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We describe a construction of irreducible representations of Weyl groups
based on a remarkably simple procedure given by I. G. Macdonald. For a
given Weyl group W with root system R, each subsystem S of R gives rise
to an irreducible representation of W. In general, however, not all the ir-
reducible representations can be realised in this way. We show that other
special subsets of R lead to representations unobtainable via the subsystem
approach. The focus of this work is to determine explicitly Macdonald’s
representations and various computational techniques are given for find-
ing generating sets and bases for the irreducible W-modules produced by
the construction. To illustrate the success of these techniques, we enu-
merate examples in the Weyl group of type Eg.

1 Introduction

Although the characters of Weyl groups of all types have been known for some time, the
problem of describing the corresponding irreducible representations has proved to be a not
inconsiderable task. In view of this, the 1972 paper of I. G. Macdonald (see [Mac72]) is
remarkable — he describes a simple construction providing irreducible representations which
relies on nothing more complicated than subsystems of the root system of the Weyl group.
However, a complete set of irreducible representations is not generally given by the approach.

We introduce certain special subsets of root systems (including subsystems) in section 2, and
show how these may be used in Macdonald’s approach in section 3. It will turn out that we can
describe some of the “missing” representations using these subsets. The remaining sections
are devoted to the computational aspects of the construction. In section 4, we determine
generating sets for the W-modules corresponding to the representations of section 3, and
consider the problems associated with finding bases for these modules. The fruits of our
labours are presented as examples in section 5.



2 Special Subsets of Root Systems

In this section we will look at certain subsets of the root system R of a Weyl group W —
the subsets of interest are parabolic subsets, invertible subsets and subsystems. We begin by
defining a notion of closure for subsets of a root system.

Definition 2.1 Let R be a root system. A subset P C R is closedif a, € P, a+ B € R
imply that a + € P. m

Now follows our principal definition of the subsets of interest.

Definition 2.2 A subset P C R is said to be invertible if both P and R\P are closed (in the
sense of Definition 2.1). A parabolic subset is a closed set P C R such that PU(—P) = R. A
subsystem S of R is a closed subset S C R which is itself a root system in the space which it
spans. W

It should be noted that subsystems S of R may also exist which are not closed. For our
discussions, however, we shall assume the closure of subsystems as defined in Definition 2.2
above.

Let 7 be a simple system in R, and let RT (respectively R~) denote the corresponding set of
positive (respectively negative) roots. For each subset A C 7 we shall denote by Ra the root
system consisting of all & € R which are linear combinations of roots of A. Then immediately
A is a simple system in Rx. Write R (respectively Ry ) for the set of positive (respectively
negative) roots of Ra with respect to A. Note that RX = Rt N Ra. We have the following
result.

Proposition 2.3 For A C 7, let PA = RT URA. Then the Pa, A C m, are representatives
of W -orbits of parabolic subsets of R.

Proof See [Bou68]. =

For invertible subsets, we can establish a similar result with a little more effort. Let P be the
set of all ordered pairs (A, A’) where A’ C A C 7 and A’ is orthogonal to A\A’. To such a
pair, associate the set

P(A,A") = Rar U (RT\RY).

Then P(A,A’) is an invertible subset of R and, moreover,

Theorem 2.4 The sets P(A,A"), (A, A’) € P, are representatives of W -orbits of invertible
subsets in R.

Proof See [DCH94]. m

Note that the set P(A, A’) is parabolic if and only if A = A’. Also we have P(A,A) = Pa.



Remark 2.5

1. Consider again a representative Pa of a W-orbit of a parabolic subset of R. We have
that
PA = RTU RA,

where both R and Ra have simple system A, and Ra C R. Then RX C RT, and

Pn = R+URA
= RTU(R{URy)
= (RTUR{)UR,
Pr = RY'URjL

This decomposition will prove useful later when determining representations using Mac-
donald’s method.

2. There is a relationship between the representatives Pa and P(A,A’) as we now show.
Recall that we define the representatives P(A, A’) by

P(A,AI) = RarU (RJF\RX)
= (RL URR)U(R'\RY)
= Ry U(RL U(RM\RY))
= Ry,UT, whereT =R}, U(R"\RL)CR"
We have that A’ C A C 7 so that Rar € Ra € R which means R, C Ry C R~ since

all have base A. Thus,
Pr = P(A AUV UX,

where V = R,\R,, and X = RT\T.

3. Note that any representative Pa always contains a root system of R, namely Ra. There
may exist other root systems S such that S C Pa but Ra is the largest such root system.
Any representative P(A, A’) also necessarily contains a root system, namely Ra/. ®

We now look at how we may define subgroups of the Weyl group W (R) using subsets of the
root system.

