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Abstract. We study combinatorial inequalities for various classes of set systems: ma-
troids, morphisms of matroids, polymatroids, and poset antimatroids. We prove log-
concave inequalities for counting certain weighted feasible words, which generalize
and extend several previous results establishing Mason conjectures for the numbers of
independent sets of matroids. Additionally, we rederive Stanley’s inequality on the
number of certain linear extensions, which we then also extend to the weighted case.
Notably, we also prove matching equality conditions for all these inequalities.

Foreword: This extended abstract is concerned with log-concavity results for counting
problems in the general context of posets, and is motivated by a large body of amazing
recent work in area, see a survey by Huh [14] and also earlier surveys [3, 5, 6, 23]. We
select a subset of these results for various combinatorial structures to be presented here.
Their proofs and historical remarks can be found in the full version of the paper [8], and
a simpler version of the method can be found in the expository version of the paper [9].

1 Matroids

A (finite) matroid M is a pair (X, I) of a ground set X, |X| = n, and a nonempty collection
of independent sets I ⊆ 2X that satisfies the following:

• (hereditary property) S ⊂ T, T ∈ I implies S ∈ I , and

• (exchange property) S, T ∈ I , |S| < |T| implies there exists x ∈ T \ S such that
S + x ∈ I .

Rank of a matroid is the maximal size of the independent set: rk(M) := maxS∈I |S|. A
basis of a matroid is an independent set of size rk(M). Finally, let Ik :=

{
S ∈ I , |S| = k

}
,

and let I(k) =
∣∣Ik

∣∣ be the number of independent sets in M of size k, 0 ≤ k ≤ rk(M).
Mason’s matroid log-concavity conjectures were stated in [17], motivated by the ear-

lier work and conjectures in graph theory and combinatorial geometry. The strongest
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form of these conjectures were recently proved independently by Brändén and Huh [4]
through Lorentzian polynomials approach, and by Anari et al. [2] through completely log-
concave polynomials approach.

Theorem 1 (Ultra-log-concavity for matroids [2, Theorem 1.2] and [4, Theorem 4.14], for-
merly strong Mason conjecture). For a matroid M = (X, I), |X| = n, and integer 1 ≤ k <
rk(M),

I(k)2 ≥
(

1 +
1
k

)(
1 +

1
n − k

)
I(k − 1) I(k + 1). (1.1)

Mason’s conjectures were presented as a series of three log-concave inequalities, for
which (1.1) is the strongest version of the inequalities. The other two inequalities were
previously obtained in [1] and [15] by using the hard Lefschetz theorem and the Hodge–
Riemann relations in a number of algebraic settings. The methods in [2, 4] use interre-
lated ideas, and avoid much of the algebraic technology in [1].

Equality conditions for (1.1) were recently established by Murai, Nagaoka and Yaza-
wa in [18] using an algebraic argument built on [4], and can be described as follows. For
a matroid M = (X, I) on |X| = n elements, define girth(M) := min

{
k : I(k) < (n

k)
}

.
The girth of a matroid is the size of the smallest non-independent sets in M.

Theorem 2 (Equality for matroids [18, Corollary 1.2]). Equality occurs in (1.1) if and only if
we have girth(M) > (k + 1).

We now present a refinement of log-concavity for matroids that is proved through
our method. For an independent set S ∈ I of a matroid M = (X, I), denote by

Cont(S) :=
{

x ∈ X \ S : S + x ∈ I
}

(1.2)

the set of continuations of S. For all x, y ∈ Cont(S), we write x ∼S y when S + x + y /∈ I .
Note that “∼S” is an equivalence relation. We call an equivalence class of the relation
∼S a parallel class of S, and we denote by Par(S) the set of parallel classes of S.

For every 0 ≤ k < rk(M), define the k-continuation number of a matroid M as the
maximal number of parallel classes of independent sets of size k:

p(k) := max
{ ∣∣Par(S)

∣∣ : S ∈ Ik
}

. (1.3)

Clearly, p(k) ≤ n − k.

