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Abstract

T-Theory is the name that we adopt for the theory of trees, injective
envelopes of metric spaces, and all of the areas that are connected with
these topics, which has been developed over the last 10-15 years in
Bielefeld. Its motivation was originally — and still is to a large extent —
the development of mathematical tools for reconstructing phylogenetic
trees. T-theory expanded considerably when its relationships with the
theory of affine buildings, valuated matroids, and decompositions of
metrics were discovered. In this paper, we give a brief introduction
to this theory, which we hope will serve as a useful reference to some
of the main results, and also as a guide for further investigations into
what T-theory has to offer.

1 Introduction

T-theory originated from a question raised by Manfred Eigen in the late
seventies. At that time, he was trying to fit the twenty distinct t-RNA
molecules of the F. coli bacterium, whose primary sequence structures were
then known, into a tree. In doing this, he realized that there was an ob-
struction to finding such a tree even when only four sequences were to be
processed. So he wondered:
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e Does the vanishing of this obstruction for all quartets in a given family
of sequences imply the existence of a globally fitting tree?

e What could be used as a substitute for a tree if no globally fitting tree
existed?

It soon became clear that the answer to the first question was yes. Also,
even though this tree can be constructed recursively, its final shape does not
depend upon the order in which the sequences are processed. This suggested
the existence of a construction which, for a system of sequences fitting into
a tree would produce that tree, and which for an arbitrary system would
produce something that could be used as a tree substitute. Trying to find
such a construction led to the T-construction described in Section 2. While
studying that construction, a surprising amount of additional insights have
accumulated over the last ten years — new theorems, unsuspected applica-
tions, and unforseen relationships with other subjects studied in theoretical
mathematics. So a whole new branch of discrete mathematics, briefly called
T-theory, has emerged.

In this note, a brief survey of T-theory is presented, with special emphasis
on, as yet, unpublished results. Although, for the sake of conciseness, proofs
have been omitted, we hope that the definitions and results stated here are
clear enough to serve as a guide for further explorations into what T-theory
may have to offer.

We are grateful to the editors of this special volume on “Discrete Metric
Spaces” for having invited us to present a survey of T-theory in this context.

2 The T-Construction

Let X = (X,d) be a metric space and, in cases where no confusion may
arise, denote the distance between two points z,y of X by zy := d(z,y).
Let IRX denote the set of all functions which map X into IR, endowed with
the L.,-norm, given by the formula

[£]] := sup [f(z)] € RU {400},
rzeX

for any element f of IRY. To the pair (X, d), we associate a subset Pix a) of
IR¥ defined by

Pixay:={f € R* | f(z)+ f(y) > ay for all 2,y € X}.



We also denote Px g4y by Px or P(d), according to whether we wish to
emphasize the dependence of P(x 4y on X or d, respectively. The tight span
of (X, d), which we denote by T(x 4y, Tx, or T(d), is defined to be the set of
minimal elements of P(x 4) with respect to the pointwise partial ordering of
IRX (where f < g if and only if f(z) < g() for all z € X). In [11], the tight
span was introduced, and it was observed that the space T{x 4y can also be
regarded as the set
Tixa=1f¢€ IR | flz) = s:)}z{my — f(y)} for all z € X'}
y

There is a canonical map, h = hx, of the space (X, d) into Tx,4), which is
given by & — h,, where the function h, is defined by the formula

hx(y) := zy for all y € X.

Since
fly) —zy = sup{yz— f(2)} — 2y
ze€X
= sup{yz — f(z) — 2y}
zeX
< sup{yz+ 2z — f(2) — 2y}
zeX
= suplez— £(2))
zeX
= f(=),
for all z,y € X and f € Ty, we have
If = hell = sup|f(y)—he(y)
yeX
= sup|f(y) — 2y
yeX
= max(sup{zy — f(y)},sup{f(y) - zy})
yeX yeX
= f(z)

for all f € Tx and z € X. In particular, for f,g € Tx,
1f = gll < |If = hall + |lhe — gll = f(z) + g(z) < o0,

so that the pair (T’x, ||, -||) is a metric space, where the metric ||, -|| is defined
by the formula || f, ¢|| = ||f — ¢||, for all f,g in T'x. Also, note that

[he = hyll = lIhy = hall = ha(y) = 2y,

which implies that the map hx is an isometric embedding of X into T.



3 Basic Properties of the T-Construction

In this section, we give a summary of some basic results concering T{x q)
where (X, d) is a metric space. Proofs of these results may be found in [22]
and [11].

