Séminaire Lotharingien de Combinatoire **86B** (2022) Article #78, 12 pp.

A q-Deformation of Enriched P-Partitions

Darij Grinberg^{*1} and Ekaterina A. Vassilieva⁺²

¹Department of Mathematics, Drexel University, Philadelphia, PA 19104, USA ²Laboratoire d'Informatique de l'Ecole Polytechnique, Palaiseau, France

Abstract. We introduce a *q*-deformation that generalises in a single framework previous works on classical and enriched *P*-partitions. In particular, we build a new family of power series with a parameter *q* that interpolates between Gessel's fundamental (q = 0) and Stembridge's peak quasisymmetric functions (q = 1) and show that it is a basis of QSym when $q \notin \{-1, 1\}$. Furthermore we build their corresponding monomial bases parametrised with *q* that cover our previous work on enriched monomials and the essential quasisymmetric functions of Hoffman.

Résumé. Nous introduisons une *q*-déformation qui généralise dans un cadre unique les travaux antérieurs sur les *P*-partitions classiques et enrichies. En particulier, nous construisons une famille de séries formelles avec un paramètre *q* qui interpole entre les fonctions quasisymétriques fondamentales de Gessel (q = 0) et les fonctions de pic de Stembridge (q = 1) et montrons qu'il s'agit d'une base de QSym quand $q \notin \{-1,1\}$. De plus, nous construisons leur bases de monômes associées paramétrées par *q* qui généralisent nos travaux sur les monôes enrichis et les fonctions essentielles de Hoffman.

Keywords: quasisymmetric functions, enriched P-partitions, peak functions

1 Introduction

Introduced by Stanley in [6], *P*-partitions are order preserving maps from a partially ordered set *P* to the set of positive integers with many significant applications in algebraic combinatorics. In particular, they are the building block of Gessel's ring of quasisymmetric functions (QSym) in [1]. Replacing positive integers by signed ones, Stembridge introduces in [8] an enriched version of *P*-partitions to build the algebra of peaks, a subalgebra of QSym. The generating functions of classical (enriched) *P*-partitions on labelled chains are the fundamental (peak) quasisymmetric functions, an important basis of QSym (the algebra of peaks) related to the descent (peak) statistic on permutations. More recently, in [3], we redefine these generating functions on weighted posets to extend their nice properties to the monomial and enriched monomial bases of

^{*}darijgrinberg@gmail.com

⁺katya@lix.polytechnique.fr

QSym. However the classical and enriched frameworks remained so far separated. We merge them into one via a new *q*-deformation of the generating function for enriched *P*-partitions that interpolates between Gessel's and Stembridge's works.

1.1 Posets and enriched *P*-partitions

We recall the main definitions regarding posets and (enriched) *P*-partitions. The reader is referred to [1, 7, 8] for further details.

Definition 1 (Labelled posets). Let $[n] = \{1, 2, ..., n\}$. A *labelled poset* $P = ([n], <_P)$ is an arbitrary partial order $<_P$ on the set [n].

Definition 2 (*P*-partition). Let $\mathbb{P} = \{1, 2, 3, ...\}$ and let $P = ([n], <_P)$ be a labelled poset. A *P*-partition is a map $f : [n] \longrightarrow \mathbb{P}$ that satisfies the two following conditions:

- 1. If $i <_P j$, then $f(i) \le f(j)$.
- 2. If $i <_P j$ and i > j, then f(i) < f(j).

The relations < and > stand for the classical order on \mathbb{P} . Let $\mathcal{L}_{\mathbb{P}}(P)$ denote the set of *P*-partitions.

Definition 3 (Enriched *P*-partition). Let \mathbb{P}^{\pm} be the set of positive and negative integers totally ordered by $-1 < 1 < -2 < 2 < -3 < 3 < \cdots$. We embed \mathbb{P} into \mathbb{P}^{\pm} and let $-\mathbb{P} \subseteq \mathbb{P}^{\pm}$ be the set of all -n for $n \in \mathbb{P}$. Given a labelled poset $P = ([n], <_P)$, an *enriched P*-partition is a map $f : [n] \longrightarrow \mathbb{P}^{\pm}$ that satisfies the two following conditions:

- 1. If $i <_P j$ and i < j, then f(i) < f(j) or $f(i) = f(j) \in \mathbb{P}$.
- 2. If $i <_P j$ and i > j, then f(i) < f(j) or $f(i) = f(j) \in -\mathbb{P}$.

Further, let $\mathcal{L}_{\mathbb{P}^{\pm}}(P)$ be the set of enriched *P*-partitions.

Finally recall the weighted variants of posets introduced in [3].

Definition 4 ([3]). A *labelled weighted poset* is a triple $P = ([n], <_P, \epsilon)$ where $([n], <_P)$ is a labelled poset and $\epsilon : [n] \longrightarrow \mathbb{P}$ is a map (called the *weight function*).

Each node of a labelled weighted poset is marked with its label and weight (Figure 1).