Theorem 3 (Refined log-concavity for matroids). For a matroid M = (X, I) and integer 1 ≤
k < rk(M), we have:

I(k)2 ≥
(

1 +
1
k

)(
1 +

1
p(k − 1)− 1

)
I(k − 1) I(k + 1). (1.4)
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Clearly, Theorem 3 implies Theorem 1. In particular, let us illustrate the power of this
refinement in a special case.

Let G = (V, E) be a connected graph with |V| = n edges. The corresponding graphical
matroid MG = (E, I) is defined to have independent sets to be all forests in G. Then I(k)
is the number of forests with k edges.

Proposition 4 (Refinement for graphical matroids). Let G = (V, E) be a simple connected graph
on |V| = n vertices, and let I(k) be the number of forests with k edges. Then

I(n − 2)2

I(n − 3) · I(n − 1)
≥ 3

2

(
1 +

1
n − 2

)
. (1.5)

This is both numerically and asymptotically better than (1.1). For example, when
|E| − n → ∞, we have:

I(n − 2)2

I(n − 3) · I(n − 1)
≥(1.1)

(
1 +

1
|E| − n + 2

)(
1 +

1
n − 2

)
→ 1 as n → ∞.

We now present equality conditions for the refined log-concave inequality (1.4).

Theorem 5 (Refined equality for matroids). Equality occurs in (3) if and only if there exists
s(k − 1) > 0 such that for every S ∈ Ik−1 we have:∣∣Par(S)

∣∣ = p(k − 1) , and (ME1)
| C | = s(k − 1) for every C ∈ Par(S). (ME2)

Condition (ME1) says that the (k − 1)-continuation number is achieved on all inde-
pendent sets S ∈ Ik−1, while condition (ME2) is saying that all parallel classes C ∈ Par(S)
have the same size. In contrast to Theorem 2, there is a a rich family of examples satisfy-
ing equality conditions in Theorem 5, such as paving matroids and Steiner system matroids.
In particular, we obtain the equality conditions for the special case of graphical matroids.

Proposition 6 (Equality for graphical matroids). Equality occurs in (1.5) if and only if G is
an n-cycle.

2 Log-concavity for morphisms

For a matroid M = (X, I), the rank function f : 2X → R>0 is defined by

f (S) := max
{
|A| : A ⊆ S, A ∈ I

}
.

Note that rk(M) = f (X). Let M = (X, I) and N = (Y,J ) be two matroids with rank
functions f and g, respectively. Let Φ : X → Y be a function that satisfies

g
(
Φ(T)

)
− g

(
Φ(S)

)
≤ f (T) − f (S) for every S ⊆ T ⊆ X. (2.1)
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In this case we say that Φ : M → N is a morphism of matroids. A subset S ∈ I is said to be
a basis of Φ if g(Φ(S)) = rk(N). In other words, S is contained in a basis of M, and Φ(S)
contains a basis of N. The notion of morphism of matroids generalizes many classical
notions in combinatorics such as graph coloring, graph embeddings, graph homomorphism,
matroid quotients, and are a special case of the induced matroids. We refer to [12] for a
detailed overview and further references.

Denote by B the set of bases of Φ : M → N, let Bk := B ∩ Ik, and let B(k) := | B(k)|.
The following log-concave inequality is due to Eur and Huh [12].

Theorem 7 (Log-concavity for morphisms [12, Theorem 1.3]). Let M = (X, I) and N =
(Y,J ) be matroids, let n := |X|, and let Φ : M → N be a morphism of matroids, and let
1 ≤ k < rk(M). Then:

B(k)2 ≥
(

1 +
1
k

)(
1 +

1
n − k

)
B(k − 1)B(k + 1). (2.2)

Note that when Y = {y} and N = (Y,∅) is defined by g(y) = 0, we have condi-
tion (2.1) holds trivially and B = I . Thus, the theorem generalizes Theorem 1 to the
morphism of matroids setting.

Equality conditions for Theorem 7 was posed as an open problem in [18, Ques-
tion 5.7], which we resolved through the following theorem.

Theorem 8 (Equality for morphisms). Equality occurs in (2.2) if and only if girth(M) > k + 1
and g

(
Φ(S)

)
= rk(N) for all S ∈ Ik−1.

