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Abstract. We establish bijections between three classes of combinatorial objects that
have been studied in different contexts: lattice walks in simplicial regions as intro-
duced by Mortimer–Prellberg, standard cylindric tableaux as introduced by Gessel–
Krattenthaler and Postnikov, and sequences of states in the totally asymmetric simple
exclusion process. This perspective gives new insights into these objects, providing a
vehicle to translate enumerative results from lattice walks to tableaux, and to interpret
symmetries that are natural in one setting (e.g. conjugation of tableaux) as involutions
in another. Specifically, it allows us to use a cylindric analogue of the Robinson–
Schensted correspondence to give an alternative bijective proof of a recent result of
Courtiel, Elvey Price and Marcovici relating forward and backward walks in simplices.
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1 Introduction

1.1 Walks in simplices

For positive integers d and L, define the following simplicial section of the d-dimensional
integer lattice:

∆d,L = {(x1, x2, . . . , xd) ∈ Nd : x1 + x2 + · · ·+ xd = L},

where N is the set of non-negative integers. For 1 ≤ i ≤ d, let ei be the unit vector whose
ith coordinate equals 1 and whose other coordinates equal 0, and let si = ei+1 − ei,1

with the convention ed+1 = e1. See the left of Figure 1 for an example. We consider
walks in ∆d,L with steps si for 1 ≤ i ≤ d; equivalently, walks in the directed graph Dd,L
whose vertices are the points in ∆d,L, and whose edges are ordered pairs (x, y) such that
y − x = si for some i. The graph D3,3 appears in Figure 2(b). Let C = (L, 0, . . . , 0) ∈ ∆d,L
be a corner of the simplex.

*sergi.elizalde@dartmouth.edu.
1This indexing differs from the notation in [2] in that it is shifted by one, but it is more convenient for

our correspondences with other combinatorial objects.
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Figure 1: Left: The simplicial region ∆3,6. Right: An element of SCT3,4(λ/µ), where
λ = [5, 5, 3] and µ = [3, 1, 0] are shapes in Λ3,4, and |λ/µ| = 9.

The enumeration of n-step walks in Dd,L starting at a given x ∈ ∆d,L is relatively
straightforward for d = 2 [7, Proposition 1, Corollary 2]. For d = 3, the problem was
solved by Mortimer and Prellberg [7, Theorem 3]. In the special case of walks starting at
C, they show that these walks are equinumerous with Motzkin paths of bounded height.

Recall that a Motzkin path of length n is a path in Z2 from (0, 0) to (n, 0), with steps
(1, 1), (1, 0) and (1,−1), not going below the x-axis. Let Mn,h denote the number of
Motzkin paths of length n and height at most h, that is, not going above the line y = h.
Additionally, let M′

n,h be the number of Motzkin paths of length n and height at most h
that do not have any (1, 0) steps on the line y = h. For n ≥ 0 and L ≥ 1, let

an,L =

{
Mn,h if L = 2h + 1,
M′

n,h if L = 2h.
(1.1)

Theorem 1.1 ([7]). The number of n-step walks in D3,L starting at C equals an,L.

Mortimer and Prellberg’s proof in [7] uses the kernel method to solve a functional
equation. A complicated bijective proof of Theorem 1.1 has recently been given by
Courtiel, Elvey Price and Marcovici [2], who also find an expression for the generat-
ing function for walks in D4,L that start at a corner C. In the same paper, Courtiel et al.
prove the following striking result.

Theorem 1.2 ([2]). For any x ∈ ∆d,L, there is a bijection between the set of n-step walks in Dd,L
starting at x and the set of n-step walks in Dd,L ending at x.