1.2 Quasisymmetric functions

Consider the set of indeterminates $X = \{x_1, x_2, x_3, ...\}$, the ring $\mathbf{k}[[X]]$ of formal power series on X where \mathbf{k} is a commutative ring, and let $\mathcal{Z} \in \{\mathbb{P}, \mathbb{P}^{\pm}\}$. Given a labelled weighted poset $([n], <_P, \epsilon)$, define its generating function $\Gamma_{\mathcal{Z}}([n], <_P, \epsilon) \in \mathbf{k}[[X]]$ by

$$\Gamma_{\mathcal{Z}}([n], <_P, \epsilon) = \sum_{f \in \mathcal{L}_{\mathcal{Z}}([n], <_P)} \prod_{1 \le i \le n} x_{|f(i)|}^{\epsilon(i)},$$
(1.1)

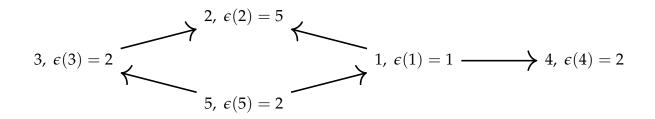


Figure 1: A 5-vertex labelled weighted poset. Arrows show the covering relations.

where |f(i)| = -f(i) (resp. = f(i)) for $f(i) \in -\mathbb{P}$ (resp. \mathbb{P}). Let S_n be the symmetric group on [n]. Given a *composition*, *i.e.* a sequence of positive integers $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ with n entries, and a permutation $\pi = \pi_1 ... \pi_n$ of S_n , we let $P_{\pi,\alpha} = ([n], <_{\pi}, \alpha)$ be the labelled weighted poset on the set [n], where the order relation $<_{\pi}$ is such that $\pi_i <_{\pi} \pi_j$ if and only if i < j and α is the weight function sending the vertex labelled π_i to α_i (see Figure 2). For $\mathcal{Z} \in \{\mathbb{P}, \mathbb{P}^{\pm}\}$, its generating function $U_{\pi,\alpha}^{\mathcal{Z}} = \Gamma_{\mathcal{Z}}([n], <_{\pi}, \alpha)$ is called the *universal quasisymmetric function* ([3]) indexed by π and α .

$$\pi_1, \alpha_1 \longrightarrow \pi_2, \alpha_2 \longrightarrow \cdots \longrightarrow \pi_n, \alpha_n$$

Figure 2: The labelled weighted poset $P_{\pi,\alpha}$.

Definition 5. Let $[1^n]$ denote the composition with *n* entries equal to 1. For each $\pi \in S_n$, let $L_{\pi} = U_{\pi,[1^n]}^{\mathbb{P}}$ and $K_{\pi} = U_{\pi,[1^n]}^{\mathbb{P}^{\pm}}$. The power series L_{π} (resp. K_{π}) are *Gessel's fundamental* (*resp. Stembridge's peak*) *quasisymmetric functions* indexed by the permutation π .

The power series L_{π} and K_{π} belong to the subalgebra of $\mathbf{k}[[X]]$ called the ring of *quasisymmetric functions* (QSym), *i.e.* for any strictly increasing sequence of indices $i_1 < i_2 < \cdots < i_p$ the coefficient of $x_1^{k_1} x_2^{k_2} \cdots x_p^{k_p}$ is equal to the coefficient of $x_{i_1}^{k_1} x_{i_2}^{k_2} \cdots x_{i_p}^{k_p}$. Furthermore they are related to two major statistics on permutations. Given $\pi \in S_n$, define its *descent set* $\text{Des}(\pi) = \{1 \le i \le n - 1 | \pi(i) > \pi(i+1)\}$ and its *peak set* $\text{Peak}(\pi) = \{2 \le i \le n - 1 | \pi(i-1) < \pi(i) > \pi(i+1)\}$. The peak set of a permutation is *peak-lacunar*, *i.e.* it neither contains 1 nor contains two consecutive integers.

Proposition 1 ([1, 8]). For any permutation $\pi \in S_n$, the fundamental quasisymmetric function L_{π} and the peak quasisymmetric function K_{π} satisfy

$$L_{\pi} = \sum_{\substack{i_1 \le \dots \le i_n; \\ j \in \text{Des}(\pi) \Rightarrow i_j < i_{j+1}}} x_{i_1} x_{i_2} \cdots x_{i_n}, \qquad K_{\pi} = \sum_{\substack{i_1 \le \dots \le i_n; \\ j \in \text{Peak}(\pi) \Rightarrow i_{j-1} < i_{j+1}}} 2^{|\{i_1, i_2, \dots, i_n\}|} x_{i_1} x_{i_2} \cdots x_{i_n}.$$

As a result L_{π} (K_{π}) depends only on n and $\text{Des}(\pi)$ ($\text{Peak}(\pi)$) and we may use set indices and write $L_{n,\text{Des}(\pi)}$ ($K_{n,\text{Peak}(\pi)}$) instead of L_{π} (K_{π}). Furthermore $(L_{n,I})_{n\geq 0,I\subseteq[n-1]}$ is a basis of QSym (we assume $[-1] = [0] = \emptyset$), and $(K_{n,I})_{n\geq 0,I}$ is a basis of a subalgebra of QSym called the algebra of peaks when I runs over all peak-lacunar subsets of [n-1] for all integers n.