We now present a refinement of log-concavity for morphisms. Recall the equivalence
relation “∼S” on the set Cont(S) ⊆ X \ S of continuations of S ∈ I , see (1.2). Similarly,
recall the set Par(S) of parallel classes of S, see (1.3). For every 1 ≤ k ≤ rk(M), let

p(k) := max
{∣∣Par(S)

∣∣ : S ∈ Bk
}

,

the maximum of the number of parallel classes of bases of morphism Φ of size k.

Theorem 9 (Refined log-concavity for morphisms). Let M = (X, I) and N = (Y,J ) be ma-
troids, let Φ : M → N be a morphism of matroids, and let 1 ≤ k < rk(M). Then:

B(k)2 ≥
(

1 +
1
k

)(
1 +

1
p(k − 1) − 1

)
B(k − 1)B(k + 1). (2.3)

As before, since p(k − 1) ≤ n − k + 1, the theorem is an extension of Theorem 7. We
also obtain equality conditions for (2.3), which we present below.

Theorem 10 (Refined equality for morphisms). Equality occurs in (2.3) if and only if there
exists s(k − 1) > 0, such that for every S ∈ Ik−1 we have:∣∣ParS

∣∣ = p(k − 1), (MME1)
| C | = s(k − 1) for every C ∈ Par(S), and (MME2)

g
(
Φ(S)

)
= rk(N). (MME3)
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3 Discrete polymatroids

A discrete polymatroid,1 also called integral polymatroid, D is a pair ([n],J ) of a ground set
[n] := {1, . . . , n} and a nonempty finite collection J of integer points a = (a1, . . . , an) ∈
Nn that satisfy the following:

• (hereditary property) a ∈ I , b ∈ Nn such that b ⩽ a ⇒ b ∈ I , and

• (exchange property) a, b ∈ I , |a| < |b| implies there exists i ∈ [n] such that ai < bi
and a + ei ∈ J .

Here b ⩽ a is a componentwise inequality, |a| := a1 + . . . + an, and {e1, . . . , en} is a
standard linear basis in Rn. When J ⊆ {0, 1}n, discrete polymatroid D is a matroid.
One can think of a discrete polymatroid as a set system where multisets are allowed, so
we refer to J as independent multisets and to |a| as size of the multiset a. We refer to [13]
for the history and algebraic motivation.

Define rk(D) := max{|a| : a ∈ J }. For 0 ≤ k ≤ rk(D), denote by Jk := {a ∈ J :
|a| = k} the subcollection of independent multisets of size k. Let ω : [n] → R>0 be a
positive weight function on [n]. We extend weight function ω to all a ∈ J as follows:

ω(a) := ω(1)a1 · · · ω(n)an .

For every 0 ≤ k ≤ rk(D), define

Jω(k) := ∑
a∈Jk

ω(a)
a!

, where a! := a1! · · · an!.

The following log-concavity follows easily from the results in [4], which was stated in a
somewhat different form.

Theorem 11 (Log-concavity for polymatroids [4, Theorem 3.10 (4) ⇔ (7)]). Let D = ([n],J )
be a discrete polymatroid, and let ω : [n] → R>0 be a positive weight function. For every
1 ≤ k < rk(M), we have:

Jω(k)
2 ≥

(
1 +

1
k

)
Jω(k − 1) Jω(k + 1). (3.1)

Equality conditions for (3.1) was previously unknown, and we established them
through the following theorem. A discrete polymatroid D = ([n],J ) is called non-
degenerate if ei ∈ J for every i ∈ [n]. Note that every discrete polymatroid can be
made to be nondegenerate by restricting [n] to integers i satisfying ei ∈ J . Define

1Discrete polymatroids are related but should not to be confused with polymatroids, which is a family of
convex polytopes, see, e.g., [19, §44].
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polygirth(D) := min
{

k : | J k | < (n+k−1
k−1 )

}
. Observe that a ∈ J for all a ∈ Nk,

|a| < polygirth(D). Note that the polygirth of a discrete polymatroid does not coincide
with the girth of a matroid. In fact, polygirth(D) = 2 when D is a matroid with more
than one element.

Theorem 12 (Equality for polymatroids). Let D be a nondegenerate discrete polymatroid. Then
equality occurs in (3.1) if and only if polygirth(D) > (k + 1).