3.1 J. R. Isbell’s description of T

In [22], J. R. Isbell studied what he called the injective envelope of a metric
space. Here, we briefly recall his result and its very close relation to the T-
construction. First, a non-ezxpansive map between two metric spaces (X, d)
and (Y,d') is a map f : X — Y such that d'(f(z), f(y)) is less than or
equal to d(z,y), for all z,y in X. Next, we define a metric space Y to be
isojective! if, given any isometric embedding e : X — X' of metric spaces
and any non-expansive map f : X — Y, there exists a non-expansive map
X' =Y with f = f'oe. A non-expansive map e : X — F between
metric spaces X and F is called an isojective envelope of X if E is isojective,
e is an isometric embedding, and for every isometric embedding e’ of X into
another isojective metric space E’ there exists a unique isometric embedding
e E — E' with ¢ = €"” oe. It follows immediately that any two isojective
envelopes € : X — F and f: X — F of X are necessarily isomorphic, that
is, given e and f, there exists a unique isometric bijection h : ¥ — F with
f = hoe. Theorem 2.1 of [22] tells us that for each metric space X the map
hx : X — Tx is an isojective envelope of X, that is,

e for each metric space X there exists an isojective envelope, and

e Tx together with the map hx can be characterized — up to canonical
isomorphism — by the property of providing that isojective envelope.

'In [22], such spaces have been called injective. We propose the term isojectiveinstead,
since — due to the fact that there are many monomorphic, non-expansive maps which are
not isometric — there is a slight difference between the concept of an injective space as
defined in [22] and the concept of an injective object as defined in homological algebra. In
fact, injective objects in the latter sense do not exist in the category of metric spaces and
non-expansive maps. Consequently, the injective envelope of a metric space as defined in
[22] also does not coincide with the categorical concept of an injective envelope; so we are
going to call such an envelope an isojective envelope. This topic is also addressed in more
generality in [23, p192-3].



3.2 The space Tx is contractible

First, note that Px is clearly contractible. In [11, p331], numerous pos-
sibilities for defining retractions of Px onto Tx are described. Obviously,
the existence of just one such retraction implies that Tx is contractible. We
briefly describe a canonical way to define a retraction p, since this retraction
has played a crucial role in proving results in the situation where a group is
acting on the space X (for example see [13]).

For any f € Px, define the map f* by the formula

() = sup{zy — f(y)},

yeX

and note that f € Px implies (and, actually, is equivalent to) f* < f. Now,
define a new map f’ by the formula

f(x) =1/2(f(z) + f*(x)).
It is not hard to show that f’ € Px and, therefore,
sy

We now repeat this process and define a monotonically decreasing sequence
of functions by setting f© := f and f(**+1) := ' where n € INg. The
sequence (f(”))nE"\'O converges to some f which belongs to T'x. The element
p(f) is defined to be equal to f.

3.3 The combinatorial dimension of a metric space

In [11], the combinatorial dimension of a metric space X is defined and
investigated. We denote the combinatorial dimension of X by dim (X).
The following conditions are then equivalent:

comb

o dim .y, (X) < n;

e dim 7Ty < n for all finite Y C X;

e forall zy,z_4,...,2,,x_, in X, there exists a permutation « of I :=

{£1,...,£n}, with e # —Idr and D . crziz—; <D oicp Tt



3.4 Consequences of X being finite

Suppose that X is finite. For each pair of points z, y of X, consider

HE ={f¢ RY | f(2) + f(y) > 2y}
and
Hi,,y ={f € RY| f(z)+ f(y) = zy}.

Clearly, H(ty is a closed half space of the finite dimensional space IR¥,
whose boundary is equal to H, ,). Moreover, we have the equality

Px = ﬂ H(Zvy)'

(z,y)EX?

Hence, Py is a convex (though not a compact) polytope in IRX. For any
f € Px, we define

K(f) = {(z,y) € X?| f(2) + [(y) = vy}
= {(z,y) e X*|f € Hi},

and

S(f) = PxnN ﬂ H(ﬂhy)
(z,y)EK

= {g9e Px|K(f) C K(9)}-

As usual, we call S(f) the facette of f (relative to Py). Using this termino-
logy, the space T'x can be characterised as follows (see [12, Lemma 1]): For
any function f € IRX, the following three statements are equivalent:

e f is contained in Tx.
e S(f)is a subset of Tx.
e S(f) is compact.

These statements imply that Tx is compact and, moreover, that Tx
inherits a canonical cellular structure from the stratification of the convex
polytope Px, defined by the family of its facettes. In particular, the space
Tx has a well-defined dimension, which can be shown to be bounded from
above by |#X/2], and we have the equalities

dim gy}, (X) = dim Ty = max{dim S(f)| f € Tx}.