Definition 6. Let id_n and $\overline{id_n}$ denote the permutations in S_n given by $id_n = 1 \ 2 \ 3 \cdots n$ and $\overline{id_n} = n \ n - 1 \cdots 1$. Given a composition $\alpha = (\alpha_1, \dots, \alpha_n)$ of n entries, define the *monomial* M_{α} ([1]), *essential* E_{α} ([4]) and *enriched monomial* η_{α} ([3, 5]) quasisymmetric functions

$$M_{lpha} = U^{\mathbb{P}}_{\overline{id}_n,lpha} = \sum_{i_1 < \dots < i_n} x^{lpha_1}_{i_1} \cdots x^{lpha_n}_{i_n}, \qquad E_{lpha} = U^{\mathbb{P}}_{id_n,lpha} = \sum_{i_1 \leq \dots \leq i_n} x^{lpha_1}_{i_1} \cdots x^{lpha_n}_{i_n},
onumber \ \eta_{lpha} = U^{\mathbb{P}^{\pm}}_{id_n,lpha} = \sum_{i_1 \leq \dots \leq i_n} 2^{|\{i_1,\dots,i_n\}|} x^{lpha_1}_{i_1} \cdots x^{lpha_n}_{i_n}.$$

Compositions $\alpha = (\alpha_1, ..., \alpha_n)$ such that $\alpha_1 + \cdots + \alpha_n = s$ are in bijection with subsets of [s - 1]. For $I \subseteq [s - 1]$, we also use the following alternative indexing for monomial, essential and enriched monomials. References to *s* in indices are removed for clarity.

$$M_{I} = \sum_{\substack{i_{1} \leq \dots \leq i_{s} \\ j \in I \Leftrightarrow i_{j} = i_{j+1}}} x_{i_{1}} \cdots x_{i_{s}}, \quad E_{I} = \sum_{\substack{i_{1} \leq \dots \leq i_{s} \\ j \in I \Rightarrow i_{j} = i_{j+1}}} x_{i_{1}} \cdots x_{i_{s}}, \quad \eta_{I} = \sum_{\substack{i_{1} \leq \dots \leq i_{s} \\ j \in I \Rightarrow i_{j} = i_{j+1}}} 2^{|\{i_{1},\dots,i_{s}\}|} x_{i_{1}} \cdots x_{i_{s}}.$$

Proposition 2. Let $s \ge 0$. Let I and J be a subset and a peak-lacunar subset of [s-1]. Then,

$$L_{I} = \sum_{U \subseteq I} (-1)^{|U|} E_{U}, \qquad K_{J} = \sum_{V \subseteq J} (-1)^{|V|} \eta_{(V-1) \cup V}, \qquad (1.2)$$

where for V peak-lacunar, we set $V - 1 = \{v - 1 | v \in V\}$.

2 A *q*-deformed generating function for *P*-partitions

Equation (1.1) and Propositions 1 and 2 exhibit the strong similarities between enriched and classical *P*-partitions. As we will see, both are special cases of a more general theory. Looking at Equation (1.1), one may notice that the generating function does not depend on the sign of f(i). Let ω be the map that sends the element *i* of a labelled weighted poset $([n], <_P, \epsilon)$ and an enriched P-partition *f* to the contributing monomial in Γ . That is, $\omega(i, f) = x_{|f(i)|}^{\epsilon(i)}$. As proposed by Stembridge, the value of ω does not depend on the sign of *f*. We break this assumption and write for an additional parameter *q*:

$$\omega(i, f, q) = x_{f(i)}^{\epsilon(i)} \text{ if } f(i) \in \mathbb{P}, \qquad \omega(i, f, q) = q x_{-f(i)}^{\epsilon(i)} \text{ if } f(i) \in -\mathbb{P}.$$

Definition 7. Let $q \in \mathbf{k}$ (the base ring of the power series). The *q*-generating function for enriched *P*-partitions on the weighted poset ([*n*], <_{*P*}, ϵ) is

$$\Gamma_q([n], <_P, \epsilon) = \sum_{f \in \mathcal{L}_{\mathbb{P}^{\pm}}([n], <_P)} \prod_{1 \le i \le n} \omega(i, f, q) = \sum_{f \in \mathcal{L}_{\mathbb{P}^{\pm}}([n], <_P)} \prod_{1 \le i \le n} q^{[f(i) < 0]} x_{|f(i)|}^{\epsilon(i)},$$
(2.1)

where [f(i) < 0] = 1 if f(i) < 0 and 0 otherwise.

This definition covers the case of Gessel (q = 0) with no negative numbers allowed and the one of Stembridge (q = 1) where the sign of f is ignored in the generating function. Define also the *q*-universal quasisymmetric function

$$U^{q}_{\pi,\alpha} = \Gamma_{q}([n], <_{\pi}, \alpha).$$
(2.2)

Proposition 3. Let $q \in \mathbf{k}$, $\pi \in S_n$ and $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ be a composition with *n* entries. *Then,*

$$U_{\pi,\alpha}^{q} = \sum_{\substack{i_{1} \leq i_{2} \leq \dots \leq i_{n}; \\ j \in \text{Peak}(\pi) \Rightarrow i_{j-1} < i_{j+1}}} q^{|\{j \in \text{Des}(\pi)|i_{j}=i_{j+1}\}|} (q+1)^{|\{i_{1},i_{2},\dots,i_{n}\}|} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{n}}^{\alpha_{n}}.$$
 (2.3)