We now present a refinement of log-concavity for discrete polymatroids. Fix t ∈ [0, 1].
For every a ∈ J let

π(a) :=
n

∑
i=1

(
ai

2

)
.

For every 0 ≤ k ≤ rk(D), define

Jω,t(k) := ∑
a∈Jk

tπ(a) ω(a)
a!

.

Note that (a
2) = 0 for a ∈ {0, 1}, so π(a) = 0 for all independent sets a ∈ I in a matroid.

For an independent multiset a ∈ J of a discrete polymatroid D = ([n],J ), denote
by

Cont(a) :=
{

i ∈ [n] : a + ei ∈ J
}

. (3.2)

the set of continuations of a. For all i, j ∈ Cont(a), we write i ∼a j when a+ ei + ej /∈ J or
i = j. This is an equivalence relation again. We call an equivalence class of the relation
∼a a parallel class of a, and we denote by Par(a) the set of parallel classes of a.

For every 0 ≤ k < rk(D), define the k-continuation number of a discrete polymatroid D

as the maximal number of parallel classes of independent multisets of size k:

p(k) := max
{ ∣∣Par(a)

∣∣ : a ∈ Jk
}

. (3.3)

For matroids, this is the same notion as defined above.

Theorem 13 (Refined log-concavity for polymatroids). Let D = ([n],J ) be a discrete poly-
matroid, and let ω : [n] → R>0 be a positive weight function. For every t ∈ [0, 1] and
1 ≤ k < rk(M), we have:

Jω,t(k)
2 ≥

(
1 +

1
k

) (
1 +

1 − t
p(k − 1)− 1 + t

)
Jω,t(k − 1) Jω,t(k + 1). (3.4)

When t = 1, this gives Theorem 11. When D is a matroid, t = 0, and ω is an uniform
weight, this gives Theorem 3. For general discrete polymatroids D and 0 < t < 1, this is
a stronger result.

To get the equality conditions for (3.4), we separate the cases t = 0, 0 < t < 1, and
t = 1. The case t = 0 coincides with equality conditions for matroids given in Theorem 5;
the case t = 1 coincides with equality conditions for polymatroids given in Theorem 12;
and the case 0 < t < 1 is contained in the following lemma.
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Theorem 14 (Refined equality for polymatroids 0 < t < 1 case). Let D be a nondegenerate
discrete polymatroid, and let 0 < t < 1. Then equality occurs in (3.4) if and only if k = 1,
polygirth(D) > 2, and ω is uniform.

One can view the dearth of nontrivial examples in Theorem 14 as suggesting that the
bound in Theorem 13 can be further improved for t > 0. This is based on the reasoning
that Theorem 3 sharply improves over Theorem 1 because there are only trivial equality
conditions for the latter (see Theorem 2), when compared with rich equality conditions
for the former (see Theorem 5).

4 Poset antimatroids

Let X be finite set we call letters, and let X∗ be a set of finite words in the alphabet X. A
language over X is a nonempty finite subset L ⊂ X∗. A word is called simple if it contains
each letter at most once; we consider only simple words from this point on. We write
x ∈ α if word α ∈ L contains letter x. Finally, let |α| be the length of the word, and
denote Lk :=

{
α ∈ L : |α| = k

}
.

A pair A = (X,L) is an antimatroid, if the language L ⊂ X∗ satisfies:

• (nondegenerate property) every x ∈ X is contained in at least one α ∈ L,

• (normal property) every α ∈ L is simple,

• (hereditary property) αβ ∈ L ⇒ α ∈ L, and

• (exchange property) x ∈ α, x /∈ β, and α, β ∈ L implies there exists y ∈ α such that
βy ∈ L.

Note that for every antimatroid A = (X,L), it follows from the exchange property
that

rk(A) := max{|α| : α ∈ L} = |X|.

Antimatroids is a subclass of greedoids named after the anti-exchange property, which
is a key axiom in their definition via set systems. We refer to [16] for the history and
geometric motivation.

