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Introduction

If (an)n≥0 is a sequence of combinatorial numbers or polynomials
with a0 = 1, it is often fruitful to seek to express its ordinary
generating function as a continued fraction of either Stieltjes (S)
type,

∞∑
n=0

ant
n =

1

1−
α1t

1−
α2t

1− · · ·

,

or Jacobi (J) type,

∞∑
n=0

ant
n =

1

1− γ0t −
β1t

2

1− γ1t −
β2t

2

1− · · ·

.

Both sides are interpreted as formal power series in t.



Contraction formulae of an S-fraction to a J-fraction

1

1−
α1x

1−
α2x

· · ·

=
1

1− α1x −
α1α2x

2

1− (α2 + α3)x −
α3α4x

2

· · ·

.

i.e., the above S-fraction and J-fraction are equal if

γ0 = α1

γn = α2n + α2n+1 for n ≥ 1

βn = α2n−1α2n.



This line of investigation, i.e.

(an) 7→ (αn) (or ((γn), (βn))),

goes back at least to Euler, but it gained impetus following
Flajolet’s seminal discovery that any S-type (resp. J-type)
continued fraction can be interpreted combinatorially as a
generating function of Dyck (resp. Motzkin) paths with suitable
weights for each rise and fall (resp. each rise, fall and level step).



Our approach will be (in part) to run this program in reverse:
we start from a continued fraction in which the coefficients α (or
γ and β) contain indeterminates in a nice pattern, and we attempt
to find a combinatorial interpretation for the resulting polynomials
an – namely, as enumerating permutations, set partitions or perfect
matchings to some natural maultivariate statistics.
We call our an “master polynomials” because our CF will contain
the maximum number of independent inderterminates consistent
with the given pattern.



Permutations: S-fraction

Euler ∑
n≥0

n! xn =
1

1−
1 x

1−
1 x

1−
2 x

1−
2 x

· · ·
=

1

1− x −
12 x2

1− 3 x −
22 x2

· · ·

with coefficients α2k−1 = k, α2k = k .



A four-variable generalization

Introduce the polynomials Pn(x , y , u, v) by the following CF

∑
n≥0

Pn(x , y , u, v)tn =
1

1−
x t

1−
y t

1−
(x + u) t

1−
(y + v) t

1− · · ·

.

with coefficients

α2k−1 = x + (k − 1)u α2k = y + (k − 1)v .

Clearly Pn(x , y , u, v) is a homogeneous polynomial of degree n and
Pn(1, 1, 1, 1) = n!.



Record classification

Given a permutation Sn, an index i ∈ [n] (or value σ(i) ∈ [n]) is
called a

record (rec) (or left-to-right maximum) if σ(j) < σ(i) for all
j < i ;

antirecord (arec) (or right-to-left minimum) if σ(j) > σ(i) for
all j > i ;

exclusive record (erec) if it is a record and not also an
antirecord;

exclusive antirecord (earec) if it is an antirecord and not also a
record;

record-antirecord (rar) if it is both a record and an antirecord;

neither-record-antirecord (nrar) if it is neither a record nor an
antirecord.
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Cycle classification

We say that an index i ∈ [n] is a

cycle peak (cpeak) if σ−1(i) < i > σ(i);

cycle valley (cval) if σ−1(i) > i < σ(i);

cycle double rise (cdrise) if σ−1(i) < i < σ(i);

cycle double fall (cdfall) if σ−1(i) > i > σ(i);

fixed point (fix) if σ−1(i) = i = σ(i).

We denote the number of cycles, records, antirecords, ... in σ by
cyc(σ), rec(σ), arec(σ), ..., respectively.
A rougher classification is that an index i ∈ [n] (or value σ(i)) is
an

excedance (exc) if σ(i) > i ;

anti-excedance (aexc) if σ(i) < i ;

fixed point (fix) if σ(i) = i .
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Two combinatorial interpretations

Theorem 1 (S-fraction for permutations)

The polynomials defined by the S-fraction have the combinatorial
interpretations

Pn(x , y , u, v) =
∑
σ∈Sn

xarec(σ)y erec(σ)un−exc(σ)−arec(σ)v exc(σ)−erec(σ) (1)

and

Pn(x , y , u, v) =
∑
σ∈Sn

xcyc(σ)y erec(σ)un−exc(σ)−cyc(σ)v exc(σ)−erec(σ). (2)



Special cases (1)

Pn(x , yv , 1, v) =
∑
σ∈Sn

xarec(σ)y erec(σ)v exc(σ)

=
∑
σ∈Sn

xcyc(σ)y erec(σ)v exc(σ).