Proof. Let $([n], <_{\pi}, \alpha)$ be the weighted chain poset associated to $\pi \in S_n$ and to the composition α with n entries. Consider an enriched P-partition $f \in \mathcal{L}_{\mathbb{P}^{\pm}}([n], <_{\pi})$ and an $a \in \mathbb{P}$. All the $i \in [n]$ satisfying $|f(\pi_i)| = a$ form an interval $[j,k] = \{j,j+1,\ldots,k\}$ for some positive integers j and k. By Definition 3, we have $[j,k] \cap \text{Peak}(\pi) = \emptyset$. As a result, there exists l such that $\pi_j > \cdots > \pi_l < \cdots < \pi_k$. We have $f(\pi_j) = \cdots = f(\pi_{l-1}) = -a$, $f(\pi_{l+1}) = \cdots = f(\pi_k) = a$ and $f(\pi_l) \in \{-a, a\}$. The two contributions in x_a are

$$x_a^{\alpha_j + \alpha_{j+1} + \dots + \alpha_k}[q^{l-j} + q^{l-j+1}] = (q+1)q^{l-j}x_a^{\alpha_j + \alpha_{j+1} + \dots + \alpha_k}$$

Note that $l - j = \{i \in \text{Des}(\pi) | |f(\pi_i)| = a\}$ to complete the proof.

The nice formula for the product of two generating functions of chain posets extends naturally to this *q*-deformation. Recall the definition of coshuffle from [3]:

Definition 8. Let $\pi \in S_n$ and $\sigma \in S_m$ be two permutations. Let α and β be two compositions with *n* and *m* entries, respectively. The *coshuffle* of (π, α) and (σ, β) , denoted $(\pi, \alpha) \sqcup (\sigma, \beta)$, is the set of pairs (τ, γ) where

- $\tau \in S_{n+m}$ is a shuffle of π and $n + \sigma = (n + \sigma_1, n + \sigma_2, \dots, n + \sigma_m)$, and
- γ is a composition with n + m entries, obtained by shuffling the entries of α and β using the *same shuffle* used to build τ from the letters of π and $n + \sigma$.

Example 1. (132, (2, 1, 2)) is a coshuffle of (12, (2, 2)) and (1, (1)).

Proposition 4. Let $q \in \mathbf{k}$, let π and σ be two permutations in S_n and S_m , and let $\alpha = (\alpha_1, \ldots, \alpha_n)$ and $\beta = (\beta_1, \ldots, \beta_m)$ be two compositions with n and m entries. The product of two q-universal quasisymmetric functions is given by

$$U^{q}_{\pi,\alpha}U^{q}_{\sigma,\beta} = \sum_{(\tau,\gamma)\in(\pi,\alpha)\sqcup(\sigma,\beta)} U^{q}_{\tau,\gamma}.$$
(2.4)

Proof. The proof is similar to [3, Theorem 3].

3 Enriched *q*-monomials

3.1 Definition, relation to *q*-universal quasisymmetric functions and product formula

We introduce a new basis of QSym that generalises the essential and enriched monomial quasisymmetric functions in Definition 6.

Definition 9 (Enriched *q*-monomials). Let $q \in \mathbf{k}$ and α be a composition with *n* entries. The *enriched q-monomial* indexed by α is defined as

$$\eta_{\alpha}^{(q)} = U_{id_n,\alpha}^q. \tag{3.1}$$

As an immediate consequence of Definition 9, one has $\eta_{\alpha}^{(0)} = E_{\alpha}$ and $\eta_{\alpha}^{(1)} = \eta_{\alpha}$.

Proposition 5. With the notation of Definition 9, one has

$$\eta_{\alpha}^{(q)} = \sum_{i_1 \le i_2 \le \dots \le i_n} (q+1)^{|\{i_1, i_2, \dots, i_n\}|} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_n}^{\alpha_n}.$$
(3.2)

Proof. This is a direct consequence of Proposition 3.

Interestingly, one may express general *q*-universal quasisymmetric functions in terms of the $\eta_{\alpha}^{(q)}$. To state this result we need the following definition.

Definition 10. Let $\alpha = (\alpha_1, ..., \alpha_n)$ be a composition with *n* entries. For any integer $1 \le i \le n - 1$, we let $\alpha^{\downarrow i}$ denote the following composition with n - 1 entries:

 $\alpha^{\downarrow i} = (\alpha_1, \ldots, \alpha_{i-1}, \alpha_i + \alpha_{i+1}, \alpha_{i+2}, \ldots, \alpha_n).$

Furthermore, for any subset $I \subseteq [n-1]$, we set

$$\alpha^{\downarrow I} = \left(\left(\cdots \left(\alpha^{\downarrow i_k} \right) \cdots \right)^{\downarrow i_2} \right)^{\downarrow i_1},$$

where $i_1, i_2, ..., i_k$ are the elements of *I* in increasing order. Finally, if *I* and *J* are two subsets of [n - 1], with *J* being peak-lacunar, then we set $\alpha^{\downarrow I \downarrow \downarrow J} = \alpha^{\downarrow K}$, where $K = I \cup J \cup (J - 1)$.

