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Abstract. In this paper, we explain how the classical Catalan families of objects in-
volving paths, tableaux, triangulations, parentheses configurations and more gener-
alize canonically to a three-dimensional version. In particular, we present product-
coproduct prographs as central objects explaining the combinatorics of the triangula-
tions of the sphere. Then we expose a natural way to extend the Tamari lattice to the
product-coproduct prographs.

Résumé. Dans ce papier, nous expliquons comment les familles d’objets combinatoires
comptées par les nombres de Catalan, comme les chemins, tableaux, triangulations,
parenthésages, ou autre, se généralisent dans le monde des objets comptés par les
nombres de Catalan tridimensionnels. En particulier, nous présentons les prographes
produit-coproduit comme centraux pour expliquer la combinatoire des triangulations
de la sphère. Nous exposons alors une manière naturelle d’étendre le treillis de Tamari
aux prographes produit-coproduit.
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1 Introduction

This paper is about a generalization of the famous combinatorial problem defining Cata-
lan numbers and involving parentheses configurations, binary trees and triangulations
of the n-gon. This paper is a sequel of [1] where product-coproduct prographs (PC pro-
graphs) were introduced to study the combinatorics of the three-dimensional Catalan
world. The work presented in this paper follows the results obtained in FPSAC 2017 [1],
whose statements can be summarized in Table 1.

In this paper, we complete these first statements to the dual side of planar objects
(triangulations of the sphere) and the combinatorics of the planar objects.

Mireille Bousquet-Mélou did expose in [2] that the three-dimensional Catalan num-
bers count the number of triangulations of the bipolar sphere. By embedding PC pro-
graphs on the sphere and linking the only global output to the global input, we present
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PC prographs as Voronoï diagrams of the triangulations of the bipolar sphere. This im-
plies that the original bijection from rectangular Young Tableaux to PC prographs can
be extended to triangulations.

Integer sequences and formal power series
Catalan numbers Three-dimensional Catalan numbers

(2n)!
(n + 1)! · n!

2 · (3n)!
n! · (n + 1)! · (n + 2)!

First combinatorial classes of objects
Two-rows standard Young tableaux Three-rows standard Young tableaux

· · · · · · 2n
1 · · · · · ·

· · · · · · 3n
· · · · · ·

1 · · · · · ·

Realization as Operators rules in Algebras
Parentheses configurations of an n-product Ways to assemble-disassemble n-times each

in an associative algebra in an associative and coassociative bialgebra
× · ∆ · × · ∆

(• × •)× • × · (×⊗ Id) · (Id ⊗ ∆) · ∆
× · (Id ⊗×) · (Id ⊗ ∆) · ∆

• × (• × •) × · (×⊗ Id) · (∆ ⊗ Id) · ∆
× · (Id ⊗×) · (∆ ⊗ Id) · ∆

Planar combinatorial objects
Binary trees PC prographs

Table 1: Classical Catalan world and its three-dimensional counterpart.

By duality, since rotations in prographs correspond to triangle flipping, we define
four rotations rules on PC-prographs. We explain that these rotations correspond ex-
actly to all admissible triangulation flips on the triangulations side. Among these four
rotations rules, two are extensions of the classical rotations balancing binary search trees
and the other two are suggested by the geometry of the triangulations of the sphere. Fi-
nally, we present some structural properties of the set of PC prographs of size n extended
with the four rotations viewed as oriented rewriting rules. We argue that, in some cases,
PC prographs can be viewed as a gluing of two binary trees; endowing this subfamily
with two of the four rotations makes it a lattice that is a product of the Tamari lattice by
itself. However, although adding the other two rotations does generate all PC-prographs
with faithful action of the rotations, this does not provide a lattice.

This paper is organised as follows. In the next section, we first recall what a PC
prograph is and describe the duality between PC prographs and rooted triangulations
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of the sphere. We exploit the duality to introduce and orient flips and rotations. In
Section 4, we investigate structures that can be defined over the set of PC prographs.

2 Duality and triangulations

PC prographs are connected oriented planar graphs without cycles whose vertices are
products or coproducts. Coproducts have one input and two outputs and products
have two inputs and one output. Just one coproduct (resp. product) has its input (resp.
output) unconnected, which is the input (resp. output) of the prograph (see Figure 2 for
examples). Since each vertex has degree three, the dual graph consists of triangles.