Definition 2.6 For any subset A C R, let W(A) be the subgroup of W (R) generated by the
Ta, @ € A. If A is a subsystem of R, we call W(A) a Weyl subgroup of W(R). m

It should be clear that W(Pa) = W(R), and thus W (P) = W(R) for any parabolic subset
P. Tt is less easy to describe W (P(A, A’)).

We describe an equivalence relation on subsets of the root system.

Definition 2.7 Let S, T be closed subsets of R. Then S is W-conjugate to T if there exists
w € W(R) such that S=wT. =



This notion of conjugacy will be important when we study the representation theory in later
sections.

Example 2.8 Let W be of type Ag with simple system = = {€; — €9, €3 — €3, €3 — €4},
where 7 C Q* with standard basis {1, €2, €3, €4}, then the non-conjugate subsystems are

S =10 with simple system J; = {)

S2=A;  with simple system Jy = {e1 — €3}

S3 = Ay  with simple system Js = {e1 — €3, €2 — €3}

Sy =2A; with simple system J; = {e1 — €3, €3 — €4}

S5 = A3 with simple system J5 = {€; — €2, €2 — €3, €3 — €1} W

The graphs which are Dynkin diagrams of Weyl subgroups may be obtained by a standard
algorithm, due independently to Dynkin [Dyn57] and Borel and de Siebenthal [BS49]. This
algorithm depends upon the extended Dynkin diagram.

Definition 2.9 The unique element & € R with maximal height is called the longest root (or
highest root ) of R. The extended Dynkin diagram of R is formed by adding one further node
to the Dynkin diagram of R corresponding to —a&. =

The Dynkin diagrams of all possible Weyl subgroups are obtained as follows (this description
appears in [Car72]):
Algorithm 2.10

e Form the extended Dynkin diagram of R

o Delete one or more nodes in all possible ways from the extended Dynkin diagram

o Take the duals of the diagrams obtained in the same way from the root system R dual
to R (the dual system being that system obtained by interchanging long and short roots)

o Repeat the process with the Dynkin diagram obtained and continue any number of
times. W

3 Macdonald’s Construction

Let V be a finite dimensional vector space over the rationals Q with basis B. Equip V
with a positive definite inner product (-,-) and let V* be the dual of V, i.e. V* is the space
Homq(V,Q) of all linear maps ¢ : V — Q. The inner product (-,-) on V gives rise to one
on V*, denoted by < -,- >.

Let R be a reduced root system in V*, in the sense of Bourbaki (see [Bou68]), and let S be
a subsystem of R. Choose an ordering on R and let RT and S denote the sets of positive
roots with respect to this ordering. Let



Then 7g is a product of functions and, more precisely, is a homogeneous rational-valued poly-

nomial function on V. We call g the Macdonald polynomial corresponding to the subsystem
S.

The space of all rational-valued polynomial functions on V' is the symmetric algebra
Y=Sym(V*), and the Weyl group W = W(R) of R acts on X as follows :

ifweW, g€, xe€V then (wo)(x) = p(w'x).

Let Ps be the subspace of 3 spanned by the polynomial functions wrg for all w € W
(with the action as defined above). Note that Pg is finite dimensional whereas X is infinite
dimensional. We may consider any vector space V' as an abelian group just by neglecting the
scalar multiplication within V. View Pg in this way then Pg is a W-module. (We may also
consider Pg as being a QW -module.)

The representation of W afforded by the W-module Ps is automatically a rational represen-
tation. We call Ps the Macdonald module corresponding to the subsystem S.

The main result of Macdonald’s paper is the following theorem (which is proved therein).

Theorem 3.1
o Pg is an absolutely irreducible W -module ;

o if S’ is another subsystem of R and |S| # |S’| then the modules Ps and Pg are not
isomorphic. H

Remark 3.2

1. This construction applies in the more general situation of a finite Coxeter group W and
a reflection subgroup of W, the only difference in this case being that the root system R
has to be replaced by a root system in the sense of Steinberg [Ste67] (he does not insist
on the crystallographic condition) and the rational vector space V' by a real vector space.
This does not affect the statement or proof of Theorem 3.1, but the representations so
obtained will not generally be rational.

2. This construction supplies “most” but not in general all of the irreducible representa-
tions of a Weyl group W. For W of type A,, or B,, it goes back to Specht [Spe35, Spe37],
who obtained all the irreducible representations in this way in these two cases. For a
Weyl group of type D,,, however, the only subsystems of the root system are disjoint
unions of root systems of types A and D, and by a counting argument all the irreducible
representations of D,, are not obtained via this method.