Theorem 1. Let $\pi \in S_n$ be a permutation and α be a composition with *n* entries. The *q*-universal quasisymmetric function $U^q_{\pi,\alpha}$ may be expressed as a combination of the enriched *q*-monomials:

$$U_{\pi,\alpha}^{q} = \sum_{\substack{I \subseteq \operatorname{Des}(\pi) \\ J \subseteq \operatorname{Peak}(\pi) \\ I \cap J = \emptyset}} (-q)^{|J|} (q-1)^{|I|} \eta_{\alpha^{\downarrow I \downarrow \downarrow J}}^{(q)}.$$
(3.3)

Proof. For any subset $V \subseteq [n-1]$, set $\overline{V} = [n-1] \setminus V$. Then, (2.3) becomes¹

$$\begin{split} U_{\pi,\alpha}^{q} &= \sum_{K \subseteq \text{Des}(\pi)} \sum_{\substack{i_{1} \leq i_{2} \leq \cdots \leq i_{n} \\ j \in \text{Des}(\pi) \setminus K \Rightarrow i_{j-1} \leq i_{j} < i_{j+1} \\ j \in K \cap \text{Peak}(\pi) \Rightarrow i_{j-1} < i_{j} = i_{j+1} \\ j \in K \cap \text{Peak}(\pi) \Rightarrow i_{j-1} < i_{j} = i_{j+1} \\ \end{array} = \sum_{\substack{K \subseteq \text{Des}(\pi) \\ U \subseteq \text{Des}(\pi) \setminus K \\ J \subseteq K \cap \text{Peak}(\pi)} q^{|K|} (-1)^{|U| + |J|} \sum_{\substack{i_{1} \leq i_{2} \leq \cdots \leq i_{n} \\ j \in U \cup K \cap \text{Peak}(\pi) \cup K \cap \text{Peak}(\pi) \cup K \cap \text{Peak}(\pi) \setminus J \Rightarrow i_{j-1} \leq i_{j} = i_{j+1} \\ \end{aligned} = \sum_{\substack{K \subseteq \text{Des}(\pi) \\ U \subseteq \text{Des}(\pi) \setminus K \\ J \subseteq K \cap \text{Peak}(\pi)} q^{|K|} (-1)^{|U| + |J|} \sum_{\substack{i_{1} \leq i_{2} \leq \cdots \leq i_{n} \\ j \in U \cup K \cap \text{Peak}(\pi) \cup K \cap \text{Peak}(\pi) \cup i_{1} = i_{j} = i_{j+1} \\ j \in J \Rightarrow i_{j-1} = i_{j} = i_{j+1} \\ = \sum_{\substack{K \subseteq \text{Des}(\pi) \\ U \subseteq \text{Des}(\pi) \setminus K \\ J \subseteq K \cap \text{Peak}(\pi)} q^{|K|} (-1)^{|U| + |J|} \sum_{\substack{i_{1} \leq i_{2} \leq \cdots \leq i_{n} \\ j \in U \cup K \setminus J \Rightarrow i_{j-1} \leq i_{j} = i_{j+1} \\ j \in J \Rightarrow i_{j-1} = i_{j} = i_{j+1} \\ j \in J \Rightarrow i_{j-1} = i_{j} = i_{j+1} \\ \end{cases} (q + 1)^{|\{i_{1}, i_{2}, \dots, i_{n}\}|} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{n}}^{\alpha_{n}}. \end{split}$$

If we set $I = U \cup K \setminus J$ and $U' = I \setminus U = K \setminus J$, then |U'| = |K| - |J| and $I \subseteq \text{Des}(\pi) \setminus J$. Thus, the above computation becomes

$$U_{\pi,\alpha}^{q} = \sum_{\substack{U' \subseteq I \\ I \subseteq \text{Des}(\pi) \\ J \subseteq \text{Peak}(\pi) \\ I \cap J = \emptyset}} q^{|U'| + |J|} (-1)^{|U'| + |I| + |J|} \sum_{\substack{i_{1} \leq i_{2} \leq \dots \leq i_{n} \\ j \in I \Rightarrow i_{j-1} \leq i_{j} = i_{j+1} \\ j \in J \Rightarrow i_{j-1} = i_{j} = i_{j+1}}} (q+1)^{|\{i_{1}, i_{2}, \dots, i_{n}\}|} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{n}}^{\alpha_{n}}}$$

Summing over U' yields formula (3.3).

Corollary 1. Let $\alpha = (\alpha_1, ..., \alpha_n)$ and $\beta = (\beta_1, ..., \beta_m)$ be two compositions. Let $\alpha \sqcup \beta$ be the multiset of compositions obtained by shuffling α and β . As in [3], given $\gamma \in \alpha \sqcup \beta$, let $S_{\beta}(\gamma)$ be the set of the positions of the entries of β in γ . Set furthermore $S_{\beta}(\gamma) - 1 = \{i - 1 | i \in S_{\beta}(\gamma)\}$. Then,

$$\eta_{\alpha}^{(q)}\eta_{\beta}^{(q)} = \sum_{\substack{\gamma \in \alpha \sqcup \beta; \\ I \subseteq S_{\beta}(\gamma) \\ J \subseteq \left(S_{\beta}(\gamma) \setminus (S_{\beta}(\gamma)-1)\right) \setminus \{1\} \\ I \cap J = \emptyset}} (q-1)^{|I|} (-q)^{|J|} \eta_{\gamma^{\downarrow I \downarrow \downarrow J}}^{(q)}.$$
(3.4)

Proof. Corollary 1 is a consequence of Theorem 1, Equation (3.1) and Proposition 4. \Box

¹We understand i_{j-1} to be 0 whenever j = 1.

