = {n − i | i ∈ I}. Then,

S(L(q)
I ) = (−q)nL(p)

n−I . (4.3)

Proof. This a consequence of Equations (4.2) and (3.9).

To know whether (L(q)
n,I )n≥0,I⊆[n−1] is a basis of QSym for some value of q appears as

a natural question. For example, for n = 3, we can invert Equation (4.2) as follows:

• η
(q)
∅ = L(q)

∅ ;

• (q − 1)η(q)
{1} = L(q)

{1} − L(q)
∅ ;

• (q − 1)η(q)
{2} =

(q−1)2

(q−1)2+q (L(q)
{2} − L(q)

∅ ) + q
(q−1)2+q (L(q)

{1,2} − L(q)
{1});

• η
(q)
{1,2} =

1
(q−1)2+q

(
L(q)
{1,2} − L(q)

{2} − L(q)
{1} + L(q)

∅

)
.

We see that except for the case of Stembridge q = 1 (and the degenerate case q = −1),(
L(q)

2,I

)
I⊆[2]

seems to be a basis of QSym. We state one of our main theorems:

Theorem 4. Let k be the set R of real numbers. The family of q-fundamental quasisymmetric
functions (L(q)

n,I )n≥0,I⊆[n−1] is a basis of QSym for q /∈ {−1, 1}.

Remark 1. We set k = R for the sake of simplicity. For a more general field, (L(q)
n,I )n,I⊆[n−1]

is a basis if and only if q /∈ {ρ|ρk = 1 for some integer k > 0}.

4.2 Proof of Theorem 4

To prove Theorem 4 we characterise the transition matrix between the q-fundamental and
enriched q-monomial quasisymmetric functions and show it is invertible for q ̸= −1, 1.

Definition 12. Let Bn be the transition matrix between (L(q)
I )I⊆[n−1] and (η

(q)
J )J⊆[n−1]

with coefficients given by Equation (4.2). Columns and rows are indexed by subsets I of
[n − 1] sorted in reverse lexicographic order. A subset I is before subset J if and only if
the word obtained by writing the elements of I in decreasing order is before the word
obtained from J for the lexicographic order.
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Example 2. For n = 4, let us show the transition matrix B4 between (L(q)
I )I⊆[3] and

(η
(q)
J )J⊆[3]. The entry at row index I and column index J is the coefficient in η

(q)
J of

L(q)
I in Equation (4.2).

B4 =

∅ {1} {2} {2, 1} {3} {3, 1} {3, 2} {3, 2, 1}
∅ 1 0 0 0 0 0 0 0
{1} 1 q − 1 0 0 0 0 0 0
{2} 1 0 q − 1 −q 0 0 0 0
{2, 1} 1 q − 1 q − 1 (q − 1)2 0 0 0 0
{3} 1 0 0 0 q − 1 0 −q 0
{3, 1} 1 q − 1 0 0 q − 1 (q − 1)2 −q −q(q − 1)
{3, 2} 1 0 q − 1 −q q − 1 0 (q − 1)2 −q(q − 1)
{3, 2, 1} 1 q − 1 q − 1 (q − 1)2 q − 1 (q − 1)2 (q − 1)2 (q − 1)3

Using Definition 12 and Equation (4.2), one can deduce the following lemmas.

Lemma 1. The matrix Bn is block triangular. To be more specific:
For each k ∈ [n], let Ak denote the transition matrix from (L(q)

I )I⊆[n−1], max(I)=k−1 to

(η
(q)
J )J⊆[n−1], max(J)=k−1 (where max∅ := 0); this actually does not depend on n. Note that Ak

is a 2k−2 × 2k−2-matrix if k ≥ 2, whereas A1 is a 1 × 1-matrix. We have

Bn =


A1 0 0 . . . 0
∗ A2 0 . . . 0
∗ ∗ A3 . . . 0

∗ ∗ ∗ . . . 0
∗ ∗ ∗ ∗ An

 .

Lemma 2. The matrices (Bn)n and (An)n satisfy the following recurrence relations (for n ≥ 1
and n ≥ 2, respectively):

Bn =

(
Bn−1 0
Bn−1 An

)
, An =

(
(q − 1)Bn−2 −qBn−2
(q − 1)Bn−2 (q − 1)An−1

)
.

Thanks to Lemmas 1 and 2, we are ready to state and show the main proposition of
this section and prove Theorem 4.

Proposition 11. The matrix Bn is invertible for q ̸= 1.

Proof. For any square matrix M, let |M| denote its determinant. We want to show that
for all n, |Bn| ̸= 0 or equivalently that |An| ̸= 0. To this end we compute for any rational
functions in q, α and β:

|αAn + βBn−1| = ((q − 1)α + β)|Bn−2||((q − 1)α + β)An−1 + qαBn−2|. (4.4)
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Equation (4.4) exhibits a recurrence relation on the determinants that we solve by defin-
ing the sequence of coefficients:(

α0
β0

)
=

(
1
0

)
,

(
αi
βi

)
=

(
q − 1 1

q 0

)(
αi−1
βi−1

)
=

(
q − 1 1

q 0

)i (
α0
β0

)
.

We have:

|An| =
[

n−3

∏
i=0

|Bn−2−i|
(
q − 1 1

) (αi
βi

)] ∣∣∣∣(A2 B1
) (αn−2

βn−2

)∣∣∣∣ .

But A2 = (q − 1), B1 = (1) and one may compute that (left to the reader):

(
q − 1 1

) (αi
βi

)
=

1
q + 1

(
qi+2 − (−1)i+2

)
= (−1)(i+1)[i + 2]−q,

where for integer p, [p]q is the q-number, [p]q = 1 + q + q2 + · · · + qp−1. Define the
q-factorial [p]q! = [1]q · [2]q · · · [p]q. We find

|An| = (−1)n(n−1)/2[n]−q!
n−2

∏
i=1

|Bi|.

Then, notice that [n]−q! is 0 if and only if q = 1 and n > 1 (when q runs over real
numbers). Finish the proof with a simple recurrence argument on |Bi|.
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