3. If S, S’ are W-conjugate subsystems of R, then it is clear that Ps and Ps: are isomorphic
W-modules. However, the converse does not hold. The situation here has analogies with
that encountered by Carter [Car72] in the classification of the conjugacy classes of Weyl
groups; most but not all conjugacy classes are represented by Coxeter elements of Weyl
subgroups, and a class can have essentially distinct representations of this sort.



4. For any root system R, there are two trivial subsystems S, viz. S =0 and S = R. We
can describe immediately the representations arising in these cases.

e S=10
We clearly have wrg = g for all w € W, so w +— 1 for all w € W and the identity
representation of W is given.

e S=R
Here ST = R* so 7y is the product of all the positive roots of R. It is well known
that W acts by sign on RT, i.e. wrg = (sgn(w))ws. Hence, w — sgn(w) for all
w € W, and the corresponding representation leads to the sign character of W.

5. There is another easy situation to describe, namely for a subsystem of type A;. Let R
be of rank n and let S be a subsystem of type A; in R. Then the dimension of Pg is n.

To see this, let S = {r, —r} be the subsystem of type A, where r € R*. Then g = 7.
Now W (R) permutes R so the generating set for Pg will be simply R itself. A basis for
R is given by a simple system for R, and so has order n. Thus, the module Ps is of
dimension n. =

3.1 Using Parabolic Subsets

Recall from Proposition 2.3 that representatives Pa of W-orbits of parabolic subsets of R are
given by

PA = RTU RA
for each subset A C 7. We now describe how Macdonald’s construction may be applied to
parabolic subsets in place of subsystems. The setup is essentially the same as before but now
define the Macdonald polynomial to be

TTp = H (8
aEPA

for a representative Po. The action of W = W(R) remains the same and we let Mp be the
subspace of 3 spanned by wmp for all w € W. Again Mp is a W-module and we seek to
prove its absolute irreducibility just as it was proved that the module Ps corresponding to a
subsystem S was absolutely irreducible as a W-module.

We make use of the decomposition of P into disjoint sets given in Remark 2.5 (1), that is,
Pr =R"U Rj.
Hence, we may write our Macdonald polynomial 7p as follows

T, = Ha

a€Pa

Il oIl 5

+ -
acER 5eRA

def
Tp = TR+ .’/TRZ-

This enables us to prove the main result, essentially by using the fact that W acts by sign on
R™ again.



Theorem 3.3 Mp is an absolutely irreducible W-module. m

We have used the parabolic subsets Pa thus far since we have an explicit form for their
construction. However, the construction applies to any parabolic subset P as we now show.

Take any parabolic subset P and construct its W-orbit {wP : w € W}. For some A C 7 we
then have Pa belonging to this W-orbit. In particular, there exists an element wy € W(R)
such that PA = wgP, in which case mp, = womp. Now, the module Mp has presentation

Mp = (wrp : w € W(R))
and the module Mp, has presentation

Mp, =

Mp, =
= prA =

i.e. the modules Mp and Mp, are isomorphic W-modules and so the irreducible representa-
tions of W (R) afforded by these modules will be identical.

Remark 3.4

1. There are again two trivial situations, namely when A = @ or A = 7. If A = ()
then PA = R™ and np = mg where S = R, so the corresponding character is the sign
character of W. When A = m, PA = RT UR™ so that 7p is the product of all the roots
of R. Since W acts transitively on R, wrp = nwp for all w € W, i.e. w — 1 for all
w € W and we have the identity character.

2. If RA is a subsystem S of R for A C 7 then it should be clear from our decomposition of
Px that the character x afforded by Mp will be x = (sgn) X p, where p is the character
afforded by Ps. m

3.2 Using Invertible Subsets

Recall from Theorem 2.4 that representatives P(A, A’) of W-orbits of invertible subsets of R
are given by

P(A,A") = Rar U(RT\RY)
for each pair (A, A’) satisfying A’ C A C 7 with A’ orthogonal to A\A'. We modify the
original Macdonald construction here in exactly the same way as in §3.1, namely replace
subsystems by the invertible subsets P(A, A’) throughout. Our Macdonald polynomial is

now
Tpr = H a

a€P(A,A")

for a representative P(A, A’). The action of W = W(R) is as in the original setup and we let
Npr be the subspace of 3 spanned by wnpr for all w € W. Npr is a W-module and it turns
out that Np: is absolutely irreducible only when A = A’ or (A, A) = (7, 0).