The triple statistics (arec, erec, exc) and (cyc, erec, exc) are
equidistributed on Sn.



Special cases (2)

The Stirling cycle polynomials

Pn(x , 1, 1, 1) =
n∑

k=0

s(n, k)xk = x(x + 1) . . . (x + n − 1).

or their homogenized version

Pn(x , y , y , y) =
n∑

k=0

s(n, k)xkyn−k = x(x+y) . . . (x+(n−1)y).

The Eulerian polynomials

Pn(1, y , 1, y) = An(y) =
n∑

k=0

A(n, k)yk

or

Pn(x , y , x , y) = An(x , y) =
n∑

k=0

A(n, k)xn−kyk .



Special cases (3): Dumont-Kreweras 1988

The record-antirecord permutation polynomials

Pn(a, b, 1, 1) =
∑
σ∈Sn

aarec(σ)berec(σ)

or
Pn(a, b, c , c) =

∑
σ∈Sn

aarec(σ)berec(σ)cn−arec(σ)−erec(σ).

Note that

∞∑
n=0

Pn(a, b, 1, 1)tn =

∑
n≥0(a)n(b)nt

n/n!∑
n≥0(a)n(b − 1)ntn/n!

,

where (a)n = a(a + 1) . . . (a + n − 1).



Special cases (4)

The polynomials [sequence A145879/A202992]

Pn(x , x , u, u) =
∑
σ∈Sn

xn−nrar(σ)unrar(σ)

=
n∑

k=0

T (n, k)xn−kuk

where T (n, k) is the number of permutations in Sn having exactly
k indices that are the middle point of a pattern 321 (or 123). In
particular T (n, 0) is the number of 123-avoiding permutations,
which equals the Catalan number Cn = 1

n+1

(2n
n

)
. So the

polynomials interpolate between Cn and n!.



Special cases (5): Narayana polynomials

Pn(x , y , 0, 0) =
∑

σ∈Sn(321)

xarec(σ)y erec(σ)

=
∑

σ∈Sn(321)

xarec(σ)y exc(σ)

=
n∑

k=0

1

n

(
n

k

)(
n

k − 1

)
xkyn−k .

These combinatorial interpretations of Narayana numbers were
found by Vella’03 and Elisalde’04.



Record and cycle classifications: First J-fraction

We have classified indices in a permutation according to their
record status:
exlusive record, exclusive antirecord, record-antirecord or
neither-record-antirecord;
and aslo according to their cycle status:
cycle peak, cycle valley, cycle double rise, cycle double fall or
fixed point.
Applying now both classifications simultaneously, we obtain 10
disjoint categories.
Note that if an index i is an erec (resp. earec) then i must be an
exc (resp. anti-excedance).



Record-cycle classifications: 10 classes

ereccval: exclusive records that are also cycle valleys;

erecdrise: exclusive records that are also cycle double rises;

eareccpeak: exclusive antirecords that are also cycle peaks;

eareccdfall: exclusive antirecords that are also cycle double
falls;

rar: record-antirecords (that are always fixed points);

nrcpeak: neither-record-antirecords that are also cycle peaks;

nrcval: neither-record-antirecords that are also cycle valleys;

nrcdrise: neither-record-antirecords that are also cycle double
falls;

nrcfall: neither-record-antirecords that are also cycle falls;

nrfix: neither-record-antirecords that are also fixed points.



First J-fraction

Qn(x1, x2, y1, y2, z , u1, u2, v1, v2,w) =∑
σ∈Sn

x
eareccpeak(σ)
1 x

earccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2 z rar(σ)

× u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wnrfix(σ)

But we can go farther!
If i is a fixed point of σ, we define its level by

lev(i , σ) := #{j < i : σ(j) > i} = #{j > i : σ(j) < i}.