In this extended abstract we use only one class of antimatroids which we now define.
Let P = (X,≺) be a poset on |X| = n elements. A simple word α ∈ X∗ is called feasible
if α satisfies:

• (poset property) if α contains x ∈ X and y ≺ x, then letter y occurs before letter x
in α.
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A poset antimatroid AP = (X,L) is defined by the language L of all feasible words in X.
Let ω : X → R>0 be a positive weight function on X. Denote by Cov(x) := {y ∈ X :

x↢y} the set of elements which cover x. We assume the weight function ω satisfies the
following (cover monotonicity property):

ω(x) ≥ ∑
y∈Cov(x)

ω(y) , for all x ∈ X. (CM)

Note that when (CM) is equality for all x ∈ X, we have:

ω(x) = number of maximal chains in P starting at x. (4.1)

For all α ∈ L and 0 ≤ k ≤ n, let

Lω(k) := ∑
α∈Lk

ω(α) , where ω(α) := ∏
x∈α

ω(x).

Theorem 15 (Log-concavity for poset antimatroids). Let P = (X,≺) be a poset on |X| = n
elements, and let AP = (X,L) be the corresponding poset antimatroid. Let ω : X → R>0 be a
positive weight function which satisfies (CM). Then, for every integer 1 ≤ k < n, we have:

Lω(k)2 ≥ Lω(k − 1) · Lω(k + 1). (4.2)

Note that the weight function condition (CM) is necessary, as there are examples for
which log-concavity fails to hold for uniform weight, see [8, Example 1.27] in the full
version of this extended abstract.

5 Linear extensions

Let P := (X,≺) be a poset on n := |X| elements. A linear extension of P is a bijection
L : X → {1, . . . , n}, such that L(x) < L(y) for all x ≺ y. We refer to [7, 24] for definitions
and standard results on posets and linear extensions.

Fix an element z ∈ X. Denote by E := E(P) the set of linear extensions of P , let
E k := {L ∈ E : L(z) = k}. The following inequality was originally conjectured by
Chung, Fishburn and Graham in [11], extending an earlier unimodality conjecture by
R. Rivest (unpublished).

Theorem 16 (Stanley inequality [22, Theorem 3.1]). Let P = (X,≺) be a poset with |X| = n
elements, and let z ∈ X. Denote by N(k) := | E k | the number of linear extensions L ∈ E(P),
such that L(z) = k. Then, for every 1 < k < n, we have:

N(k)2 ≥ N(k − 1) · N(k + 1). (5.1)
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The proof in [22] is a simple application of the Alexandrov–Fenchel inequality. In the
same paper, Stanley asked for equality conditions for (5.1), which were recently obtained
by Shenfeld and van Handel. Denote by f (x) :=

∣∣{y ∈ X : y ≺ x}
∣∣ and g(x) :=

∣∣{y ∈
X : y ≻ x}

∣∣ the sizes of lower and upper ideals of x ∈ X, respectively, excluding the
element x.

Theorem 17 (Equality condition for Stanley inequality [20, Theorem 15.3]). Suppose that
N(k) > 0. Then the following are equivalent:

(a) N(k)2 = N(k − 1) · N(k + 1),

(b) N(k + 1) = N(k) = N(k − 1),

(c) we have f (x) > k for all x ≻ z, and g(x) > n − k + 1 for all x ≺ z.

The proof in [20] used a sophisticated geometric analysis to prove equality conditions
of the Alexandrov–Fenchel inequality for convex polytopes.

We now give a weighted generalization of these results, which we proved combi-
natorially. Let ω : X → R>0 be a positive weight function on X. We say that ω is
order-reversing if it satisfies

x ≼ y ⇒ ω(x) ≥ ω(y). (Rev)

Fix z ∈ X, as above. Define ω : E → R>0 by

ω(L) := ∏
x : L(x)<L(z)

ω(x), (5.2)

and let
Nω(k) := ∑

L∈E k

ω(L) , for all 1 ≤ k ≤ n. (5.3)

Theorem 18 (Weighted Stanley inequality). Let P = (X,≺) be a poset with |X| = n elements,
and let ω : X → R>0 be a positive order-reversing weight function. Fix an element z ∈ X. Then,
for every 1 < k < n, we have:

Nω(k)2 ≥ Nω(k − 1) · Nω(k + 1), (5.4)

where Nω(k) is defined by (5.3).