Generally the module Np: is reducible, but all is not lost since we may easily prove that the
module Mp appears as a component in the direct sum decomposition of Npr into irreducibles.
The author has been unable, however, to describe the other components in this decomposition.

Remark 3.5 We have used special examples of invertible subsets, namely the representatives
P(A,A"). Just as in the parabolic case, however, we can argue that any invertible subset
may be used in the construction, by consideration of its W-orbit and taking one of the
representatives P(A, A’) which corresponds to this orbit. m

4 Computational Techniques

Having introduced the required theory in sections 2 and 3, we now consider how to determine
explicitly the representations we have described. The computational problem arises in two
parts — firstly, we need to efficiently determine generating sets for our Macdonald modules
then, secondly, find bases for them. We present an algorithm (which lends itself to straight-
forward computer implementation) for determining generating sets for the modules arising
from subsystems and parabolic subsets, and describe three methods of dealing with basis
determination.

4.1 Generating Sets for Macdonald Modules

For a given subsystem S of R, we have the following generating set for the module Pg,
I'={wrs : weW(R)}.

A naive attempt to calculate this set would require |W| action calculations, one for each
element of W. We can, however, reduce the number of calculations we need to carry out
using the following approach.

Let wrg = H w(a). Each w(a) € R by the transitivity of the W-action on R so we may
aesSt
write w(a) = €qwTa,w, Where €44, = £1 and 74, € RT, for each o € ST. Then

wns = H Co,wlaw = H €a,w H To,w-

a€eS+ acS+ a€S+
Since each €44, = *£1, H €a,w = 1 and so

acSt

wng = £ H Tow-
aeSt

Let [ : W — N U{0} denote the length function on W. Then we have the following result.

Theorem 4.1 Given w € W and a subsystem S C R, there exists z, 5 € W (with l(2y,5) <
l(w)) and oy,s € Sym(S™) such that

Taw = 2ws(0ws(a)) foralla e ST =



This leads in a natural way to a consideration of the set
Ds={weW : w(a) € R foralla € ST},

since we then have (by virtue of Theorem 4.1) that
Theorem 4.2 Ps = (wrng : we W)= (wng : we Dg) m

There is a well-known algorithmic construction of the set Dg for any subsystem S (see, for
example [GP93]). Denote by Dy, the set of elements of Dg of length k. We begin by setting
Dy = {e}. Now assume that Dy has already been computed, for £ > 0. Then Dy is the set
of elements wr;, where 7; € {7, : «a, € 7} (a reflection for each i), w € Dy, and wr;(a) € R
for all a € S*. If we keep track of the simple reflections 7; by which we had to multiply the
elements in Dy, to get those in D1, we obtain reduced expressions for all the elements of
Dg as words in the simple reflections.

Example 4.3 Consider W of type Az with Dynkin diagram

Oo—0O0—=0

aq Qa9 (021

and simple system 7 = {a;, a3, a3} in (Q*)*. Consider the subsystem S whose positive
system comprises {a1, as} then m¢ = ayag. Denote by 7; the reflection along the simple root
a;. Starting the algorithm off with Dy = {e}, we get the following run:

Dy ={e}, D1 ={mn}, Dy = {mym1, 173}, D3 = {mms7i}, Dy = {mem3mi72}

and hence Dg = {e, 79, ToT1, ToT3, TeT3T1, ToT3T1To}. We can illustrate this recursive
construction conveniently in a diagram of the following form

103
-
(a1 + az)(az + a3)
T 73
as(a1 + ag + as) (g + g + az)as

(a2 + a3)(a1 + a2)

{n

Q3



The sets Dy, can be read off the diagram level by level. m

The above example illustrates an important point. The polynomials of {wrg : w € Dg} are
distinct if we consider the order of factors as being important but are not distinct in the usual
sense as polynomials in commuting indeterminants «;. As far as generation of the module
Ps is concerned, of course, the order of factors is irrelevant. This motivates the following
definition.

Definition 4.4 Denote by Gg a subset of Dg such that
(wrs @ w € Gg) = (wng : w € Dg)

and if wrg = w'ng for w, w' € Gg then w =w'. =

It should be clear that the algorithm for constructing Dg needs little modification in order
to obtain a corresponding Gg — all we need do, in fact, is keep a record of the polynomials
arising at each step and ensure that we do not copy any of them in later steps.