Clearly, a fixed point i is a record-antirecord if its level is 0, and a
neither-record-antirecord if its level is ≥ 1.



First J-fraction

For σ ∈ Sn and ` ≥ 0 we define

fix(σ, `) := #{i ∈ [n] : σ(i) = i and lev(i , σ) = `}.

Introduce indeterminates w = (w`)`≥0 and write

wfix(σ) :=
∞∏
`=0

w
fix(σ,`)
` =

∏
i∈Fix(σ)

wlev(i ,σ).

The master polynomial encoding all these (now infinitely many)
statistics is

Qn(x1, x2,y1, y2, u1, u2, v1, v2,w) =∑
σ∈Sn

x
eareccpeak(σ)
1 x

earccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2

× u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wfix(σ)



Theorem 2 (First J-fraction for permutations)

The OGF of the polynomials Qn has the J-type continued fraction

∞∑
n=0

Qn(x1, x2, y1, y2, u1, u2, v1, v2,w)tn =

1

1− w0t −
x1y1t

2

1− (x2 + y2 + w1)t −
(x1 + u1)(y1 + v1)t2

1− · · ·

,

with coefficients γ0 = w0,

γn = [x2 + (n − 1)u2] + [y2 + (n − 1)v2] + wn for n ≥ 1

βn = [x1 + (n − 1)u1][y1 + (n − 1)v1].



Second J-fraction (with cyc)

Define the polynomial

Q̂n(x1, x2, y1, y2, u1, u2, v1, v2,w, λ) =∑
σ∈Sn

x
eareccpeak(σ)
1 x

earccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2

× u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wfix(σ)λcyc(σ).

This generalization is less satisfying, because cyc does not seem to
mesh with the record classification: even the three-variable
polynomials

P̂n(x , y , λ) =
∑
σ∈Sn

xarec(σ)y erec(σ) λcyc(σ)

do not have a J-fraction with polynomial coefficients.



Second J-fraction

Theorem 3 (v1 = y1 and v2 = y2)

The OGF of the polynomials Qn has the J-type continued fraction

∞∑
n=0

Q̂n(x1, x2, y1, y2, u1, u2, y1, y2,w, λ)tn =

1

1− λw0t −
λx1y1t

2

1− (x2 + y2 + λw1)t −
(λ+ 1)(x1 + u1)t2

1− · · ·

,

with coefficients γ0 = λw0,

γn = [x2 + (n − 1)u2] + ny2 + λwn for n ≥ 1

βn = (λ+ n − 1)[x1 + (n − 1)u1]y1.



The two J-fractions generalize (1) and (2) in Theorem 1

Comparing Theorem 1 (1) with the first J-fraction the polynomial
Qn reduces to Pn(x , y , u, v) if we set

x1 = x2 = x , y1 = y2 = y , w0 = xz

u1 = u2 = w` = 1 (` ≥ 1), v1 = v2 = v .

The weight function reduces to

w(σ) = xarec(σ)y erec(σ)v exc(σ)z rar(σ).

Comparing Theorem 1 (2) with the second J-fraction the
polynomial Q̂n reduces to Pn(x , y , u, v) if we set

x1 = x2 = y , u1 = u2 = v , w0 = z

y1 = y2 = v1 = v2 = w` = 1(` ≥ 1), λ = x .

The weight function reduces to

ŵ(σ) = xcyc(σ)y earec(σ)vaexc(σ)z rar(σ).



Statistics on permutations

We have the following equidistribution:

(arec, erec, exc, rar) ∼ (cyc, earec, exc, rar).

Note that rec = erec + rar. We derive

(arec, rec, exc) ∼ (cyc, arec, exc).

Cori (2008) and Foata-Han (2009) : (arec, rec) ∼ (cyc, arec)
on Sn and the distribution of (cyc, arec) is symmetric.