The bijection in [2] is recursive, defined by repeatedly applying certain flips to adja-
cent steps. In Section 3, we will provide an arguably cleaner bijection by first interpreting
walks as certain tableaux, and then translating a Robinson-Schensted algorithm for such
tableaux into a bijection for walks in Dd,L.
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1.2 Standard cylindric tableaux

Cylindric partitions were introduced by Gessel and Krattenthaler in [4], as plane par-
titions satisfying certain constraints between the entries of the first and the last row.
A particularly interesting special case of them, called (0, 1)-cylindric partitions in [4],
is equivalent to semistandard cylindric tableaux, as defined by Postnikov in [9]. These
tableaux are related to the 3-point Gromov–Witten invariants, which are the structure
constants of the quantum cohomology ring of the Grassmannian. Postnikov introduces
a generalization of Schur functions, as generating functions for semistandard cylindric
tableaux of a given shape, and he shows that, when these are expanded in terms of
ordinary Schur functions, the Gromov–Witten invariants appear as coefficients in this
expansion. These generalized Schur functions, under the name of cylindric skew Schur
functions, have been further studied by McNamara [6] from the perspective of Schur-
positivity.

Define the cylinder Cd,L to be the quotient Z2/(−d, L)Z2. Elements of Cd,L are equiv-
alence classes ⟨i, j⟩ = (i, j) + (−d, L)Z2, where i, j ∈ Z, and they are called cells. We
borrow this notation from [9, 8], although we use L instead of d + L for the second in-
dex. As in [9, 8], we draw points (i, j) ∈ Z2 as unit squares on the plane with vertices
(i − 1, j − 1), (i − 1, j), (i, j − 1), (i, j), with the unusual convention that the positive x-axis
points downward and the positive y-axis points to the right, to be consistent with the
English notation for Young diagrams. With this 90◦-rotation of the usual Cartesian co-
ordinates, (i, j) represents the square in row i and column j, where row indices increase
from top to bottom, and column indices increase from left to right.

A cylindric shape2 of period (d, L) is a doubly infinite weakly decreasing sequence of
integers, λ = (λi)i∈Z, such that λi = λi+d + L for all i ∈ Z. We often write it as
λ = [λ1, λ2, . . . , λd], since these d integers uniquely determine a cylindric shape, pro-
vided that λd + L ≥ λ1 ≥ λ2 ≥ · · · ≥ λd. For example, we write λ = [5, 5, 3] =
(. . . , 9, 9, 7, 5, 5, 3, 1, 1,−1, . . .) ∈ Λ3,4. Denote by Λd,L the set of cylindric shapes of pe-
riod (d, L). We will use the term shape to mean cylindric shape throughout the paper. For
λ ∈ Λd,L, the region {(i, j) ∈ Z2 : j ≤ λi} is a union of equivalence classes. We denote it
by Yλ = {⟨i, j⟩ ∈ Cd,L : j ≤ λi}, and call it the Young diagram of λ.

For λ, µ ∈ Λd,L, we write µ ⊆ λ if Yµ ⊆ Yλ; equivalently, if µi ≤ λi for all i ∈ Z. For
µ ⊆ λ, we define the cylindric Young diagram of shape λ/µ to be the set

Yλ/µ = Yλ \ Yµ = {⟨i, j⟩ ∈ Cd,L : µi < j ≤ λi}.

Unlike Yλ or Yµ, the set Yλ/µ is finite. We denote its cardinality by |λ/µ| = ∑d
i=1(λi − µi).

A standard cylindric tableau of shape λ/µ is a bijection T : Yλ/µ → {1, 2, . . . , |λ/µ|}
such that T(⟨i, j⟩) < T(⟨i + 1, j⟩) and T(⟨i, j⟩) < T(⟨i, j + 1⟩) for all i, j; equivalently, a

2Such an object is called a cylindric partition in [8], but we avoid this term because in [4] it is used to
mean something different, namely the cylindric version of a plane partition



4 S. Elizalde

filling of the cells in Yλ/µ so that entries are increasing along rows (from left to right) and
along columns (from top to bottom). See the right of Figure 1 for an example. Denote
by SCTd,L(λ/µ) the set of standard cylindric tableaux of shape λ/µ, where λ, µ ∈ Λd,L.
If T ∈ SCTd,L(λ/µ), we call λ and µ the outer shape and the inner shape of T, respectively.
Denote by SCTn

d,L(·/µ) (respectively SCTn
d,L(λ/·)) the set of standard cylindric tableaux

with n cells and inner shape µ (respectively outer shape λ).
We construct an infinite directed graph Pd,L whose vertex set Λd,L as follows. For

µ, λ ∈ Λd,L, there is an edge from µ to λ if Yλ can be obtained from Yµ by adding a cell;
equivalently, if λi = µi + 1 for some i and λj = µj for all j ̸= i, where 1 ≤ i, j ≤ d. Note
that it is possible to add a cell to row i of Yµ if and only if µi−1 > µi.