Now, embed a prograph on the sphere and connect its output to its input going
through the exterior non visible side of the sphere. The prograph becomes a Voronoï
diagram of some triangulation of the sphere. Since [2, 6] prove that bipolar oriented
triangulations of the sphere are counted by the three-dimensional Catalan numbers, this
procedure provides an alternative and explicit bijection.

For example, consider the following three-row rectangular standard Young tableau:

7 8 11 12
3 4 9 10
1 2 5 6

.

This tableau is stable by the Schützenberger involution (see [1, 5]) (rotate 180◦ the tableau
then complement its values sending i to 3n + 1 − i). Using the central bijection of [1]
from tableaux to prographs, we obtain the black prograph of Figure 1, with coproducts
represented as circles and products as squares. Considering this prograph as a Voronoï
diagram, we build the red oriented triangulation of the sphere with a single edge passing
through its dark side. This red dashed edge (its midpoint could have been sent to
infinity) splits the dark side of the sphere into two triangles: one containing the North
pole of the sphere and the other one containing its South pole.

Remark 1. Switching the context from prographs to bipolar oriented triangulations of the
sphere, the Schützenberger involution consists in rotating the sphere by 180 degrees,
swapping the poles, and flipping the orientation of the edges of the triangulation. It is
also equivalent to the antipodal map of the sphere with renamed poles since they have
been swapped.

The reader can check that the triangulation obtained in Figure 1 is stable by the
Schützenberger involution.

Theorem 1. With PC prographs as an intermediate object, graph duality provides an explicit
and constructive bijection from 3-row rectangular standard Young tableaux onto bipolar-oriented
triangulations of the sphere. This bijection commutes with the Schützenberger involution.
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Figure 1: A self-dual prograph (black) and its bipolar-oriented triangulation (red).

Since there exists numerous algorithms for exhaustive enumeration and (possibly
random) generation of Young tableaux, this bijection using PC prographs enables a lot
of calculations and computations on the triangulations side. For example, we believe
that the easiest way to check if two oriented triangulations of the bipolar sphere are
homotopic is to build their associated prographs with graph duality and check whether
they are associated with the same Young tableau.

Remark 2. The world of prographs meets here the world of oriented planar maps. Indeed,
prographs are planar assemblies of operators with identified inputs and outputs; if one
puts reasonable operators on the vertices of a planar oriented map, with respect to the
number of incoming and outgoing edges for each vertex, one builds a prograph. Since,
for PC prographs, a single entry means the vertex is a coproduct and two entries mean
it is a product, there is no choice to be made and everyone works on the same objects.

3 Flips and rotations

The Tamari lattice has numerous different realizations: using parentheses configurations,
binary trees, ordered forests, triangulations and more. Our first attempts to uncover a
structure on PC prographs were by focusing on the prographs and Young tableaux side.
Unfortunately, there were too many choices when trying to establish a set of transforms
and give them orientations, thereby exhibiting a partial order (or more).

On the other hand, the geometric approach revealed the needed rigidity. When one
considers triangulations, the reasonable flip consists in focusing on an edge, check that
it is the border of two triangles; if the union of these two triangles forms a quadrilateral
and the edge is a diagonal of it, then one flips this edge by removing it and drawing the
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Figure 2: The five prographs with two coproducts, two products (in black), and their
associated triangulations (in red).

type of input left input right input
edges of coproduct of product of product

left output Type I Type II Type III
of coproduct reduced no possible flip reducible to type VII
right output Type IV Type V Type VI
of coproduct reducible to type I reduced no possible flip

output Type VII Type VIII Type IX
of product reducible to type V reducible to type IX reduced

Figure 3: An edge is flippable depending on the type of its entry and its outgoing.

other diagonal instead. Using this rule alone and by exhaustion of cases, we now show
that there is only one reasonable way to consider flips and rotations.

By graph duality, each triangle contains a single operator, a product or a coproduct.
Pairs of neighboring triangles (sharing at least an edge) can be enumerated by the entries
inside the associated Young tableau since, if triangles are neighbors, there exists an edge
between both involed operators. We forget 1 which virtually connects the northernmost
product with the southernmost coproduct via the dark side of the sphere. This pointed
edge in PC prographs correspond to a pointed edge in triangulations that we will not
flip (it plays the same role as the first side of the n-gon in the classical Catalan world.)