Example 4.5 Refer again to Example 4.3. With the modified algorithm described above, we
obtain

Go = {e}, G1 ={n}, Gy ={nn}
or, diagrammatically,

a1a3

{Tz

(a1 + a2)(ag + as)

{n

as(ag + o + az) [ ]

The algorithm presented for construction of Gg will be referred to as GENSET throughout and
the corresponding set of polynomials is P = {wns : w € Gg} = {p1, ..., pr}. GENSET is
straightforward to implement on a computer and runs very efficiently. Unfortunately, although
|P| < |W]|, P is not generally Q-linearly independent and so we still have the problem of
determining a basis for the Macdonald module Pg — this is addressed in the next section.

Remark 4.6 In view of Remark 3.4, it should be apparent that GENSET is equally valid
(subject to small modifications) when subsystems are replaced by parabolic subsets. We
have been unable, however, to describe an algorithm for constructing a generating set for the
module Npr arising from an invertible subset of the root system. m

10



4.2 Bases for Macdonald Modules

Three methods have been used in attempting to find bases of Macdonald modules. The first of
these, the all-monomial method, was the initial method of attack and is the natural approach.
Unfortunately, it is very inefficient for large examples which led to the consideration of other
approaches. The second approach, the leading monomial method, was motivated by a study
of Grobner basis techniques and utilises monomial orderings. The drawback here is that
generally only a ‘near’ basis is given (that is, a large linearly independent subset of P which
may not be sufficient to give a generating set). The final approach we present here, the
rational vector method, is our latest approach to the problem and, as such, is still in early
stages of development. We expect to able to refine this approach in the future and the author
anticipates using this method for large examples.

1. The all-monomial method

For each polynomial of P, decompose into its constituent monomials

l;
pi=Y aymy  (a; €Q;i=1, ...,k)
Jj=1

I; k
and put M; = | J{mi;} to be the set of all monomials involved in p;. Let M = | J M;

=1 i=1
be the set of aljl monomials involved in all the polynomials of P, and let ¢ = |M|. For
convenience of representation, map the monomials of M onto indeterminates Y7, ..., Y;.
Express each polynomial p; as a linear combination of the Y;. We begin our basis B
with p; = wg, B = {mg}. Now work through ps, ..., pi checking whether each p; may
be expressed as a linear combination of elements of B, adding to B any p; for which
such a combination does not exist. This checking essentially involves solving systems of
linear equations in the indeterminates Y;. After testing all of ps, ..., pg, we have that
B is a basis for Ps.

In practice, this approach is hopelessly inefficient. As |S| increases, ¢ increases rapidly
and the corresponding systems of equations in the above procedure become imprac-
tical to attempt to solve. However, even with the problems, the method has been a
good workhorse and the author has computed such bases when working with certain
subsystems in the Weyl group of type Eg.
2. The leading monomial method
The backbone of the approach we describe is monomial orderings. The order we need
to describe is an admissible total ordering > on M, this being an ordering such that
em>1forallme M
® my >mg = mq-n>me-nforalln, my, myeM

An example of such an ordering is the lexicographical order on M, which orders mono-
mials according to their exponent tuples.

11



Definition 4.7 The leading monomial of a polynomial p with respect to > is the
monomial appearing in p which is maximal among those in p. We denote it by LM (p).
Similarly, the monomial appearing in p which is minimal among those in p will be called
the trailing monomial, denoted by TM(p). =

We order polynomials in the natural way, i.e. by ordering their constituent monomials.
We give here three simple results on polynomials which will prove useful in our approach
to determining a near basis for the Macdonald module.

Proposition 4.8 Let p, q be polynomials. Then LM(pq) = LM(p) - LM(q) and
TM(pq) =TM(p)-TM(q). m

Proposition 4.9 Let P = {p1, ..., p-} be a set of polynomials such that
HLM(p;) : i=1, ..., r}|=mr

Then P s Q-linearly independent. ®

Remark 4.10 Note that Proposition 4.9 can be rephrased in terms of trailing mono-
mials also, merely by reversing the order. m

Proposition 4.11 Let P = {p1, ..., p.} be a set of Q-linearly independent polynomials.
Suppose the polynomial p is such that TM(p) < TM(p;) for i = 1, ..., r. Then
P ={p1, ..., pr, p} is also Q-linearly independent. m

Having introduced monomial orders and the above properties of polynomials, we are
now in a position to describe how to determine a ‘near’ basis for the Macdonald module
Pg. Construct the list of leading monomials of the p; € P,

LMp = (LM(p1), LM (p2), ..., LM(px)).

This is straightforward to construct thanks to Proposition 4.8 — to find the leading
monomial of p;, all we need do is multiply together the leading monomials of its factors.
This has the advantage of not needing to expand the polynomials p;.