1.3 Exclusion processes

In the totally asymmetric simple exclusion process (TASEP) on the cycle ZN, each of the
sites j ∈ ZN can either contain a particle or be empty. We denote a state of the system
by u = u1u2 · · · uN, where uj = 1 if site j contains a particle, and uj = 0 otherwise.
The indices of u are always interpreted modulo N. We draw such a state by placing
N beads around a circle representing the sites in clockwise order, starting and ending
at the bottom of the circle, and filling in the beads corresponding to particles. At each
time step, a particle can jump to the next site in counterclockwise direction if this site
is empty. The number of particles remains fixed through the process, let d denote this
number, and assume that d ≥ 1.

Typically, one associates transition probabilities to these particle jumps to define a
Markov chain [3]. Here, however, we are interested in the underlying directed graph
Ed,N−d whose vertices are the (N

d ) states u = u1u2 · · · uN containing d particles, and
whose edges correspond to valid jumps of a particle. Specifically, Ed,N−d has an edge
from state u to state v if and only if there exists j ∈ [N] such that uj−1uj = 01, vj−1vj = 10,
and uk = vk for all k ∈ ZN \ {j − 1, j}, with indices taken modulo N. Note that Ed,N−d
does not contain loops, unlike the Markov chain for the TASEP, where each of the N sites
is equally likely to attempt a jump, but it succeeds only if that site contains a particle and
the next site counterclockwise is empty, and it stays in the same state otherwise. Thus,
in the TASEP Markov chain, each of the edges in Ed,N−d gets assigned probability 1/N,
while the loop from a state to itself has positive probability.

Let us now construct a directed multigraph Nd,N−d, which is a quotient of Ed,N−d
under the equivalence relation given by cyclic rotations. Specifically, define a necklace
to be an equivalence class of vertices of Ed,N−d, where u ∼ v if there exists k such that
uj = vj+k for all j, again with indices taken modulo N. The vertices of Nd,N−d are
necklaces, for which we use the notation [u]. The number of edges from necklace [u] to
necklace [v] is the number of states v̂ ∈ [v] for which Ed,N−d has an edge from u to v̂.
Note that, by cyclic symmetry, this number does not depend on the chosen representative
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from [u]. In other words, [u] has an outgoing edge for each cyclic occurrence of the
consecutive substring 01 in the necklace, and the edge points to the necklace obtained
from [u] by replacing this occurrence with 10.

The graph E3,3 and the multigraph N3,3 appear in Figure 2(c)(d).
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Figure 2: A standard cylindric tableau P with inner shape α = [2, 2, 0] ∈ Λ3,3 (a),
the corresponding walk in D3,3 starting at x = (1, 0, 2) (b), the one in E3,3 starting at
u = 011001 (c), and the one in the multigraph N3,3 starting at [u] = [001011] (d).

2 Connecting all three

In this section we provide bijections that relate walks in simplices, standard cylindric
tableaux, and exclusion processes. The idea behind the bijections is that inserting a cell
in row i of a shape in Λd,L translates to moving along a step si in Dd,L, and to the ith
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particle (with the appropriate indexing) of a state in Ed,L or Nd,L jumping to the next site
in counterclockwise direction. Next we make this precise.

Unlike in previous appearances of tableaux in connection to the TASEP in the lit-
erature [1, 5], where certain tableaux are used to encode states, our standard cylindric
tableaux encode sequences of states (i.e., walks in the Markov chain) instead.

The bijections are based on the construction of covering maps, that is, surjective maps
from the set of vertices of a directed multigraph to the set of vertices of another, that
induce bijections between the outgoing edges of each vertex and those of its image.