A symmetric continued fraction expansion

In Theorem 3 if we set

x1 = x2 = y , u1 = u2 = 1, w0 = y

y1 = y2 = v1 = v2 = z , w` = 1(` ≥ 1), λ = x ,

we have the symmetric J-CF expansion
∞∑
n=0

(∑
σ∈Sn

xcyc(σ)yarec(σ)zexc(σ)

)
tn =

1

1− xy t −
xyz t

1− (x + y + z) t −
(x + 1)(y + 1)z t

1− · · ·
with γ0 = xy ,

γn = x + y + n − 1 + nz

βn = (x + n − 1)(y + n − 1)z , for n ≥ 1.



p,q-generalizations of Euler’s continued fractions

Define the p, q-analog of n:

[n]p,q =
pn − qn

p − q
=

n−1∑
j=0

pjqn−1−j .

Foata-Zeilberger (1990), Biane (1993),
De Médicis-Viennot (1994), Simion-Stanton(1994, 1996),
Clarke-Steingrimsson-Z. (1997), Randrianarivony (1998).
Postnikov (2001?), Williams (2006), Corteel (2007), Josuat-Vergès
(2010), ...
Permutation tableaux, TASEP, PASEP.



Crossings and nestings

1 2 3 4 5 6 7 8 9 10 11

Figure: Pictorial representation of the permutation
π = 9 3 7 4 6 11 2 8 10 1 5 = (1, 9, 10) (2, 3, 7) (4) (5, 6, 11) (8)

We draw an upper (resp. lower) arc from i to π(i) if i < π(i)
(resp. i > π(i)):

i π(i) π(i) i



Upper and lower crossings

We say that a quadruple i < j < k < l forms an

upper crossing (ucross) if k = σ(i) and l = σ(j);

lower crossing (lcross) if i = σ(k) and j = σ(l).

i j k l i j k l



Upper and nestings

We say that a quadruple i < j < k < l forms an

upper nesting (unest) if l = σ(i) and k = σ(j);

lower nesting (lnest) if i = σ(l) and j = σ(k).

i j k l i j k l



Upper and lower joining

We consider also some ”degenerate” cases with j = k , by saying a
triplet i < j < l forms an

upper joining (ujoin) if σ(i) = j and σ(j) = l ;

lower joining (ljoin) if i = σ(j) and j = σ(l);

i j l i j l



upper pseudo-nesting (upsnest) if l = σ(i) and j = σ(j);

lower pseudo-nesting (lpsnest) if i = σ(l) and j = σ(j).

i j l i j l



Refined categories of upper crossing

We say that a quadruplet i < j < k < l forms an

upper crossing of type cval (ucrosscval) if k = σ(i) and
l = σ(j) and σ−1(j) > j ;

upper crossing of type cdrise (ucrosscdrise) if k = σ(i) and
l = σ(j) and σ−1(j) < j ;

i j k l i j k l



Refined categories of lower crossing

We say that a quadruplet i < j < k < l forms an

lower crossing of type cpeak (lcrosscpeak) if i = σ(k) and
j = σ(l) and σ−1(k) < k ;

lower crossing of type cdfall (lcrosscdfall) if i = σ(k) and
j = σ(l) and σ−1(k) > k ;

i j k l i j k l



Refined categories of upper nesting

We say that a quadruplet i < j < k < l forms an

upper nesting of type cval (unestcval) if l = σ(i) and
k = σ(j) and σ−1(j) > j ;

upper nesting of type cdrise (unestcdrise) if l = σ(i) and
k = σ(j) and σ−1(j) < j ;

i j k l i j k l



Refined categories of lower nesting

We say that a quadruplet i < j < k < l forms an

lower nesting of type cpeak (lnestcdpeak) if l = σ(i) and
j = σ(j) and σ−1(k) < k ;

lower nesting of type cdfall (lnestcdfall) if i = σ(l) and
j = σ(j) and σ−1(k) > k .

i j k l i j k l



First J-fraction for permutations

Define the polynomial

Qn(x, y,u, v,w,p,q, s) := Qn(x1, x2, y1, y2, u1, u2, v1, v2,w,

p+1, p+2, p+2, p−1, p−2, q+1, q+2, q−1, q−2, s) =

∑
σ∈Sn

x
eareccpeak(σ)
1 x

earccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2 ×

u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wfix(σ)×

p
ucrosscval(σ)
+1 p

ucrosscdrise(σ)
+2 p

lcrosscpeak(σ)
−1 p

lcrosscdfall(σ)
−2 ×

q
unestcval(σ)
+1 q

unestcdrise(σ)
+2 q

lnestcpeak(σ)
−1 q

inestcdfall(σ)
−2 spsnest(σ).