Proposition 4.9 says that we may select a Q-linearly independent subset of P immedi-
ately by choosing polynomials with distinct leading monomials. Carry out this choice
in such a way that the trailing monomials of the polynomials we choose are maximal
amongst all such choices. Let the resulting set be P’

We know that P’ is Q-linearly independent but we cannot say that it forms a basis
in general. The next step will sometimes allow us to add more elements to P’ while
maintaining Q-linear independence.

Construct the list of trailing monomials of the polynomials of P', TMp: (similarly to
LMp). Proposition 4.11 says that we can add to P’ any polynomial p; € P such that
TM(p;) < TM(p') for all p' € P'. Carry out this step as often as possible and let the
resulting set be P”.

12



It should now be clear why we chose the elements of P’ to have maximal trailing
monomials — by doing so, we improve the chances of being able to add to P’ in the
above way.

We now have P” C P being Q-linearly independent. In favourable cases, P” is in fact
a basis for the module Ps as required. When it is not, of course, there are polynomials
of P which we can add to P” to form a basis — the choice of these polynomials is at
present an open question. Note that it is not the case that if |P’| = |P”| then P’ is a
basis.

We have described a construction which generally determines a large Q-linearly in-
dependent subset of P. Note that this subset is determined without expanding any
polynomials at any stage which is an important point when considering computer im-
plementations where |S| is large. Often the set we obtain by the above procedure is a
basis for the Macdonald module but, unfortunately, this is not always the case.

. The rational vector method

Our latest approach to the basis determination problem will be referred to as the rational
vector method. Suppose the polynomials p; € Q[ay, ..., a4 (i.e. the polynomials of P
are in at most d variables). We have that 7g is homogeneous so that each wrg (w € W)
is homogeneous and is of the same degree as mg. Thus, P is a set of homogeneous
polynomials of degree IV say.

Definition 4.12 Define
V():{U:(Ul, RN Ud)EQd : 1),'6{1, ceey N}, =1, ..., d}

and let M = |Vp| = N¢. m
Definition 4.13 For : =1, ..., k define

w; = (pi(v1), ..., pilom)), v;e€W@G=1,..., M) =
We then have the following result

Theorem 4.14 The set P is Q-linearly dependent if and only if the k vectors w;, 1 <
i <k, are Q-linearly dependent in QM. m

Note that M = N? becomes large rapidly as N, d increase. Also we will generally have
M large compared to k.

Let Wy be the k x M matrix whose rows are the vectors w; of Definition 4.13. In order to
check the Q-linear dependence of the w;, it suffices to calculate the k& x k determinants
of portions of the matrix Wy looking for a non-zero determinant, stopping either if

e some determinant is non-zero = P is Q-linearly independent

e all £ x k determinants are zero = P is Q-linearly dependent

e the first r k£ x k determinants are zero = P is probably Q-linearly dependent
(Exactly how large r has to be chosen so that we can be reasonably certain of the
linear dependence is unclear)

13



It seems likely that special properties of the polynomials of the sets P (for example,
homogeneity) may enable us to restrict |Vp| considerably and hence make this approach
more attractive. Currently, restrictions of V) have been found by a trial-and-error
approach.

It should be noted that all of the methods described above apply to general ‘polynomial
spaces’, we have not used any special properties of the set P which arises from GENSET.

Example 4.15 Consider the Weyl group of type A4 with Dynkin diagram

O O O O

aq a2 ag (o1

and simple system ™ = {a1, a2, a3, as} in (Q®)*. Consider the subsystem S of type Aj
leading to mg = ajasas(a; + az)(as + ag)(ag + @z + az). Then GENSET gives

1 arapag(ar + ag)(ag + as)(ar + az + as)
T4

P2 ajag(ag + ag)(ag + ag)(ag + ag + ag)(ag + ag + a3 + aa)
T3

Y

D3 Oél(Oéz + 043)044(041 + oy + 013)(042 + a3 + 044)(041 + ag + a3 + a4)

T2

D4 (a1 + ag)agag(ar + ag + a;)(aa + ay)(a1 + oz + a3 + ay)
T1

Ps azazag(as + 043)(043‘ + ay)(az + az + aq)

In the all-monomial approach, there are 42 monomials in all so the p; will be expressed as
polynomials in 42 variables. It turns out that the basis we obtain is B = {p1, p2, p3, pa}-

The leading monomial approach is more sensible. We use lexicographical order, with a; >
ag > ag > ay4. We then have

_ (.3 2 3 2 3 2 3 9 3 2
LMp = (aja5as, ajazas, ajasoy, ajazay, 0ha504),

so there are four distinct leading monomials. We have to choose between p; and ps — the
corresponding trailing monomials are aja3a3 and aja3ad respectively so select p;. Hence,
P' = {p1, ps, pa, ps}. The only non-P’ polynomial is thus ps but its trailing monomial is

not less than all of those in P’ (T'M(ps) > T M(p;) for example), so we do not add it to P’.
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This completes the construction. In this case, the set P’ = {p1, ps, ps, ps} is a basis for Pg
(p2 = p1 + p3 — pa + ps).