Lemma 2.1. The following are covering maps:

(i) The map f : Pd,L → Dd,L defined on the vertices α = [α1, α2, . . . , αd] ∈ Λd,L by

f (α) = (α0 − α1, α1 − α2, . . . , αd−1 − αd).

(ii) The map g : Dd,L → Nd,L defined on the vertices x = (x1, x2, . . . , xd) ∈ ∆d,L by

g(x) = [0x110x21 · · · 0xd1].

(iii) The quotient map q : Ed,L → Nd,L obtained by taking equivalence classes of states u =
u1u2 · · · ud+L under cyclic rotation, as described in Section 1.3.

In Figure 2, the covering maps g : Dd,L → Nd,L and q : Ed,L → Nd,L are illustrated by
the colors of the vertices: each vertex of Nd,L has the same color as each of its preimages.

Lemma 2.2. Let f : G → H be a covering map between directed multigraphs. Then, for any
vertex u of V and any n ≥ 0, f induces a bijection f̃ between n-step walks in G starting at u
and n-step walks in H starting at f (u).

Theorem 2.3. Fix d, L ≥ 1. Let α ∈ Λd,L, let x = (x1, x2, . . . , xd) ∈ ∆d,L where xi = αi−1 − αi
for 1 ≤ i ≤ d, and let u = 0x110x21 · · · 0xd1. There are natural bijections between the following:

(a) The set SCTn
d,L(·/α).

(b) The set of n-step walks in Dd,L starting at vertex x.
(c) The set of n-step walks in Ed,L starting at state u.
(d) The set of n-step walks in Nd,L starting at state [u].

Proof. To describe a bijection between the sets (a) and (b), we use the covering map
f : Pd,L → Dd,L from Lemma 2.1(i), which satisfies f (α) = x. Indeed, a tableau T ∈
SCTn

d,L(·/α) can be interpreted as a walk in Pd,L starting at α, given by the sequence of
shapes α = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(n), where each λ(r) is the outer shape of the standard
cylindric tableau consisting of the cells of T with entries at most r. The bijection f̃ from
(a) to (b) that results from this covering map by applying Lemma 2.2 can be described
directly as follows. Given T ∈ SCTn

d,L(·/α), let ir be the row that contains entry r, for
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each 1 ≤ r ≤ n. Then f̃ (T) is the n-step walk in ∆d,L that starts at x and has steps
si1si2 · · · sin . See Figure 2 for an example. The condition that T has increasing rows and
columns guarantees that the walk stays inside the region ∆d,L.

A bijection g̃ between the sets (b) and (d) arises from the covering map g : Dd,L → Nd,L
from Lemma 2.1(ii), which satisfies g(x) = [u], using again Lemma 2.2. A bijection q̃
between (c) and (d) is immediate from the quotient map q in Lemma 2.1(i).

It is also not hard to describe direct bijections between (a) and (c) and between (b)
and (c). For example, indexing the particles in state u so that particle i occupies the site
corresponding to the ith 1 from the left, the walk in Ed,L starting at u that corresponds
to the above T ∈ SCTn

d,L(·/α) consists of successive jumps of the particles i1, i2, . . . , in in
counterclockwise direction.

Conjugation of standard cylindric tableaux is the involution obtained by reflecting
along the diagonal y = x. For α ∈ Λd,L, define its conjugate to be the shape α′ ∈ ΛL,d,
where α′j = max{i : αi ≥ j} for all j. If T is a standard cylindric tableau of shape
λ/µ, define its conjugate to be the standard cylindric tableau T′ of shape λ′/µ′ where
T′(⟨j, i⟩) = T(⟨i, j⟩) for all ⟨i, j⟩. For a state u = u1u2 · · · uN of the TASEP on ZN, its
reverse-complement urc is the state where urc

i = 1 − uN+1−i for all i, obtained from
u by applying particle-hole symmetry, i.e., switching occupied sites with empty sites
and reversing the orientation. The following result follows easily from the bijections in
Theorem 2.3 by conjugation at the level of tableaux. See Figure 3 for an example.

