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What this talk is about:

(1) Generalisations of the beta integral

∫ 1

0

tα−1(1− t)β−1dt =
Γ(α)Γ(β)

Γ(α + β)
Re(α),Re(β) > 0,

an integral first discovered by Euler in 1730.

(2) The connections of such integrals with representation theory and
conformal field theory.

(3) . . . but most importantly of all:

the celebration of ’s birthday

and amazing career as

world-class pianist & combinatorialist.
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Asymptotic analysis of a Selberg-type integral via hypergeometrics

C. Krattenthaler†

Fakultät für Mathematik, Universität Wien,
Nordbergstraße 15, A-1090 Vienna, Austria.

WWW: http://www.mat.univie.ac.at/~kratt

Abstract. We show how to determine the asymptotics of a certain Selberg-type integral by
means of tools available in the theory of (generalised) hypergeometric series. This provides an

alternative derivation of a result of Carré, Deneufchâtel, Luque and Vivo [arχiv:1003.5996].

In [2], Carré, Deneufchâtel, Luque and Vivo consider the Selberg-type integral

Sk(a, b)
1

N !

∫

[0,1]N
xk
1

( ∏

1≤i<j≤N

(xi − xj)
2

)(
N∏

i=1

xa−1
i (1− xi)

b−1 dxi

)
,

and they determine its asymptotic behaviour when N, a, b all tend to infinity so that
a ∼ a1N and b ∼ b1N , where a1 and b1 are given non-negative real numbers. The reader
is referred to the introduction of [2] for information on motivation from random matrix
theory connected to random scattering theory to investigate this question.

It should be noted that S0(a, b) is a Selberg integral, which can be evaluated in a
product/quotient of gamma functions (cf. [3]). This being the case, the asymptotics of
S0(a, b) is easily determined by means of known asymptotic formulae for the Barnes G-
function (see [7]). Thus, it suffices to consider the quotient

Jk =
Sk(a, b)

S0(a, b)

(this quotient is denoted by Ik/N in [2]) and determine its asymptotic behaviour. By
(now) classical identities in the theory of symmetric functions, it is shown in [2, Cor. II.3]
that

Jk =
1

N · k!
k−1∑

i=0

(−1)i
(
k − 1

i

)
(N − i)k (a+N − i− 1)k
(a+ b+ 2N − i− 2)k

, (1)

2000 Mathematics Subject Classification. Primary 33C20; Secondary 33A15 33C52 60B20 82B05.
Key words and phrases. Selberg-type integral, hypergeometric series, contiguous relation, balanced

hypergeometric series, transformation formula.
†Research partially supported by the Austrian Science Foundation FWF, grants Z130-N13 and S9607-

N13, the latter in the framework of the National Research Network “Analytic Combinatorics and Proba-

bilistic Number Theory”.

1



Journal of Combinatorial Theory, Series A 144 (2016) 80–138

Contents lists available at ScienceDirect

Journal of Combinatorial Theory, 
Series A

www.elsevier.com/locate/jcta

Discrete analogues of Macdonald–Mehta integrals

Richard P. Brent a,1, Christian Krattenthaler b,2, Ole Warnaar c,3

a Australian National University, Canberra, ACT 2600, Australia
b Fakultät für Mathematik, Universität at Wien, Oskar-Morgenstern-Platz 1, 
A-1090 Vienna, Austria
c School of Mathematics and Physics, The University of Queensland, Brisbane, 
QLD 4072, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 15 July 2016

Keywords:
Classical group characters
Elliptic hypergeometric series
Minor summation formula
Schur functions
Selberg integrals
Semi-standard tableaux

We consider discretisations of the Macdonald–Mehta integrals 
from the theory of finite reflection groups. For the classical 
groups, Ar−1, Br and Dr, we provide closed-form evaluations 
in those cases for which the Weyl denominators featuring 
in the summands have exponents 1 and 2. Our proofs for 
the exponent-1 cases rely on identities for classical group 
characters, while most of the formulas for the exponent-2
cases are derived from a transformation formula for elliptic 
hypergeometric series for the root system BCr. As a byproduct 
of our results, we obtain closed-form product formulas for 
the (ordinary and signed) enumeration of orthogonal and 
symplectic tableaux contained in a box.

© 2016 Elsevier Inc. All rights reserved.

