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an acyclic orientation

S is the only source and N the only sink
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Bipolar orientations of maps
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@ simple orientations around a vertex/face

sink

source



@ simple orientations around a vertex/face
@ M admits a bipolar orientation from S to N iff MU {S, N} is
2-connected

[De Fraysseix, Ossona de Mendez, Rosenstiehl 95]



Bipolar maps: basic facts
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@ the number bip(M) of bipolar orientations of M from N to S can be
computed from the chromatic polynomial of M U {S, N}
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[Greene & Zaslavsky 83], [Lass 01]



Bipolar maps: basic facts

@ simple orientations around a vertex/face

@ M admits a bipolar orientation from S to N iff MU {S, N} is
2-connected

@ the number bip(M) of bipolar orientations of M from N to S can be
computed from the chromatic polynomial of M U {S, N}

[De Fraysseix, Ossona de Mendez, Rosenstiehl 95]
[Greene & Zaslavsky 83], [Lass 01]

e Aim: compute, or characterize, the generating function
S gy = Y e
M map 0 bip. orient.

where the sum runs over a given family of planar maps M (or the
corresponding bipolar orientations), and e(M) is the edge number.



Maps equipped with an additional structure

In combinatorics, and in theoretical physics

@ Spanning trees [Mullin 67, Bernardi]

@ Spanning forests [Bouttier et al., Sportiello et al., mbm-Courtiel]
@ Proper colourings [Tutte 68-84]

@ Self-avoiding walks [Duplantier-Kostov]

@ Hard particles [Bouttier et al., mbm, Schaeffer, Jehanne]

°

The g-state Potts model (equivalent to the Tutte polynomial)
[Eynard-Bonnet 99, Baxter, Bernardi-mbm, Borot et al. ]

LOOp models [Borot et al., Eynard, Kristjansen, Zinn-Justin]

Eulerian orientations [Kostov, Zinn-Justin, Bonichon et al., Guttmann, mbm
& Elvey Price]



No degree restriction on faces Triangulations, quadrangulations, etc.

b(n) =1,2,6,22,92,422, 2074 | a(3k + 1) = 1,1,5,42, 462, 6006, 87516
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The number of bipolar orientations with n edges is

0= e (1) () () ~ 5=

This sequence is P-recursive (the associated generating function
> b(n)t" is D-finite):

(n+6)(n+5)b(n+2) = (7n>+49n +82)b(n + 1) + 8(n+2)(n -+ 1)b(n)
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The number of bipolar orientations with n edges is

b(n) = leZ(H ><n+1><Zii>N\%2ﬂ8

This sequence is P-recursive (the associated generating function

> b(n)t" is D-finite):

(n+6)(n+5)b(n+2) = (7n>+49n +82)b(n + 1) + 8(n+2)(n -+ 1)b(n)

But but but... these numbers count Baxter permutations!
[G. Baxter 64| [Chung, Graham, Hoggatt & Kleiman 78|

= Bijections with Baxter permutations, non-intersecting 3-tuples of paths
[Bonichon, mbm & Fusy 09, Felsner, Fusy, Noy & Orden 11, Fusy,
Poulalhon & Schaeffer 09]







Bipolar orientations: a simple recursive structure

Two ways of adding an edge:

left outer degree 3 O?/:
no new face

North degree 4 \ ZQ;;

@ Every bipolar map is obtained exactly once

a new face

@ The left outer degree and the North degree can be described
recursively



@ Due to edge contractions, the above recursive construction behaves
badly (apart from triangulations)



@ Due to edge contractions, the above recursive construction behaves
badly (apart from triangulations)

The number of bipolar orientations of triangulations of a digon having
n =3k + 1 edges is

aky = — 26K VB

Kk+Di(k+2)! " 7
The sequence is P-recursive (hypergeometric):

(k +1)(k +2)a(k) = 3(3k — 1)(3k — 2)a(k — 1).

This is also the number of rectangular Young tableaux of height 3 and
width k.




@ Due to edge contractions, the above recursive construction behaves
badly (apart from triangulations)

@ A new construction: a bijection with lattice paths [Kenyon, Miller,
Sheffield, Wilson, 15(a)]



Denote X :=1/x, y :=1/y, and let
S(x,y) :=xy + Z ziy Xyl

ij=0

The generating function of bipolar orientations of a digon, with each edge
weighted by t and each (inner) face of degree k + 2 weighted by z, is

2 )
_ roootys S(xy) X k42
B=—[x"y ]—X T=t5(xy) (1 ; I kE>OZk(k + 1)k )

When degrees are bounded, the RHS is a rational series and B is a
D-finite series.