First J-fraction for permutations

∞∑
n=0

Qn(x, y,u, v,w,p,q, s)tn =

1

1− w0t −
x1y1t

2

1− (x2 + y2 + sw1)t −
(p1x1 + q−1u1)(p+1y1 + q+1v1)t2

1− · · ·

with coefficents γ0 = w0 and for n ≥ 1,

γn = (pn−1
−2 x2 + q−2[n − 1]p−2,q−2u2) + (pn−1

+2 y2 + q+2[n − 1]p+2,q+2v2)

+ snwn

βn = (pn−1
−1 x1 + q−1[n − 1]p−1,q−1u1)(pn−1

+1 y1 + q+1[n − 1]p+1,q+1v1).



First master J-fraction (1)

Rather than counting the total numbers of nestings, we should
instead count the number of upper (resp. lower) crossings or
nestings that use a particular vertex j (resp. k) in second (resp.
third) position, and then attribute weights to the vertex j (resp. k)
depending on these values.

ucross(j , σ) = #{i < j < k < l : k = σ(i) and l = σ(j)}
unest(j , σ) = #{i < j < k < l : k = σ(j) and l = σ(i)}

lcross(k, σ) = #{i < j < k < l : i = σ(k) and j = σ(l)}
lnest(k, σ) = #{i < j < k < l : i = σ(l) and j = σ(k)}.



First master J-fraction (2)

N.B. ucross(j , σ) and unest(j , σ) can be nonzero only when j is a
cycle valley or a cycle double rise, while lcross(k, σ) and lnest(k, σ)
can be nonzero only when k is a cycle peak or a cycle double fall.
And obviously we have

ucrosscval(σ) =
∑
j∈cval

ucross(j , σ)

and analogously for the other seven crossing/nesting quantities.



First master J-fraction (3)

We now introduce five infinite families of indeterminates a,b, c,d
where x = (x`,`′)`,`′≥0 and w = (w`)`≥0, and define the polynomial

Qn(a,b, c,d,w) =∑
σ∈Sn

∏
i∈cval

aucross(i ,σ),unest(i ,σ)

∏
i∈cpeak

blcross(i ,σ),lnest(i ,σ)×∏
i∈cdfall

clcross(i ,σ),lnest(i ,σ)

∏
i∈cdrise

ducross(i ,σ),unest(i ,σ)

∏
i∈fix

wlev(i ,σ)

These polynomials then have a beautiful J-fraction.



First master J-fraction (4)

Theorem 4 (First master J-fraction for permutations)

The OGF of the polynomials Qn(a,b, c,d,w) has the J-type
continued fraction

∞∑
n=0

Qn(a,b, c,d,w)tn =

1

1− w0t −
a00b00t

2

1− (c00 + d00 + w1)t −
(a00 + a10)(b01 + b10)t2

1− · · ·

with coefficients γn = c∗n−1 + d∗n−1 +wn and βn = a∗n−1b
∗
n−1, where

a∗n−1 :=
∑n−1

`=0 a`,n−1−` = a0,n−1 + a1,n−2 + . . .+ an−1,0.



Second master J-fraction (with cyc)

We again introduce five infinite families of indeterminates a,b, c,d
where a = (a`)`≥0, b = (b`,`′)`,`′≥0, c = (c`,`′)`,`′≥0,
d = (d`,`′)`,`′≥0, and e = (e`)`≥0, and define the polynomial

Q̂n(a,b, c,d, λ) =∑
σ∈Sn

λcyc(σ)
∏

i∈cval

aucross(i ,σ)+unest(i ,σ)

∏
i∈cpeak

blcross(i ,σ),lnest(i ,σ)×∏
i∈cdfall

clcross(i ,σ),lnest(i ,σ)

∏
i∈cdrise

ducross(i ,σ)+unest(i ,σ),unest(σ−1(i),σ)∏
i∈fix

elev(i ,σ)

These polynomials then have a beautiful J-fraction.