E-mail addresses: Richard.Brent@anu.edu.au (R.P. Brent), Christian.Krattenthaler@univie.ac.at
(C. Krattenthaler), O.Warnaar@maths.uq.edu.au (O. Warnaar).
1 R.P.B. is supported by the Australian Research Council Discovery Grant DP140101417.
2 C.K. is partially supported by the Austrian Science Foundation FWF, grant S50-N15, in the framework 

of the Special Research Program “Algorithmic and Enumerative Combinatorics.”
3 O.W. is supported by the Australian Research Council Discovery Grant DP110101234.

http://dx.doi.org/10.1016/j.jcta.2016.06.005
0097-3165/© 2016 Elsevier Inc. All rights reserved.



sl2: the Selberg integral

Let
∆(t1, . . . , tk) :=

∏

16i<j6k

(ti − tj)

be the Vandermonde product.

In 1941/1944 Selberg extended the Euler beta integral to the
k-dimensional hypergeometric integral

∫

[0,1]k

k∏

i=1

tα−1
i (1− ti )

β−1 |∆(t1, . . . , tk)|2γ dt1 · · · dtk

=
k∏

i=1

Γ(α + (i − 1)γ)Γ(β + (i − 1)γ)Γ(1 + iγ)

Γ(α + β + (k + i − 2)γ)Γ(1 + γ)

for Re(α) > 0, Re(β) > 0 and

Re(γ) > −min{1/k ,Re(α)/(k − 1),Re(β)/(k − 1)}



The Selberg integral plays an important role in the study of random
matrices, Riemann zeros, hyperplane arrangements, orthogonal
polynomials, integrable systems, conformal field theory, and more.

Because of the occurrence of the Vandermonde product, the Selberg
integral is often associated with the Ak−1 root system.

α1

α2 α1 + α2

∏

α>0

α · t =
∏

16i<j6k

(εi − εj) · t =
∏

16i<j6k

(ti − tj) = ∆(t1, . . . , tk), t ∈ Rk



This viewpoint naturally leads to Selberg-type integrals for arbitrary finite
reflection groups G , as first formulated as a conjecture by Macdonald:

∫

Rk

|∆G (t1, . . . , tk)|2γ dϕ(t1, . . . , tk) =
k∏

i=1

Γ(diγ + 1)

Γ(γ + 1)

Here the di are the degrees of the fundamental invariants of G ,
∆G (t1, . . . , tk) is the type-G Vandermonde determinant

∆G (t1, . . . , tk) =
∏

α>0

α · t

and ϕ is the k-dimensional Gaussian measure

dϕ(t1, . . . , tk) =
k∏

i=1

e−t
2
i /2

√
2π

dti



We will take a different algebraic point of view, connecting the Selberg
integral to the representation theory of sl2.

Recall that the beta integral arises as the solution of the hypergeometric
differential equation

x(1− x)
d2F

dx2
+
(
c −

(
a + b + 1

)
x
)dF

dx
− abF = 0

at the regular singular point x = 0.

Indeed, more generally,

F (a, b; c ; x) =
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0

tb−1(1− t)c−b−1(1− xt)−a dt

for Re(c) > Re(b) > 0 and x 6∈ [1,∞).



To also bring the full Selberg integral into the picture we reformulate the
hypergeometric differential equation as a system of two first order partial
differential equations.

Let λ be a nonnegative integer and Vλ an irreducible sl2-module of
highest weight λ.

e

f

h

vλf (vλ)f 2(vλ)f λ(vλ)

h f i (vλ) = (λ− 2i) f i (vλ)

e f i (vλ) = i(λ− i + 1) f i−1(vλ)

f λ+1(vλ) = 0

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f



Let Vλ and Vµ be two irreducible sl2-modules, and denote by
Ω ∈ sl2 ⊗ sl2 the Casimir element

Ω = e ⊗ f + f ⊗ e +
1

2
h ⊗ h

Then the Knizhnik–Zamolodchikov (KZ) equation for a function

u : C2 → Vλ ⊗ Vµ

is the system of partial differential equations

∂u

∂z
= γ

Ω

z − w
u

∂u

∂w
= γ

Ω

w − z
u

where γ is a (complex) constant.