Theorem 2.4. With the notation from Theorem 2.3, let α′ ∈ ΛL,d be the conjugate of α, let
y = (y1, y2, . . . , yL) ∈ ∆L,d where yj = α′j−1 − α′j for 1 ≤ j ≤ L, and let urc be the reverse-
complement of u. There are natural bijections between the sets in Theorem 2.3 and the following:

(a’) The set SCTn
L,d(·/α′).

(b’) The set of n-step walks in DL,d starting at vertex y.
(c’) The set of n-step walks in EL,d starting at state urc.
(d’) The set of n-step walks in NL,d starting at state [urc].

While the bijections between the sets (a) and (a’), and between (d) and (d’), are rela-
tively straightforward, the bijection between (b) and (b’) that results from Theorem 2.4
has no simple description directly in terms of walks in simplices.

As a consequence of these bijections and Theorem 1.1, we see that the number an,L
of Motzkin paths of bounded height, as given by Equation (1.1), also counts standard
cylindric tableaux of period (3, L) with n cells and rectangular inner shape [0, 0, 0], n-step
walks in D3,L starting at a corner C, n-step walks in DL,3 starting at a corner C, n-step
walks in E3,L starting at 130L, and n-step walks in N3,L starting at [130L].

Similarly, we deduce that the coefficients of the generating function given in [2, Corol-
lary 39] enumerate each of the sets in Theorems 2.3 and 2.4 where d = 4, α = [0, 0, 0, 0],
x and y are corners of the corresponding simplices, and u = 140L.
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Figure 3: A standard cylindric tableau with inner shape α = [2, 0, 0] ∈ Λ3,2 (a), and
its conjugate with inner shape α′ = [1, 1] ∈ Λ2,3 (a’); the corresponding walks in D3,2

starting at x = (0, 2, 0) (b), and in D2,3 starting at y = (3, 0) (b’); and the corresponding
walks in E3,2 starting at u = 10011 (c), and in E2,3 starting at urc = 00110 (c’).

3 Schensted insertion, and a bijection between forward
and backward walks

Sagan and Stanley [10] introduced analogues of the Robinson–Schensted algorithm for
skew tableaux. They defined two row insertion operations, later extended by Neyman [8]
to cylindric tableaux. In a nutshell, internal row insertion removes an inner corner (namely,
a cell ⟨i, µi + 1⟩ such that µi−1 > µi, where µ is the inner shape), and successively inserts
the removed entry into the next row, possibly bumping another entry to the following
row, until the inserted entry is placed at the end of a row. See Figure 4 for an example.

The algorithms work in the semistandard case, where the entries of the tableaux can
be any multiset of positive integers as long as rows are weakly increasing and columns
are strictly increasing. Next we state the main correspondence in the special case of
standard cylindric tableaux, since they correspond naturally to walks in simplices.
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Figure 4: Internal insertion at row 1 in the standard cylindric tableau from Figure 1.

Theorem 3.1 ([8], extending [10]). Fix α, β ∈ Λd,L and n, m ≥ 0. There is a bijection, denoted
by CRSK:⊔

µ⊆α,β
|α/µ|=n,
|β/µ|=m

SCTd,L(α/µ)× SCTd,L(β/µ) →
⊔

λ⊇α,β
|λ/β|=n,
|λ/α|=m

SCTd,L(λ/β)× SCTd,L(λ/α).

Proof sketch. Suppose that |α|+ m = |β|+ n, since otherwise both unions are empty. Fix
µ ⊆ α, β with |α/µ| = n and |β/µ| = m, and let (T, U) ∈ SCTd,L(α/µ)× SCTd,L(β/µ).
We construct a sequence of pairs (Pk, Qk) for 0 ≤ k ≤ m. For k = 0, let P0 = T, and let
Q0 be the empty tableau of shape α/α. For k from 1 to m, construct (Pk, Qk) iteratively as
follows. Let ⟨i, j⟩ be the cell in U containing k, which must be an inner corner of Pk−1. Let
Pk be obtained from Pk−1 by internal row insertion in ⟨i, j⟩, and let Qk be obtained from
Qk−1 by placing k in the cell where this insertion procedure terminates (i.e., the cell that
is added to the outer shape of Pk−1 to obtain Pk). Finally, let CRSK(T, U) = (Pm, Qm).