Theorem 5 (Second master J-fraction for permutations)

The OGF of the polynomials Qn(a,b, c,d, e, λ) has the J-type
continued fraction

∞∑
n=0

Q̂n(a,b, c,d, e, λ)tn =

1

1− λe0t −
λa0b00t

2

1− (c00 + d00 + λe1)t −
(λ+ 1)a1(b00 + b10)t2

1− · · ·

with coefficients γn = c∗n−1 + d \n−1 + λen and

βn = (λ+ n − 1)an−1b
∗
n−1, where b∗n−1 :=

∑n−1
`=0 b`,n−1−`,

c∗n−1 :=
∑n−1

`=0 c`,n−1−`, d
\
n−1 :=

∑n−1
`=0 dn−1,`.



A remark on the inversion statistic

A inversion of a permutation σ ∈ Sn is a pair i , j ∈ [n] such that
i < j and σ(i) > σ(j).

Lemma 1

We have

inv = cval + cdrise + cdfall + ucross + lcross

+ 2(unest + lnest + psnest).

de Médicis and Viennot, Clarke-Steingrimsson-Z., ...



Set partitions: S-fraction

The Bell number Bn is the number of partitions of an n-element
set into nonempty blocks with B0 = 1.

∞∑
n=0

Bn t
n =

1

1−
1 t

1−
1 t

1−
1 t

1−
2 t

1− · · ·

with coefficients α2k−1 = 1, α2k = k .



∞∑
n=0

Bn(x , y , v) tn =
1

1−
x t

1−
y t

1−
x t

1−
(y + 2v) t

1− · · ·
with coefficients α2k−1 = x , α2k = y + (k − 1)v .
Clearly Bn(x , y , v) is a homogeneous polynomial of degree n; it has
three truly independent variables.



Theorem 6 (S-fraction for set)

The polynomials Bn(x , y , v) have the combinatorial interpretation

Bn(x , y , v) =
∑
π∈Πn

x |π|y erec(π)vn−|π|−erec(π)

where |π| (resp. erec(π)) denotes the number of blocks (resp.
exclusive records) in π.

Given π ∈ Πn, for i ∈ [n], we define σ′(i) to be the next-larger
element after i in its block, if i is not the largest element in its
block, and 0 otherwise. Then erec(π) := erec(σ′). For example, if
π = {1, 5} − {2, 3, 7} − {4} − {6}, then σ′ = 5370000.



Given a partition π of [n], we say that an element i ∈ [n] is

an opener if it is the smallest element of a block of size ≥ 2;

a colser if it is the largest element of a block of size ≥ 2;

an insider if it is a non-opener non-closer element of a block
of size ≥ 3;

a singleton if it is the sole element of a block of size 1.

Clearly every element i ∈ [n] belongs to precisely one of these four
classes.



J-fraction

We can refine the polynomial Bn(x , y , v) by distinguishing between
singletons and blocks of size ≥ 2; in addition, we can distinguish
between exclusive records that are openers and those that are
insiders. Define

Bn(x1, x2, y1, y2, v) =
∑
π∈Πn

x
m1(π)
1 x

m≥2(π)
2 ×

y
erecin(π)
1 y

erecop(π)
2 vn−|π|−erec(π),

where m1(π) is the number of singletons in π, m≥2(π) is the
number of non-singletons blocks, erecin(π) is the number of
exclusive records that are insiders, and erecop(π) is the number of
exclusive records that are openers.



Theorem 7 (J-fraction for set partitions)

∞∑
n=0

Bn(x1, x2, y1, y2, v)tn =

1

1− x1t −
x2y2t

2

1− (x1 + y1)t −
x2(y2 + v)t2

1− · · ·

with coefficients γ0 = x1,

γn = x1 + y1 + (n − 1)v for n ≥ 1

βn = x2[y2 + (n − 1)v ].



Graph of a partition

Let π = {B1,B2, . . . ,Bk} be a partition of [n]. We associate a
graph Gπ with vertex set [n] such that i , j are joined by an edge if
and only if they are consecutive elements within the same block.
We then say that a quadruplet i < j < k < l forms a

crossing (cr) if (i , k) ∈ Gπ and (j , l) ∈ Gπ;

nesting (ne) if (i , l) ∈ Gπ and (j , k) ∈ Gπ.