Fix an nonnegative integer k such that 0 6 k 6 λ+ µ.
Then Schechtman and Varchenko obtained the following solution of the
KZ equation in the subspace of Vλ ⊗Vµ of weight λ+ µ− 2k in terms of
k-dimensional Selberg-type integrals

u(z ,w) =
k∑

i=0

ui (z ,w)
(
f ivλ ⊗ f k−ivµ

)

where

ui (z ,w) = (z − w)λµγ
∫

C

k∏

i=1

(ti − z)−λγ(ti − w)−µγ ∆2γ(t1, . . . , tk)

× Ai (z ,w ; t1, . . . , tk) dt1 · · · dtk

The functions Ai are explicitly known. For example,

A0(z ,w ; t1) = (t1 − w)−1, A1(z ,w ; t1) = (z − t1)−1



The k-dimensional contour C in

ui (z ,w) = (z − w)λµγ
∫

C

k∏

i=1

(ti − z)−λγ(ti − w)−µγ ∆2γ(t1, . . . , tk)

× Ai (z ,w ; t1, . . . , tk) dt1 · · · dtk

is a suitable deformation of [0, 1]k . For example, for k = 1 it is the
well-known Pochhammer double loop:

For w = 0 and z = 1 (and the real part of γ in the right range) one can
deform C to [0, 1]k to recover the Selberg integral.

We will return to the connection with KZ but first discuss two well-known
and one not so well-known generalisations of the Selberg integral.



The Kadell integral

Macdonald conjectured and Kadell proved an extension of the Selberg
integral obtained by adding a Jack polynomial

P(1/γ)
η (t1, . . . , tk)

to the integrand:

∫

[0,1]k

P(1/γ)
η (t1, . . . , tk)

k∏

i=1

tα−1
i (1− ti )

β−1 |∆(t1, . . . , tk)|2γ dt1 · · · dtk

= P(1/γ)
η (1, 1, . . . , 1)

k∏

i=1

Γ(α + (i − 1)γ + ηi )Γ(β + (i − 1)γ)Γ(1 + iγ)

Γ(α + β + (k + i − 2)γ + ηi )Γ(1 + γ)

For η = (1r ) this is also known as Aomoto’s integral.



The Hua–Kadell integral

For β = γ a second Jack polynomial may be added to the integrand

∫

[0,1]k

P(1/γ)
η (t1, . . . , tk)P(1/γ)

τ (t1, . . . , tk)

×
k∏

i=1

tα−1
i (1− ti )

γ−1 |∆(t1, . . . , tk)|2γ dt1 · · · dtk

= P(1/γ)
η (1, 1, . . . , 1)P(1/γ)

τ (1, 1, . . . , 1)

×
k∏

i=1

Γ(α + (i − 1)γ + ηi )Γ(γ + (i − 1)γ)Γ(1 + iγ)

Γ(α + γ + (k + i − 2)γ + ηi )Γ(1 + γ)

×
k∏

i,j=1

Γ(α + γ + (2k − i − j − 1)γ + ηi + τj)

Γ(α + γ + (2k − i − j)γ + ηi + τj)



The AGT conjecture

In 2009 Alday, Gaiotto and Tachikawa conjectured a relation between
conformal blocks in Liouville field theory and the Nekrasov partition
function from N = 2 supersymmetric gauge theory.

One does not have to understand any of the above jargon from string
theory to appreciate that this is an important conjecture. It relates two
seemingly unrelated notations and AGT paper has received well over
1000 citations to date.

One ingredient of the conjecture is an explicit combinatorial formula for
the conformal blocks based on the closed form expression of the
instanton part of the Nekrasov partition function.

Alba, Fateev, Litvinov, and Tarnopolskiy verified this combinatorial
formula in the case of SU(2). To do so they had to compute a Selberg
integral over two Jack symmetric functions, without the restriction β = γ
as given in the Hua–Kadell integral.



The Alba–Fateev–Litvinov–Tarnopolskiy integral

Let X = {x1, x2, . . . } and Y = {y1, y2, . . . } be arbitrary alphabets.