3.2 Relation to the monomial and fundamental bases

We consider the alternative indexing with sets proposed at the end of Section 1.2. Given a set of positive integers $I \subseteq [s - 1]$, the enriched *q*-monomial may be written as

$$\eta_I^{(q)} = \sum_{\substack{i_1 \le \dots \le i_s \\ j \in I \Rightarrow i_j = i_{j+1}}} (q+1)^{|\{i_1, \dots, i_s\}|} x_{i_1} \cdots x_{i_s}.$$

Proposition 6. Let $I \subseteq [s-1]$ be a set of positive integers. One has

$$\eta_I^{(q)} = \sum_{I \subseteq J} (q+1)^{s-|J|} M_J.$$
(3.5)

Theorem 2. Let $q \in \mathbf{k}$ be such that q + 1 is invertible. The family of enriched q-monomial quasisymmetric functions $\left(\eta_{s,I}^{(q)}\right)_{s\geq 0,I\subseteq[s-1]}$ is a basis of QSym. Furthermore

$$(q+1)^{s-|J|}M_J = \sum_{J \subseteq I} (-1)^{|I \setminus J|} \eta_I^{(q)}.$$
(3.6)

Proof. Follows from Equation (3.5) by Möbius inversion.

We develop further the properties of the enriched *q*-monomial basis of QSym.

Proposition 7. Let *s* be a positive integer and $I \subseteq [s-1]$. One may expand the enriched *q*-monomials in the fundamental basis as

$$\eta_I^{(q)} = (q+1) \sum_{J \subseteq [s-1]} (-1)^{|J|} (-q)^{|J \setminus I|} L_J.$$
(3.7)

Proof. The expression above is a consequence of Equation (3.5) and the expansion of monomial quasisymmetric functions in the fundamental basis (see, *e.g.*, [1]). \Box

Proposition 8. Let *s* be a positive integer, $J \subseteq [s-1]$ and let $q \in \mathbf{k}$. Then,

$$(q+1)^{s}L_{I} = \sum_{I \subseteq [s-1]} (-1)^{|I|} (-q)^{|I \setminus J|} \eta_{I}^{(q)}.$$
(3.8)

Equations (3.7) and (3.8) expand the fundamental and enriched *q*-monomial bases in terms of one another, and thus suggest a duality relation between the two. Let $QSym_s$ be the vector subspace of QSym containing the homogeneous quasisymmetric functions of degree *s*. Define $f: QSym_s \rightarrow QSym_s$ as the **k**-linear map that sends each L_I to $\eta_I^{(q)}$ for $I \subseteq [s-1]$. Then f^2 is a scaling by $(q+1)^{s+1}$ (that is, $f^2 = (q+1)^{s+1}$ id). Moreover,

$$f(M_I) = (q+1)^{|I|+1} M_{[s-1]\setminus I}$$
 for any $I \subseteq [s-1]$.

3.3 Antipode

For an integer *s* and a subset $I \subseteq [s-1]$, we set $s - I = \{s - i | i \in I\}$. The *antipode* of QSym (see [2, Chapter 5]) can be defined as the unique **k**-linear map $S : QSym \rightarrow QSym$ that satisfies

$$S\left(M_{I}
ight)=\left(-1
ight)^{s-\left|I
ight|}\sum_{\left(s-I
ight)\subseteq J}M_{J}.$$

Proposition 9. Assume that *q* is invertible in **k**, and let $p = \frac{1}{q}$. Then, for $I \subseteq [s-1]$,

$$S\left(\eta_{I}^{(q+1)}\right) = (-q)^{s-|I|} \eta_{s-I}^{(p)} .$$
(3.9)

Proof. This can be derived from Equation (3.7).

4 A *q*-interpolation between Gessel and Stembridge quasisymmetric functions

4.1 *q*-fundamental quasisymmetric functions

We introduce a new family of quasisymmetric functions that interpolate between Gessel's fundamental and Stembridge peak quasisymmetric functions and show that it is a basis of QSym in all but the Stembridge case.

Definition 11 (*q*-fundamental quasisymmetric functions). Let π be a permutation in S_n and $q \in \mathbf{k}$. Define the *q*-fundamental quasisymmetric function indexed by $\text{Des}(\pi)$ as

$$L_{n,\text{Des}(\pi)}^{(q)} = U_{\pi,[1^n]}^q.$$
(4.1)

Let *I* be a subset of [n - 1]. Set $I + 1 = \{i + 1 | i \in I\}$, and let $\text{Peak}(I) = I \setminus (I + 1) \setminus \{1\}$ the peak-lacunar subset obtained from *I* (so $\text{Peak}(I) = \text{Peak}(\pi)$ for every $\pi \in S_n$ satisfying $\text{Des}(\pi) = I$). One recovers immediately that for q = 0, $L_{n,I}^{(0)} = L_{n,I}$ is the Gessel fundamental quasisymmetric function indexed by the set *I*. For q = 1, $L_{n,I}^{(1)} = K_{n,\text{Peak}(I)}$ is the Stembridge peak function indexed by the relevant peak-lacunar set. In the sequel we remove the reference to *n* in indices when it is clear from context. Proposition 2 admits a nice generalisation to this *q*-deformation.