Finally, in the rational vector method we use d = 4 and N = 6 so that the vectors w; lie in
Q'2%. Clearly it would be impractical to test these vectors for Q-linear dependence. It turns
out that it is sufficient to let V) consist of just

(1’ 17 1’ 1)’ (27 17 17 1)7 (1727 17 1)7 (17 ]‘727 1)7 (17 17 ]‘72)
to obtain the basis B = {p1, p2, p3, pa}-

The all-monomial method has been used to compute in this example but it should be clear
that it is not the best method here. The leading monomial method is quick and in fact
produces a basis but the rational vector method is also useful with the restricted set V5. =

5 Examples

We now look at the results of applying Macdonald’s method using subsystems, parabolic
subsets and invertible subsets. We will consider the Weyl groups of types As, Go, D4 and Eg.
In the first two cases, a complete set of irreducible characters is obtained by the ‘classical’
Macdonald approach (i.e. just by using subsystems) whereas the final two cases illustrate
that our other special subsets of root systems are useful in this construction. It should be
noted that the algorithm GENSET and the various basis determination methods of section 4
have all been implemented in the symbolic computation system MAPLE (see [Maple91]).

Example 5.1 Consider W of type A3 asin Example 4.3. Then let e, 11, (1173), (1172), (T17273)
be representatives of conjugacy classes C1, Cy, C3, C4, Cs respectively of W(Ags). The char-
acter table of W(Aj) is given by

Ci Cy O3 Cy Cs
w1 1 1 1 1
ol 1 -1 1 1 -1
vl 2 0 2 -1 o0
val 3 1 -1 0 -1
vl 3 -1 -1 0 1

Our results are as follows

type of subsystem | simple system | corresponding character
Az {a1, az, as} X2
Ay {ala 0{2} X5
2A, {ai1, as} X3
Ay {ar} X4
0 0 X1

Note that a full set of irreducible representations is given (in accordance with Remark 3.2

(2)). =
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Example 5.2 Consider the Weyl group of type Gso, which is the dihedral group of order 12.
The Dynkin diagram of type Gy is

==

a1 3

Let e, 79, 7172, (1172)%, (7172)3, 71 be representatives of conjugacy classes C1, Cy, C3, Cy, Cs,
Cs respectively of W(Gy). Then the character table of W(Gy) is

Ci1 Cy, C3 Ci Cs5 Cg
vi|] 1 1 1 1 1 1
2| 1 -1 1 1 1 -1
ys| 1 -1 -1 1 -1 1
yal 1 1 -1 1 -1 -1
ys| 2 0 -1 -1 2 0
ve| 2 0 1 -1 -2 0

Our results are as follows

type of subsystem | simple system | corresponding character
(~}2 {a1, az} X2
Ay {a2, 3a1 + a2} X3
Az {a1, a1 + ag} X4
2A1 {al, 3(11 + 2(12} X5
Ay {a1} X6
0 0 X1

We have thus constructed a complete set of irreducible W(Gz)-modules. m

Example 5.3 Consider the Weyl group of type D4 with Dynkin diagram

asg

(871

and simple system 7™ = {1, az, a3, a4} in (Q*)*. The character table of W (Dy), with rep-
resentatives of conjugacy classes Cy, ..., Ci3 taken as e, 1, (1971), (Ta7371), (T1T2T3T1T2T1),
(7'27'47'1), (T17'27'4T17'2T1), (T2T47'3), (7'37'27'47'27'37'2), (T27'47'3T1), (T47'27'3T17'2T4T1T27'37'1T27'1),
(T2T47'3T17'2), (7'37'17'27'47'17’2), is
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Ci1 Cy, O3 Cy C5 Cg Cr Cg Cy Cp Cpp Crg Ci3