Denote X :=1/x, y :=1/y, and let
S(x,y) :=xy + Z ziy Xyl

ij=0
Let Y7 = tx + O(t?) is the unique power series in t (with coefficients that
are Laurent polynomials in x) satisfying 1 = t S(x, Y1).

The generating function of bipolar orientations of a digon, with each edge
weighted by t and each (inner) face of degree k + 2 weighted by z, is

2 )
_ roootys S(xy) X k42
B=—[x"y ]—X T=tS(xy) (1 ; I kE>OZk(k + 1)k )

When degrees are bounded, the RHS is a rational series and B is a
D-finite series. Equivalently,

B — Oﬁ 1_i2 % 1—k+2
)= —+ > a(k+1)x
k>0






e k =1 (triangulations)

(n+3)(n+2)a(n+1)=3(3n+2)(3n+1)a(n)
e k =2 (quadrangulations)
(n+4)(n+3)%a(n + 2) = 4(2n+3)(n+3)(n+1)a(n + 1)+12(2n+3)(2n+1)(n+1)a(n)
e k = 3 (pentagulations)

27(3n +8)(3n + 4)(5n 4+ 3)(3n + 5)*(3n + 7)*(n + 2)%a(n + 2) =
60(5n-+7)(3n+5)(5n+9)(5n+6)(3n+4)(8+5n)(145n> +532n° +626n+233)a(n + 1)
—800(5n + 6)(5n + 1)(5n + 7)(5n 4 2)(5n + 3)(5n + 9)(5n + 4)(8 + 5n)%a(n)

Software: [Bostan, Lairez, Salvy 13]



[Kenyon, Miller, Sheffield, Wilson, 15(a)]




The KMSW construction

Take a lattice walk with two kinds of steps:
o SE steps (1,-1)
e NW steps (—i,/) with i,j >0

The construction starts from a walk and a bipolar orientation reduced to
an edge, and yields an incomplete bipolar orientation.

in—degree 1

out—degree 1




The KMSW construction

The construction starts from a walk and a bipolar orientation reduced to
an edge, and yields an incomplete bipolar orientation.

@ every SE step (1, —1) creates an edge.
@ every NW step (—i,/) creates a face of degree i + j + 2 and an edge.

or (_i’j)

Example: walk
(07 2)(17 *1)(17 *1)(*17 0)(17 *1)(*37 1)(*17 O)(17 *1)(07 1)(07 1)



This construction is a bijection from lattice paths to incomplete bipolar

orientations.

in—degree 1

out—degree 1



This construction is a bijection from lattice paths to incomplete bipolar
orientations.

e steps < (solid) edges in the orientation (minus 1)
o steps (—1/, /) < faces of oriented degree (i + 1,/ + 1)
e coordinates of the endpoints < left and right boundaries of the map.

b+1 \

%)
-

\ c+1
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unrestricted half—plane quadrant
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The KMSW construction: Some specializations

unrestricted half—plane quadrant
Q
\ 1
/ \
\
\ Oj \
\ \
O
incomplete left incomplete complete

Enumeration of walks confined to the quadrant






@ SLC 74, March 2015, Ellwangen: Three lectures by Alin Bostan
“Computer Algebra for Lattice Path Combinatorics”

@ SLC 77, September 2016, Strobl: Three lectures by Kilian Raschel
“Analytic and Probabilistic Tools for Lattice Path Enumeration”




Counting quadrant walks

o With small steps (included in {—1,0,1}?)
» sporadic cases [Gessel, Gouyou-Beauchamps, Kreweras, Krattenthaler,
Niederhausen, Sagan...]

» uniform approach [Mishna, mbm-Mishna 10]

» D-finite and algebraic cases [Bostan & Kauers 10, mbm-Mishna 10,
Zeilberger]

» non-D-finite cases [Kurkova & Raschel 12, Bostan, Raschel, Salvy 14]

> D-algebraic cases [Bernardi, mbm & Raschel 18(a)]

» non-D-algebraic cases [Dreyfus, Hardouin, Roques & Singer 17(a)]

» an attractive mixture of methods: power series algebra, bijections,

complex analysis, computer algebra, differential Galois theory...
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Counting quadrant walks

o With small steps (included in {—1,0,1}?)
» sporadic cases [Gessel, Gouyou-Beauchamps, Kreweras, Krattenthaler,
Niederhausen, Sagan...]