Theorem 3. Let $I \subseteq [n-1]$ and $q \in \mathbf{k}$. The q-fundamental quasisymmetric functions may be expressed in the enriched q-monomial basis as

$$L_{I}^{(q)} = \sum_{\substack{J \subseteq I \\ K \subseteq \text{Peak}(I) \\ J \cap K = \emptyset}} (-q)^{|K|} (q-1)^{|J|} \eta_{J \cup (K-1) \cup K}^{(q)} .$$
(4.2)

Proof. This a consequence of Equation (3.3).

Proposition 10. Recall the antipode *S* of Section 3.3. Let $q \in \mathbf{k}$ be invertible, and set $p = \frac{1}{q}$. Let $I \subseteq [n-1]$, and set $n - I = \{n - i \mid i \in I\}$. Then,

$$S(L_I^{(q)}) = (-q)^n L_{n-I}^{(p)}.$$
(4.3)

Proof. This a consequence of Equations (4.2) and (3.9).

To know whether $(L_{n,I}^{(q)})_{n \ge 0, I \subseteq [n-1]}$ is a basis of QSym for some value of q appears as a natural question. For example, for n = 3, we can invert Equation (4.2) as follows:

• $\eta^{(q)}_{\varnothing} = L^{(q)}_{\varnothing};$

•
$$(q-1)\eta_{\{1\}}^{(q)} = L_{\{1\}}^{(q)} - L_{\emptyset}^{(q)};$$

- $(q-1)\eta_{\{2\}}^{(q)} = \frac{(q-1)^2}{(q-1)^2+q}(L_{\{2\}}^{(q)} L_{\emptyset}^{(q)}) + \frac{q}{(q-1)^2+q}(L_{\{1,2\}}^{(q)} L_{\{1\}}^{(q)});$
- $\eta_{\{1,2\}}^{(q)} = \frac{1}{(q-1)^2+q} \left(L_{\{1,2\}}^{(q)} L_{\{2\}}^{(q)} L_{\{1\}}^{(q)} + L_{\varnothing}^{(q)} \right).$

We see that except for the case of Stembridge q = 1 (and the degenerate case q = -1), $\left(L_{2,I}^{(q)}\right)_{I \subseteq [2]}$ seems to be a basis of QSym. We state one of our main theorems:

Theorem 4. Let **k** be the set \mathbb{R} of real numbers. The family of q-fundamental quasisymmetric functions $(L_{n,I}^{(q)})_{n \ge 0, I \subseteq [n-1]}$ is a basis of QSym for $q \notin \{-1, 1\}$.

Remark 1. We set $\mathbf{k} = \mathbb{R}$ for the sake of simplicity. For a more general field, $(L_{n,I}^{(q)})_{n,I \subseteq [n-1]}$ is a basis if and only if $q \notin \{\rho | \rho^k = 1 \text{ for some integer } k > 0\}$.

4.2 **Proof of Theorem 4**

To prove Theorem 4 we characterise the transition matrix between the *q*-fundamental and enriched *q*-monomial quasisymmetric functions and show it is invertible for $q \neq -1, 1$.

Definition 12. Let B_n be the transition matrix between $(L_I^{(q)})_{I \subseteq [n-1]}$ and $(\eta_J^{(q)})_{J \subseteq [n-1]}$ with coefficients given by Equation (4.2). Columns and rows are indexed by subsets *I* of [n-1] sorted in reverse lexicographic order. A subset *I* is before subset *J* if and only if the word obtained by writing the elements of *I* in decreasing order is before the word obtained from *J* for the lexicographic order.

Example 2. For n = 4, let us show the transition matrix B_4 between $(L_I^{(q)})_{I \subseteq [3]}$ and $(\eta_I^{(q)})_{J \subseteq [3]}$. The entry at row index I and column index J is the coefficient in $\eta_J^{(q)}$ of $L_I^{(q)}$ in Equation (4.2).

		Ø	{1}	{2}	{2,1}	{3}	{3,1}	{3,2}	{3,2,1}
-	Ø	1	0	0	0	0	0	0	0
	{1}	1	q-1	0	0	0	0	0	0
	{2}	1	0	q-1	-q	0	0	0	0
$B_4 =$	{2,1}	1	q-1	q-1	$(q - 1)^2$	0	0	0	0
	{3}	1	0	0	0	q-1	0	-q	0
	{3,1}	1	q - 1	0	0	q - 1	$(q - 1)^2$	-q	-q(q-1)
	{3,2}	1	0	q - 1	-q	q - 1	0	$(q - 1)^2$	-q(q-1)
	{3,2,1}	1	q-1	q-1	$(q - 1)^2$	q-1	$(q - 1)^2$	$(q - 1)^2$	$(q - 1)^3$

Using Definition 12 and Equation (4.2), one can deduce the following lemmas.