Note that cylindric tableaux of period (d, L) = (∞, ∞) are equivalent to (non-cylin-
dric) skew tableaux, so Theorem 3.1 reduces to [10, Theorem 5.1] in the special case
that π = ∅. It is shown in [8, Theorem 5.18], generalizing [10, Theorem 3.3], that if
CRSK(T, U) = (P, Q), then CRSK(U, T) = (Q, P). In particular, in the case α = β,
taking T ∈ SCTd,L(α/µ) where |α/µ| = n, we have CRSK(T, T) = (P, P), for some
P ∈ SCTd,L(λ/α) where |λ/α| = n. We denote by ϕ the map such that ϕ(T) = P in this
case. For any fixed α ∈ Λd,L, this map is a bijection

ϕ : SCTn
d,L(α/·) → SCTn

d,L(·/α). (3.1)

See Figure 5 for an example.
Aside from conjugation, another natural involution on the set Λd,L is given by 180◦

rotation. For λ = [λ1, λ2, . . . , λd] ∈ Λd,L, define its complement to be λ = [L − λd, L −
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Figure 5: An example of the bijection ϕ : SCTn(α/·) → SCTn(·/α), with d = 3, L = 3,
n = 8, α = [2, 2, 0]. The inner corners where internal insertion is about to occur
are shaded with gray diagonal lines, and the newly added cells where the previous
insertion terminated are highlighted with a green grid pattern.

λd−1, . . . , L − λ1] ∈ Λd,L. For ⟨i, j⟩ ∈ Cd,L, define ⟨i, j⟩ = ⟨d + 1 − i, L + 1 − j⟩. Then, for
λ, µ ∈ Λd,L, we have µ ⊆ λ if and only if λ ⊆ µ, and ⟨i, j⟩ ∈ Yλ/µ if and only if ⟨i, j⟩ ∈
Yµ/λ. For T ∈ SCT(λ/µ) with |λ/µ| = n, define its complement tableau T ∈ SCT(µ/λ) to

be the one with entries T(⟨i, j⟩) = n + 1 − T(⟨i, j⟩) for all ⟨i, j⟩ ∈ Yλ/µ. Viewing tableaux
as fillings of the cells in the cylindric Young diagram, T is obtained from T by performing
a 180◦ rotation and replacing each entry k with n + 1 − k.

The following property of ϕ, illustrated in Figure 6, follows from [8, Corollary 4.19].
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Figure 6: The above diagram commutes by Proposition 3.2.

Proposition 3.2 ([8]). For any standard cylindric tableau P, we have ϕ−1(P) = ϕ(P).

The reason for this symmetry is that each internal insertion in the computation of ϕ

can be undone by performing internal insertion in the complement tableau at the newly
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created cell. Thus, all the steps in the description of ϕ are reversed when applying ϕ to
the complement tableau.

In [2], Courtiel et al. give a recursive bijection to prove Theorem 1.2, by repeatedly
applying certain flips to adjacent steps and to the last step of the walk, until all the
forward steps have been switched into backward steps. An alternative description of
this bijection is also given in [2, Sec. 2.3], as a tiling of an n × n square with labeled tiles
that must follow certain rules that emulate the allowed flips in the walks.

Our setting provides a canonical, non-recursive bijective proof of Theorem 1.2. In-
deed, our Schensted-insertion-based map ϕ, when translated in terms of walks in Dd,L
via the correspondence in Theorem 2.3, provides the desired bijection. Additionally, by
Proposition 3.2, the map P 7→ ϕ(P) is an involution. It would be interesting to determine
how our map ϕ compares to the recursive construction from [2], as it is conceivable that
they are different descriptions of the same bijection.

The following theorem translates the resulting equivalence to the various settings.
Figure 7 shows an example of these bijections.

Theorem 3.3. With the notation from Theorem 2.3, there are bijections between the sets (a)–(d)
and the following:
(a”) The set SCTn

d,L(α/·).
(b”) The set of n-step walks in Dd,L ending at vertex x.
(c”) The set of n-step walks in Ed,L ending at state u.
(d”) The set of n-step walks in Nd,L ending at state [u].
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