In PC prographs, there are three types of outputs : outputs of products, left outputs
of coproducts and right outputs of coproducts. Similarly, there are three types of inputs :
inputs of coproducts, left inputs of products and right inputs of products. Since edges in
PC prographs connect an output of operator to an input, we should consider nine cases.
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Figure 4: The 9 types of edges and their reductions via oriented rotations

The only choice we made is the orientation of operations. Here, types I, V and
IX are reduced by choice, and, since we want to be coherent with the Schützenberger
involution, the only other possible choice is to reverse all orientations simultaneously.
Reversing all rules, types III, IV and VI would have been the reduced edges. This cor-
responds to exchanging the left and right everywhere and flipping the east and west on
the sphere.

The reader can check exhaustively that a flip of types II and VI would create a loop
inside the prograph, whatever the choice of orientation. Therefore flipping these two
types of edges is technically impossible. It so happens that these edges correspond
exactly to pathological organizations of triangles on the sphere. For example, on the
sphere, there exist valid triangulations in which two neighboring triangles have two
edges in common. The union of two such triangles does not form a quadrilateral and no
flip is possible.

Theorem 2. The four rotations rules in PC prographs shown in Figure 5 correspond to all valid
edge flippings in rooted oriented triangulations of the sphere.

The reader can check that the first two rotations are directly derived from the classical
rotation rule in binary trees.

The four rotations rules, without their orientations, are completely rigid as far as
geometry is concerned. Anyway, the reader could argue that choices of orientation were
made. Since we still want to be compatible with the Schützenberger involution, the
choice of minimum and maximum must be reversed for product and coproduct. But
exactly as the classical Tamari lattice implies a choice (one can set either the left comb
tree or the right comb tree to be the maximum), there is an equivalent choice with PC
prographs. This will result in the same kind of symmetries for the classical Tamari lattice
and our new structure on PC prographs.
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Type IV Type I

Type VIII Type IX

Type III Type VII

Type VII Type V

Figure 5: The four local rotations over PC prographs shown with their dual.

4 Poset structure over PC prographs

In this section, we investigate what type of structure can be placed over the set of PC
prographs.

4.1 Gluing two trees at their canopies

The orientation in rooted triangulations of the sphere come directly from orientations
of the classical case, the triangulations of the rooted n-gon. Choosing a root side in the
n-gon amounts to setting an orientation to a chosen side (incoming or outgoing, the flow
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4 6
2 5
1 3

5 6
2 4
1 3

3 6
2 5
1 4

4 6
3 5
1 2

5 6
3 4
1 2

Figure 6: The poset (lattice for this size) of PC prographs of size 2.

being perpendicular to this side) and setting the reverse orientation to all other sides.
So there are only two isomorphic choices. On the one hand, one can set the root edge
to be outgoing. The other sides are thus incoming, hence inputs, and the dual of the
triangulation ends up being a rooted tree of products. On the other hand, one can set
the root edge to be incoming, all other sides become outputs and the dual becomes a
rooted tree of coproducts.

Now, consider two trees with the same number of nodes. Build their associated
triangulations of the n-gon and set opposite orientations on each of them (as illustrated
in Figure 7). By deformation, we can imagine these two n-gons are two hemispheres
that can be glued along their equator, the root sides being glued together. This way,
considering the underlying trees, the n − 1 outputs of the tree of coproducts end up
connected to the n − 1 inputs of the tree of products. Call the product of the outgoing
root side the North and the coproduct of the incoming root side the South, and set
them at the top and bottom by convention, respectively. This operation produces a
PC prograph having its products connected up to the North point and its coproducts
connected up from the South. The North and the South are also connected by the only
upside-down edge of the equator, on the dark side of the sphere. We obtain a figure
similar to Figure 1.

An immediate property is that PC prographs having coproducts all connected from
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Figure 7: Build the sphere and a PC prograph from two triangulations of the n-gon.

the South and products all connected up to the North are exactly PC prographs avoiding
a pattern : the output of a product grafted as input of a coproduct.

Theorem 3. The subset of PC prographs avoiding edges of types VII (connecting a product
output to a coproduct input) endowed with the two classical flip types forms a lattice which is
exactly the product lattice of the classical Tamari lattice with itself.