» uniform approach [Mishna, mbm-Mishna 10]

» D-finite and algebraic cases [Bostan & Kauers 10, mbm-Mishna 10,
Zeilberger]

» non-D-finite cases [Kurkova & Raschel 12, Bostan, Raschel, Salvy 14]

> D-algebraic cases [Bernardi, mbm & Raschel 18(a)]

» non-D-algebraic cases [Dreyfus, Hardouin, Roques & Singer 17(a)]

» an attractive mixture of methods: power series algebra, bijections,

complex analysis, computer algebra, differential Galois theory...
e With arbitrary steps

» an approach that solves (some) D-finite cases
[Bostan, mbm & Melczer 18(a)]
including those corresponding to bipolar orientations
[mbm, Fusy & Raschel 18(a)]



Walk enumeration for bipolar orientations

Parameters and variables:
@ steps/edges: variable t
@ steps (—/,/) (faces): variable z;,; (degree selection)
@ coordinates of the endpoint: variables x, y

Example:
weight(w) = t*zz x1y°

The step polynomial (generating function of the steps)

S(x,y) =x7+ Y zigx'y
>0
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Proof. First return decomposition (largest down move = —1)

Hix) =1+ zi () H(x)  (x).

This gives for Y = txH(x) the equation tS(x, Y) = 1, with

S(,y) =x7+ > zig &y,
ij>0






A functional equation:

Qx,y) =1+ tQ(x,y)S(x,y) — txyQ(x, 0)
—t E: zi %y (Qo(y) + xQu(y) + - +x1Qi—1(y))

i>0,/>0

where Q;(y) counts quadrant walks ending at abscissa /.

b T



Q(0,0) = [xo]YltE(X) (1 — )_(: +) (k+ l)zk>_<k+2> .
k

A simple case: triangulations. Take zy =1 and z; =0if i # 1
Qlx,y) =1+ Q(x,y)5(x,y) — txyQ(x,0) — txQ(0, y)

Walks confined to a Weyl chamber, solvable using the reflection principle
[Gessel-Zeilberger 92]



Q(0,0) = [xo]YltE(X) <1 — )—;2 +) (k+ 1)zk>‘<"+2> .
k

Quadrangulations. Take zz =1 and z; =0 if i # 2

Q(x,y) = 1+5(x, y) Q(x, )~ tx7 Q(x, 0)—tx* (Qo(y) + xQu(y)) — txyQo(y
where Q;(y) counts quadrant walks ending at abscissa /.




DO s



= [x°]H(x) (1 1 + 3) half-plane walks

tx2 = x3
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In fact,
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e Known: Young tableaux of height at most three are counted by
Motzkin numbers [Regev 81]

They correspond to quadrant walks ending anywhere.




An algebraicity phenomenon

e Known: Young tableaux of height at most three are counted by
Motzkin numbers [Regev 81]

They correspond to quadrant walks ending anywhere.

e Generalization: the generating function of quadrant walks ending
anywhere is Y/ /t, where Y = Yj(1) is the only power series solution of
tS(1,Y) = 1. Equivalently,
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ij>0

[mbm, Fusy, Raschel 18(a)]:
an algebraic and a bijective proof




An algebraicity phenomenon

e Known: Young tableaux of height at most three are counted by
Motzkin numbers [Regev 81]

They correspond to quadrant walks ending anywhere.

Bijections [Gouyou-Beauchamps 89, Eu 10]

e Generalization: the generating function of quadrant walks ending
anywhere is Y/ /t, where Y = Yj(1) is the only power series solution of
tS(1,Y) = 1. Equivalently,

Y=t+t Z Z,'+J'Yj+1

ij>0

[mbm, Fusy, Raschel 18(a)]:
an algebraic and a bijective proof







Given a finite set Q of degrees, define « by

and let

The number of bipolar orientations of a digon with n edges, in which all
inner faces have degree in , satisfies (with periodicity contraints)

b (n) ~ ky"n*

where the constant « is also explicit.

builds on enumerative results + the approach of [Denisov & Wachtel 15]



In conclusion

@ Very rich combinatorics

@ Connection with quadrant walks, with the longest increasing
sequence in (Baxter) permutations...

@ Enumerative results

@ What about large random bipolar maps?

Jérémie Bettinelli ) .
© © Nicolas Curien