Lemma 1. The matrix B_n is block triangular. To be more specific:

For each $k \in [n]$, let A_k denote the transition matrix from $(L_I^{(q)})_{I \subseteq [n-1], \max(I)=k-1}$ to $(\eta_J^{(q)})_{J \subseteq [n-1], \max(J)=k-1}$ (where $\max \emptyset := 0$); this actually does not depend on n. Note that A_k is a $2^{k-2} \times 2^{k-2}$ -matrix if $k \ge 2$, whereas A_1 is a 1×1 -matrix. We have

$$B_n = \begin{pmatrix} A_1 & 0 & 0 & \dots & 0 \\ * & A_2 & 0 & \dots & 0 \\ * & * & A_3 & \dots & 0 \\ * & * & * & \ddots & 0 \\ * & * & * & * & A_n \end{pmatrix}$$

Lemma 2. The matrices $(B_n)_n$ and $(A_n)_n$ satisfy the following recurrence relations (for $n \ge 1$ and $n \ge 2$, respectively):

$$B_n = \begin{pmatrix} B_{n-1} & 0 \\ B_{n-1} & A_n \end{pmatrix}, \qquad A_n = \begin{pmatrix} (q-1)B_{n-2} & -qB_{n-2} \\ (q-1)B_{n-2} & (q-1)A_{n-1} \end{pmatrix}.$$

Thanks to Lemmas 1 and 2, we are ready to state and show the main proposition of this section and prove Theorem 4.

Proposition 11. *The matrix* B_n *is invertible for* $q \neq 1$ *.*

Proof. For any square matrix M, let |M| denote its determinant. We want to show that for all n, $|B_n| \neq 0$ or equivalently that $|A_n| \neq 0$. To this end we compute for any rational functions in q, α and β :

$$|\alpha A_n + \beta B_{n-1}| = ((q-1)\alpha + \beta)|B_{n-2}||((q-1)\alpha + \beta)A_{n-1} + q\alpha B_{n-2}|.$$
(4.4)

Equation (4.4) exhibits a recurrence relation on the determinants that we solve by defining the sequence of coefficients:

$$\begin{pmatrix} \alpha_0 \\ \beta_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix} = \begin{pmatrix} q-1 & 1 \\ q & 0 \end{pmatrix} \begin{pmatrix} \alpha_{i-1} \\ \beta_{i-1} \end{pmatrix} = \begin{pmatrix} q-1 & 1 \\ q & 0 \end{pmatrix}^i \begin{pmatrix} \alpha_0 \\ \beta_0 \end{pmatrix}$$

We have:

$$|A_n| = \left[\prod_{i=0}^{n-3} |B_{n-2-i}| \begin{pmatrix} q-1 & 1 \end{pmatrix} \begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix}\right] \left| \begin{pmatrix} A_2 & B_1 \end{pmatrix} \begin{pmatrix} \alpha_{n-2} \\ \beta_{n-2} \end{pmatrix} \right|.$$

But $A_2 = (q - 1)$, $B_1 = (1)$ and one may compute that (left to the reader):

$$(q-1 \ 1) \begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix} = \frac{1}{q+1} \left(q^{i+2} - (-1)^{i+2} \right) = (-1)^{(i+1)} [i+2]_{-q},$$

where for integer p, $[p]_q$ is the *q*-number, $[p]_q = 1 + q + q^2 + \cdots + q^{p-1}$. Define the *q*-factorial $[p]_q! = [1]_q \cdot [2]_q \cdots [p]_q$. We find

$$|A_n| = (-1)^{n(n-1)/2} [n]_{-q}! \prod_{i=1}^{n-2} |B_i|.$$

Then, notice that $[n]_{-q}!$ is 0 if and only if q = 1 and n > 1 (when q runs over real numbers). Finish the proof with a simple recurrence argument on $|B_i|$.

References

- I. Gessel. "Multipartite P-partitions and inner products of skew Schur functions". Contemporary Mathematics 34 (1984), pp. 289–317.
- [2] D. Grinberg and V. Reiner. "Hopf Algebras in Combinatorics". 2020. arXiv:1409.8356v7. Link.
- [3] D. Grinberg and E. A. Vassilieva. "Weighted posets and the enriched monomial basis of QSym". *Sémin. Loth. Comb.* **85B** (2021). arXiv:2202.04720v1.
- [4] M. E. Hoffman. "Quasi-symmetric functions and mod p multiple harmonic sums". *Kyushū J. Math.* 69 (2015), pp. 345–366. arXiv:0401319v3.
- [5] S. K. Hsiao. "Structure of the peak Hopf algebra of quasisymmetric functions". 2007. Link.
- [6] R. Stanley. "Ordered structures and partitions". Mem. Amer. Math. Soc. 119 (1972).
- [7] R. Stanley. *Enumerative Combinatorics*. Vol. 2. Cambridge University Press, 2001.
- [8] J. Stembridge. "Enriched P-partitions." Trans. Amer. Math. Soc. 349.2 (1997), pp. 763–788.