For f a symmetric function, we write f [X + Y ] and f [X −Y ] for f acting
on the sum/difference of the alphabets X and Y .
This is most easily defined in terms of the Newton power sums pr :

pr [X ] := x r1 + x r2 + · · ·

as follows

pr [X + Y ] := pr [X ] + pr [Y ] and pr [X ]− pr [Y ]

In particular

pr [kX ] := pr [X + X + · · ·+ X︸ ︷︷ ︸
k times

] = k pr [X ]

which can be generalised further to z ∈ C by

pr [zX ] := z pr [X ]



Hence
pr [X + zY ] = pr [X ] + z pr [Y ]

When Y = {1} we write this as

pr [X + z ] = pr [X ] + z 6= pr [X + Z ], Z = {z}

With this notation, the proof of the SU(2) case of the AGT conjecture by
Alba et al. uses the following integral over two Jack polynomials.



Let t = {t1, . . . , tk} and µ a partition of length at most `. Then

∫

[0,1]k

P(1/γ)
η [t]P(1/γ)

τ [t + β/γ − 1]
k∏

i=1

tα−1
i (1− ti )

β−1 |∆(t)|2γ dt

= P(1/γ)
η [k]P(1/γ)

τ [k + β/γ − 1]

×
k∏

i=1

Γ(α + (i − 1)γ + ηi )Γ(β + (i − 1)γ)Γ(1 + iγ)

Γ(α + β + (k + i − 2)γ + ηi )Γ(1 + γ)

×
k∏

i=1

∏̀

j=1

Γ(α + β + (2k − i − j − 1)γ + ηi + τj)

Γ(α + β + (2k − i − j)γ + ηi + τj)

Note that for τ = 0 this is the Kadell integral and for β = γ the
Hua–Kadell integral.



The sl3 Selberg integral

To deal with the AGT conjecture for SU(n) an appropriate generalisation
of the Selberg integral to sln is required.

Such an integral arises by considering the KZ equation for sln instead of sl2.

Now Vλ and Vµ are two irreducible sln highest-weight modules of highest
weight λ, µ ∈ P+ respectively.

α1

α2

ω1

ω2



With Ω now in sln ⊗ sln we have exactly the same system of PDEs to
solve:

∂u

∂z
= γ

Ω

z − w
u

∂u

∂w
= γ

Ω

w − z
u

for
u : C2 → Vλ ⊗ Vµ

To keep some of the notation for this talk in check we will restrict
ourselves to sl3. Everything generalises in the obvious manner to higher
rank.



The Schechtman and Varchenko solution of the KZ equation in the
subspace of Vλ ⊗ Vµ of weight λ+ µ− kα1 − `α2 at w = 0 and z = 1 is
now a linear combination of sl3 Selberg integrals of the form

∫ k∏

i=1

t
−γ(λ,α1)
i (1− ti )

−γ(µ,α1)
∏̀

i=1

s
−γ(λ,α2)
i (1− si )

−γ(µ,α2)

×∆2γ(t)∆2γ(s)∆−γ(t, s) dt ds

where t = (t1, . . . , tk), s = (s1, . . . , s`) and

∆(t, s) :=
k∏

i=1

∏̀

j=1

(ti − sj)

∆2(t) ∆2(s)∆−1(t, s) C =

(
2 −1
−1 2

)



In general we do not know how to compute the above integral but
Mukhin and Varchenko conjectured that if the subspace of Vλ ⊗ Vµ of
weight λ+ µ− kα1 − `α2 is one-dimensional then an evaluation as a
product of gamma functions should exist.

But the dimension of the subspace is exactly given by the
Littlewood–Richardson coefficient

cλ+µ−kα1−`α2

λµ

Stembridge classified for which weights λ and µ all

cνλµ 6 1

Below we will focus on a well-known special case of this classification
corresponding to what is known as the Pieri rule:

λ = λ1ω1, µ = µ1ω1 + µ2ω2, ν = λ+ µ− kα1 − `α2

where 0 6 k 6 ` (plus some further conditions bounding k and `).



In accordance with the above we will consider sl3 Selberg integrals of the
form

∫
f (s, t)

k∏

i=1

t−α1−1
i

∏̀

i=1

s−α2−1
i (1− si )

β2−1

× |∆(t)|2γ |∆(s)|2γ |∆(t, s)|−γ dt ds

for 0 6 k 6 ` and f (s, t) a bisymmetric function.

Warning: In the above α1, α2, β2, γ ∈ C.