X1 1 1 1 1 1 1 1 1 1 1 1 1 1
X2 1 -1 1 -1 1 -1 1 -1 1 1 1 -1 1
X3 2 0 -1 0 2 0 2 0 2 -1 2 0 2
X4 3 1 0 1 3 -1 -1 -1 -1 0 3 1 -1
X5 3 1 o -1 -1 -1 -1 1 3 0 3 1 -1
X6 3 —1 0 —1 3 1 -1 1 -1 0 3 -1 -1
X7 3 -1 0 1 -1 1 -1 -1 3 0 3 -1 -1
X8 3 -1 0 1 -1 -1 3 1 -1 0 3 -1 -1
X9 3 1 0 -1 -1 1 3 -1 -1 0 3 1 -1
Xo| 4 =2 1 0 0 0 0 0 0 -1 —4 2 0
x| 4 2 1 0 0 0 0 0 0 -1 —4 -2 0
X12 6 0 0 0 -2 0 —2 0 —2 0 6 0 2
X13 8 0 -1 0 0 0 0 0 0 1 -8 0 0

Firstly, we apply the classical Macdonald approach via subsystems to yield the following
results.

type of subsystem simple system corresponding character
Dy {1, az, a3, a4} X2
A3 {o1, a2, a3} X6
A3 {0[1, ag, a4} X8
Aj {az, a3, as} X7
Ay {1, as} X13
4A1 {Oq, ag, Oy, O] + 2042 + Qa3 + 054} X3
3A, {1, a3z, a4} X13
2A, {a1, as} X4
2A1 {al, a4} X9
274 {as, as} X5
Ay {a1} X11
@ @ X1

We see that 11 of the 13 irreducible representations are obtained, missing are those corre-
sponding to x10, x12- To complete the story, we turn out attention to the parabolic and
invertible subsets.

Selecting A = {a1} C 7, the character yielded by use of the parabolic subset Pa is in fact x1p.
A complete enumeration using the Pa for all A C 7 does not give the only remaining character,
the self-conjugate degree 6 character xi3. Our last resort is the use of invertible subsets —
in this case, it turns out that using (A,A’) = ({a1, as},{a1}) gives rise to a reducible
representation with character x4 + X6 + X12 S0 we may obtain our missing representation of
degree 6 by consideration of the appropriate factor module. m

Example 5.4 Consider now the Weyl group of type Eg with simple system in (Q8)* given
by m = {a1, a2, a3, a4, as, ag} and Dynkin diagram
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Qg

DS

Of
O

a2

There are 17 non-conjugate subsystems whose simple system is contained in 7, viz.

E67 D5’ A5a A4 +A17 2A2 +A17 2A27 A4’ D47 A2 + 2A1’
A3 + Ala A37 A2 +A17 3A1’ A27 2A17 A17 (Z]

and three other non-conjugate subsystems (see [IM87]), viz. 3As, As + 2A;, 4A1, giving 20
subsystems in all to consider. In view of the fact that there are 25 irreducible representations
of W(Eg), we cannot expect to obtain a full set of irreducibles via the classical Macdonald
approach. We now present our results for subsystems.

type of subsystem simple system degree of corresponding character
Eg {1, oo, a3, a4, as, as} 1
D5 {al, g, 3, (Q4, a5} 20
Aj {a1, a3, a4, as, ag} 30
As+ Ay {al, g, O3, 04, ag} 60
2A5 + Ay {oq, o9, O3, as, Oés} 80
2A, {a1, a3, as, as} 24
A4 {al, a2, 3, a4} 81
D4 {052, a3, 04, 055} 24
Ay +2A4 {ag, ag, O, a6} 60
As+ Ay {al, a9, 04, a5} 80
Ajg {051, as, a4} 81
A2+A1 {041, a9, Ozg} 64
3A1 {Oél, a9, a5} 30
A2 {al, 043} 30
2A1 {al, CMQ} 20
A1 {al}
0 0 1
3A2 {al, a3, 5, Qg, 2, C~k} 10
Az +2A4 {a1, a3, a4, ag, a} 60
4A1 {al, Qy, Qg, CNM} 15

In fact, we yield 17 distinct irreducible representations (for example, the characters of degree
30 arising from subsystems of type 3A; and A, are the same).

Using the parabolic subsets Pa for all A C 7, we obtain a collection of 13 distinct irreducibles,
but only three of these are different from those obtained using subsystems — they have degrees
6, 20 and 64. Hence, we have constructed 20 of the 25 representations. The five characters
which remain to be determined have degrees 15, 15, 15, 20 and 90.

The remaining irreducible representations have not yet been obtained using the invertible
subsets. The problem here is essentially that the degrees of the reducible representations so

18



obtained are too large for our present computational methods to deal with. It is hoped that
improvements of the rational vector method will lead to a complete enumeration using the
invertible subsets. m
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