We also say that a triplet i < k < l forms a

pseudo-nesting (psne) if (i , l) ∈ Gπ.

1 2 3 4 5 6 7 8 9 10 11

π = {{1, 9, 10}, {2, 3, 7}, {4}, {5, 6, 11}, {8}}.



First p, q−generalization

We now introduce a (p, q)-generalization of previous polynomial:

Bn(x1, x2, y1, y2, v , p, q, r) =
∑
π∈Πn

x
m1(π)
1 x

m≥2(π)
2 y

erecin(π)
1 y

erecop(π)
2 ×

vn−|π|−erecop(π)pcr(π)qne(π)rpsne(π).

Theorem 8

∞∑
n=0

Bn(x1, x2, y1, y2, v , p, q, r)tn =
1

1− x1t −
x2y2t

2

1− · · ·
with coefficients γ0 = x1,

γ = rnx1 + pn−1y1 + q[n − 1]p,qv for n ≥ 1

βn = x2(pn−1y2 + q[n − 1]p,qv).



First master J-fraction

Rather that counting the total numbers of quadrauplets
i < j < k < l that form crossings or nestings, we should instead
count the number of crossings or nestings that use a particular
vertex k in third (or sometimes second) position, and then attribute
weights to the vertex k depending on those values. We define

cr(k, π) = #{i < j < k < l : (i , k) ∈ Gπ and (j , l) ∈ Gπ}
ne(k , π) = #{i < j < k < l : (i , l) ∈ Gπ and (j , k) ∈ Gπ}.

In addition we define the quasi-nesting of the vertex k:

qne(k, π) = #{i < k < l : (i , l) ∈ Gπ}



First master J-fraction

Note that cr(k , π) and ne(k , π) can be nonzero only when k is
either an insider or a closer; and we obviously have

cr(π) =
∑

k∈insiders∩ closers

cr(k , π)

ne(π) =
∑

k∈insiders∩ closers

ne(k , π)

psne(π) =
∑

k∈singletons

qne(k , π).



First master J-fraction

We now introduce four infinite families of indterminates
a = (a`)`≥0, b = (a`,`′)`,`′≥0, c = (c`,`′)`,`′≥0, e = (e`)`≥0 and
define the polynomials Bn(a,b, c, e) by

Bn(a,b, c, e) =
∑
π∈Πn

∏
i∈openers

aqne(i ,π)

∏
i∈closers

bcr(i ,π),ne(i ,π)∏
i∈insiders

ccr(i ,π),ne(i ,π)

∏
i∈singletons

epsne(i ,π)



Theorem 9 (Master J-fraction for set partitions)

The OGF of the polynomials Bn(a,b, c, e) has the J-type CF

∞∑
n=0

Bn(a,b, c, e)tn =

1

1− e0t −
a0b00t

2

1− (c00 + e1)t −
a1(b01 + b10)t2

1− · · ·

with coefficients
γn =

∑n−1
`=0 c`,n−1−` + en, βn = an−1

∑n−1
`=0 b`,n−1−`.

We have also a second master J-fraction using the notion of
overlapping and covering.



Perfect matchings

Euler:
∞∑
n=0

(2n − 1)!!tn =
1

1−
1 t

1−
2 t

1−
3 t

1− · · ·
We introduce the polytnomials Mn(x , y , u, v) by

∞∑
n=0

Mn(x , y , u, v)tn =
1

1−
x t

1−
(x + v) t

1−
(x + 2u) t

1− · · ·
with coefficients α2k−1 = x + (2k − 2)u, α2k = y + (2k − 1)v



Master S-fraction

We can regard a perfect matching either as a special type of
partition (namely, one in which all blocks are of size 2) or as a
special type of permutation (namely, a fixed-point-free involution).
We now introduce four infinite families of indterminates
a = (a`)`≥0, b = (a`,`′)`,`′≥0,and define the polynomials Mn(a,b)
by

Mn(a,b) =
∑

π∈M2n

∏
i∈openers

aqne(i ,π)

∏
i∈closers

bcr(i ,π),ne(i ,π).