Back to AGT

For the SU(3) case of AGT we need

f (t, s) = P(1/γ)
ν [t]P(1/γ)

η [s − t]P(1/γ)
τ [s + β/γ − 1]

for partitions ν, η, τ such that l(ν) 6 k . In other words, the task is:

For 0 6 k 6 `, compute

I k,`ν,η,τ (α1, α2, β, γ) :=

∫
P(1/γ)
ν [t]P(1/γ)

η [s − t]P(1/γ)
τ [s + β/γ − 1]

×
k∏

i=1

t−α1−1
i

∏̀

i=1

s−α2−1
i (1− si )

β−1

× |∆(t)|2γ |∆(s)|2γ |∆(t, s)|−γ dt ds

Note that for k = 0 this reduces to the sl2 AFLT integral.



Theorem (Seamus Albion, SOW). For m any integer such that m > l(τ),

I k,`ν,0,τ (α1, α2, β, γ)

= P(1/γ)
ν [k]P(1/γ)

τ [β/γ + `− 1]

×
`−k∏
i=1

Γ(α2+(`−k−i)γ)
Γ(α2+β+(2`−k−m−i−1)γ)

m∏
i=1

Γ(α2+β+τi+(`−i−1)γ)
Γ(α2+β+τi+(2`−k−i−1)γ)

×
k∏

i=1

Γ(α1+νi+(k−i)γ)Γ(α1+α2+νi+(k−i−1)γ)
Γ(1+α1+νi+(2k−`−i−1)γ)Γ(α1+α2+β+νi+(k+`−m−i−2)γ)

×
k∏

i=1

Γ(1+(i−`−1)γ)Γ(iγ)
Γ(γ)

∏̀
i=1

Γ(β+(i−1)γ)Γ(iγ)
Γ(γ)

×
k∏

i=1

m∏
j=1

Γ(α1+α2+β+νi+τj+(k+`−i−j−2)γ)
Γ(α1+α2+β+νi+τj+(k+`−i−j−1)γ)



It is as yet an open problem to compute I k,`ν,η,τ (α1, α2, β, γ) in full.

However, for γ = 1 (the Schur function case) we have

Near-Theorem (SA, SOW). For m an arbitrary integer such that m > l(τ),

I k,`ν,η,τ (α1, α2, β, 1)

I k,`ν,0,τ (α1, α2, β, 1)

= sη[`− k]
∏

i>1

(
(α2 + `− k − i)ηi

(α2 + β + 2`− k −m − i − 1)ηi

×
k∏

j=1

(α1 − ηi + νj + 2k − `+ i − j − 1)

(α1 + νj + 2k − `+ i − j − 1)

×
m∏

j=1

(α2 + β + τj + 2`− k − i − j − 1)

(α2 + β + ηi + τj + 2`− k − i − j − 1)

)



Proof.

Step 0. In the integrand we have the symmetric function

sν [t] sη[s − t] sτ [s + β − 1]

Step 1. Use induction on the length of η using the inverse Pieri rule.

Let η = (η1, . . . , ηn) be a partition of length n such that ηn > r .

Then
s(η1,...,ηn,r) =

∑

λ=(λ1,...,λn)

(−1)|λ|−|η| sλ hr+|η|−|λ|

where λ− η is a vertical strip.

= −

− + +



Step 2. Absorb the unwanted hr [s − t] in

sν [t] sλ[s − t] hr [s − t] sτ [s + β − 1]

into the sν [t] and sτ [s + β − 1] using the e- and h-Pieri rules plus
some plethystic gymnastics.

Step 3. Prove some (very) complicated rational function identities.
Hopefully Seamus is very busy doing this as we speak.



Some concluding remarks

First the good news:

More generally, we have proved the analogue of the AFLT integral
for sln. This integral contains two Jack polynomials in the integrand.



Now the bad news:

Our inductive methods fails for sln when n > 4.

For example, it is not clear how to obtain

sω[r ] sν [t − r ] sη[s − t] sτ [s + β − 1]

from
sω[r ] sτ [s + β − 1]

We do not know how to lift

sν [t] sη[s − t] sτ [s + β − 1]

to
P(1/γ)
ν [t]P(1/γ)

η [s − t]P(1/γ)
τ [s + β/γ − 1]

For example, there is no simple analogue of the inverse Pieri rule for
Jack polynomials.



The End