Prior to our work, no direct combinatorial proof of Stanley’s inequality was known in
full generality, although [11] gives a simple proof for posets of width two (see also [10]).
Most recently, the authors and Panova obtained a q- and multivariate analogues of Stan-
ley’s inequality for posets of width two [10]. These notions are specific to the width two
case and are incompatible with the weighted analogue above.

The equality conditions for (5.2) is a little more subtle and needs the following (s, k)-
cohesiveness property:

ω
(

L−1(k − 1)
)
= ω

(
L−1(k + 1)

)
= s, for all L ∈ E k . (Coh)
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Theorem 19 (Equality condition for weighted Stanley inequality). Suppose that Nω(k) > 0.
Then the following are equivalent:

(a) Nω(k)2 = Nω(k − 1) · Nω(k + 1),

(b) there exists s = s(k, z) > 0 such that

Nω(k + 1) = s Nω(k) = s2 Nω(k − 1),

(c) there exists s = s(k, z) > 0 such that f (x) > k for all x ≻ z, g(x) > n − k + 1 for all
x ≺ z, and (Coh).

6 Proof ideas

Although we prove multiple results, the proof of each log-concavity inequality uses the
same approach and technology, so we refer to it as “the proof”.

At the first level, the proof is an inductive argument proving a stronger claim about
eigenvalues of certain matrices associated with the posets. The induction is not over
posets of smaller size, but over other matrices which can in fact be larger, but correspond
to certain parameters decreasing as we go along. The claim then reduces to the base
of induction, which is the only part of the proof requiring a computation. The latter
involves checking eigenvalues of explicitly written small matrices, making the proof
fully elementary.

Delving a little deeper, we set up a new type of structure which we call a combinatorial
atlas. In the special case of matroids, a combinatorial atlas A associated with a matroid
M = (X, I), |X| = n, is comprised of:

◦ Acyclic digraph ΓM = (X∗, Θ), with the unique source at the empty word ∅ ∈ X∗,
and edges corresponding to multiplications by a letter: Θ =

{
(α, αx) : α, αx ∈

X∗, x ∈ X
}

,

◦ Each vertex α ∈ X∗ is associated with a pair (Mα, hα), where Mα =
(
Mij

)
is a

nonnegative symmetric d × d matrix, hα = (h1, . . . , hd) is a nonnegative vector, and
d = n + 1,

◦ Each edge (α, αx) ∈ Θ is associated with a linear transformation T⟨x⟩
α : Rd → Rd.

The key technical observation is that under certain conditions on the atlas, we have
every matrix M := Mα, is hyperbolic:

⟨v, Mw⟩2 ≥ ⟨v, Mv⟩⟨w, Mw⟩ for all v, w ∈ Rd such that ⟨w, Mw⟩ > 0. (Hyp)



Log-Concave Poset Inequalities: Extended Abstract 11

Log-concavity inequalities now follow from (Hyp) for the matrix M∅, by interpreting the
inner products as numbers Lq(k), Lq(k − 1) and Lq(k + 1), respectively.

We prove (Hyp) by induction, reducing the claim for Mα to that of Mαx , for all
x ∈ Cont(α). Proving (Hyp) for the base of induction required the eigenvalue inter-
lacing argument. This is where our conditions for the weight function ω appear in the
calculation. We also need a few other properties of the atlas. Notably, we require every
matrix Mα to be irreducible with respect to its support, but that is proved by a direct
combinatorial argument.

For other log-concavity inequalities in the paper, we consider similar atlas construc-
tions and similar claims. For the equalities, we works backwards and observe that we
need equations (Hyp) to be equalities. These imply the local properties which must hold
for certain edges (α, αx) ∈ Θ. Analyzing these properties gives the equality conditions
we present.

Although this can only be understood from the proofs, much of this work has been
influenced by [21] which gives a new proof of the Alexandrov–Fenchel inequalities. The
closest we come to [21] is in the most technical part of the paper on Stanley’s inequality,
but again the tools we employ are highly technical and go much beyond what can be
described in the extended abstract. We refer to the full version [8] for all the details.
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