Of course, we have Mn(a,b) = B2n(a,b, 0, 0).



Theorem 10 (Master S-fraction for perfect matchings)

The OGF of the polynomials Bn(a,b) has the S-type CF

∞∑
n=0

Mn(a,b)tn =
1

1−
a0b00t

2

1−
a1(b01 + b10)t2

1− · · ·

with coefficients αn = an−1b
∗
n−1, where

b∗n−1 =
∑n−1

`=0 b`,n−1−`.

Unfortunately we treat openers and closers asymmetrically.



Prelininaries: Flajolet’s fondamental lemma

Consider the following Motzkin path γ :

0

A0

1

C1

2

A1

3

B2

4

B1

5
C0

6

A0

7

B1

8
C0

9

1

2

The weight is
w(γ) = A2

0A1B2B
2
1C1C

2
0 .

Let Mn be the set of Motzkin paths of length n ≥ 1. Then

1 +
∑
n≥1

∑
γ∈Mn

w(γ)xn =
1

1− C0x −
A0B1x

2

1− C1x −
A1B2x

2

· · ·

. (3)



Labelled Dyck and Motzkin paths

Let A = (Ak)k≥0, B = (Bk)k≥1 and C = (Ck)k≥0 be sequences of
nonnegative integers. An (A,B,C)-labelled Motzkin path of length
n is a pair (ω, ξ) where ω = (ω0, . . . , ωn) is a Motzkin path of
length n, and ξ = (ξ1, . . . , ξn) is a sequence of integres satisfying

1 ≤ ξi ≤


A(hi−1) if hi = hi−1 + 1 (i.e. step i is a rise)

B(hi−1) if hi = hi−1 − 1 (i.e. step i is a fall)

C (hi−1) if hi = hi−1 (i.e. step i is a level step)

where hi is the height of the Motzkin path after step i , i.e.
ωi = (i , hi ) and

Ak = k + 1 (k ≥ 0), Bk = k (k ≥ 1), Ck = 2k + 1 (k ≥ 0).



It is convenient to divide the level steps into three types: Let

Ck = C
(1)
k + C

(2)
k + C

(3)
k with

C
(1)
k = k , C

(2)
k = k, C

(3)
k = 1 (k ≥ 0).

Thus, Euler’s CF expansion for
∑

n≥0 n!xn is equivalent to say that

the number of (A,B,C(1),C(2),C(3))-labelled 3-colored Motzkin
paths of length n is n!.

We then use a variant of the Foata-Zeilberger bijection for the first
J-fraction. To prove the second fraction we need to construct a
bijection that will allow us to count the number of cycles (cyc),
which is a global variable. We will employ a variant of Biane’s
bijection.



Permutations: Outline of Proofs

1 Definition of the Motzkin path.

2 Definition of the labels ξi .

3 Proof of bijection.

4 Translation of the statistics.

5 Computation of the weights.



Definition of the Motzkin path

Given a permutation σ ∈ Sn, we classify the indices i ∈ [n] in the
usual way as cycle peak, cycle valley, cycle doube rise, cycle double
fall or fixed point. We then define a path ω = (ω0, . . . , ωn)
strating at ω0 = (0, 0) and ending at ωn = (n, 0), with steps
s1, . . . , sn as follows:

If i is a cycle valley, then si is a rise.

If i is a cycle peak, then si is a fall.

If i is a cycle double fall, then si is a level step of type 1.

If i is a cycle double rise, then si is a level step of type 2.

If i is a fixed point, then si is a level step of type 3.



0 1 2 3 4 5 6 7

1

2
1 3

2

The 3-coloreed Motzkin path corresponding to the permutation
σ = (1, 5, 2, 6, 7, 3)(4)
We then need to explain how the labels ξ are defined; next we will
prove that the mapping is indeed a bijection; next we will translate
the various statistics from Sn to our labelled Motzkin paths; and
finally we will sum over labels ξ to obtain the weight W (ω)
associated to a Motzkin path ω, which upon applying Flajolet’s
result will yield our Theorem.



Joyeux anniversaire, Christian!