4.2 PC prographs whose coproducts show up first

In Section 5 of [1], we exposed a process labelling the operators : from bottom to top and
from left to right for operators whose entries lean on already labelled operators. This
natural process (called Boriefication in [4]) is recalled in Figure 8.

Among all PC prographs, a small portion produce labels 1, 2, . . . , n to coproducts
and labels n + 1, n + 2, . . . , 2n to products. In some sense, the depth-left-first transversal
of operators enumerate all coproducts before the first product can go out. Regarding
standard tableaux, it is equivalent to check that the last entry of the first row (indexing
the last coproduct) is smaller than the first entry of the last row (indexing the first
product to have its two entries labelled). This subfamily of PC prographs is counted
by Sequence A274969 of OEIS [8]. It is also a subfamily of that described in Section 4.1.
Such prographs can be obtained as a gluing of two binary trees with a reattachment
condition.

Labelling nodes of binary trees T with the depth-left-first search algorithm, we can
refine the enumeration of binary trees by counting leaves to the left of the last node.
Denoting by size(T) the number of nodes in T and by dg(T) (disabled grafting sites) the
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Figure 8: Labelling operators of a prograph and its image by the Schützenberger invo-
lution.

number of leaves to the left of the last node, we define Cati(q) to be the following formal
sum over all binary trees:

Cati(q) = ∑
size(T)=i

qdg(T). (4.1)

Cati(q) deploys one very famous Catalan triangle. Here are the first values.

Cat0(q) = 1,
Cat1(q) = 1,
Cat2(q) = 1 + q,
Cat3(q) = 1 + 2q + 2q2,
Cat4(q) = 1 + 3q + 5q2 + 5q3,
Cat5(q) = 1 + 4q + 9q2 + 14q3 + 14q4,
Cat6(q) = 1 + 5q + 14q2 + 28q3 + 42q4 + 42q5.

It is known that the coefficients of this triangle satisfy

C(n, k) =
(

n + k
k

)
−

(
n + k
k − 1

)
.

Proposition 1. PC prographs of size n whose operators are labelled by indices 1, 2, . . . , n for
coproducts and indices n + 1, n + 2, . . . , 2n for products are counted by pairs of binary trees of
size n with d1 and d2 disabled grafting sites and d1 + d2 ⩽ n + 1. Equivalently, we have

∑
d1+d2⩽n+1

C(n, d1)C(n, d2) =

(
3n
n

)
− 2

(
3n

n − 1

)
+

(
3n

n − 2

)
.

This formula is more complicated than the compact combination of three binomial
due to Janis Stipins A274969 of OEIS [8]. Anyway, it provides an alternative way to



PC Prographs and Triangulations of the Sphere 11

compute OEIS[8, A274969]: 1, 1, 4, 21, 121, 728, 4488, . . .. Furthermore, it exposes an alter-
native description of pushall stack words of length 3n [7] as pairs of binary trees. The
first values are the sum of the first coefficients of the square of Cati(q).

Cat0(q)2 mod q = 1 =|q=1 1
Cat1(q)2 mod q2 = 1 =|q=1 1
Cat2(q)2 mod q3 = 1 + 2q + q2 =|q=1 4
Cat3(q)2 mod q4 = 1 + 4q + 8q2 + 8q3 =|q=1 21
Cat4(q)2 mod q5 = 1 + 6q + 19q2 + 40q3 + 55q4 =|q=1 121
Cat5(q)2 mod q6 = 1 + 8q + 34q2 + 100q3 + 221q4 + 364q5 =|q=1 728
Cat6(q)2 mod q7 = 1 + 10q + 53q2 + 196q3 + 560q4 + 1288q5 + 2380q6 =|q=1 4488

4.3 A poset that is not a lattice on PC prograph

Proposition 2. The set of all PC prographs with the four rotations rules does not form a lattice.

The generalization of the classical Catalan world stops here. The smallest pair of
uncomparable elements are prographs of size 3. There are 3 elements higher in the
poset than both prographs but no join can be defined (there are two uncomparable
minima among these 3 higher elements).

7 8 9
2 4 6
1 3 5

5 8 9
2 6 7
1 3 4

Figure 9 displays the poset over the 42 PC prographs of size 3 (as standard tableaux).
This research was driven by computer exploration using the open-source mathemat-

ical software SageMath [9] and its algebraic combinatorics features developed by the
Sage-Combinat community [3].
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