3.5 The tight extension of Ty is equal to T

An extension (Y, d’) of a metric space (X, d) is defined to be a tight extension
if for any pseudo-metric d’ : Y xY — IR —i.e. any map d”’:Y xY — IR
such that d’(z,z) = 0 and d"(z,y) < d"(z,2)+d"(y, 2), forall z,y,z € Y —
satisfying the conditions

d"(zq,29) = d(z1,23), for any z,79 € X

and
d"(y1,y2) < d'(y1,y2), for any yy,y2 €Y,

one necessarily has d”(y1,y2) = d'(y1,y2), for all y1,y2 in Y. Obviously, a
tight extension of a tight extension of X is itself a tight extension of X. It
has been shown in [11] that the space T'x is the universal tight extension of
X, in the sense that it is a tight extension of X, it contains, up to canonical
isometries, every other tight extension of X, and it has no proper tight
extension itself. In particular, the map hr, : Tx — T, is a bijection — a
fact which, of course, also follows from Isbell’s functorial description of Tx.

3.6 When is X equal to Tx?

This question is answered by [11, Theorem 2]. It is shown that the following
statements are equivalent:

e The space X is equal to Tx, that is, the embedding hx : X — Tx is
a bijection or, equivalently, a surjection.

The space X has no proper tight extension.

The space X is an isojective metric space.

For every f € Py, there exists an 2 € X such that for all y € X we
have 2y < f(y).

For every f € Tx, there exists an z € X such that f(z) = 0.

4 Trees

4.1 One of many possible definitions of IR-trees

An IR-tree is a complete metric space X = (X, d) satisfying the following
conditions:



e for any z,y € X, there exists a unique isometric embedding ¢ = ¢, ,
of the closed interval [0, zy] C IRinto X such that ¢(0) = z, ¢(zy) = v,
and, therefore, ¢, ([0, zy]) = (z,y) = {2z € X |2y = 22z + 2y};

e for any injective continuous map ¢ : [0,1] < X : ¢ — z; of the unit
interval [0,1] C IR into X, one has ¢([0,1]) C (zo, 1), and therefore
¢([0,1]) = (zo, 1)

If X is an IR-tree, then hx : X — T is a bijection (see [11]).

4.2 A striking example: the Real Tree

Let X|g denote the set of all bounded subsets of IR which contain their
infimum, and define a map d from X|g X X|g to IR by

d(z,y) := 2 - max{sup(zAy),infz,inf y} — (inf z + inf y)

for all such subsets z and y of IR (where zAy denotes the symmetric diffe-
rence of the subsets z and y). Then d is a metric on X|g, and X|g is an
IR-tree relative to this metric. We call X|g the Real Tree. It has many in-
triguing properties, the most interesting one being that, for every = € X|g,
the cardinality of the set of connected components of the set X|g — {z} is
equal to the cardinality of the powerset of IR (see [17]).

4.3 The four-point condition

For a metric space X, the following statements are equivalent (see [11]):
e X satisfies the four-point condition, that is,
wo + 2y < max{zu + yv, zv + yu}
holds for all u,v,z,y € X;
e X can be embedded isometrically into an IR-tree;
e Ty is an IR-tree.

Moreover, in such a case, Ty is the smallest IR-tree into which X can be
embedded isometrically. Finally, a metric space X is an IR-tree if and only if
it is complete, (arcwise) connected, and it satisfies the four-point condition.



4.4 4-Hyperbolic spaces

The concept of a é-hyperbolic metric space is of interest in the theory of
hyperbolic groups (see [21], for example). Let é be a non-negative real
number. A metric space (X, d) is called é-hyperbolic if and only if it satisfies
the following “relaxed” four-point condition;

uv 4+ zy < max{zu + yv,zv+ yu} + 6 for all z,y,u,v e X.

It is not hard to show that if X is é-hyperbolic then the space Tx is é-
hyperbolic as well. Thus, in particular, if a group G acts isometrically
on a 6-hyperbolic space then the T-construction provides a é-hyperbolic
contractible space for G to act on isometrically. This may be of particular
interest when there exists a length function [ : G — IR>g on G such that G
is 6-hyperbolic with respect to the induced metric (cf. Section 7).

4.5 Finitely generated IR-trees

If X is a finite metric space satisfying the four-point condition, then the IR-
tree T'x can be viewed as a graph theoretical tree (with positively weighted
edges, whose weights are represented by their lengths). The vertices are
those elements p € T'x with Tx — {p} being either connected (the leaves of
that tree, which are necessarily of the form h, for some 2 € X) or consisting
of at least three connected components, while the edges correspond to the
subsets of the form (p,q) (p # q) of Tx with p,q being vertices and with
no vertices being contained in the open edge (p,q) —{p, ¢} (or, equivalently,
with the property that there are precisely two connected components in the
complement of that open edge in Tx).

In addition, these edges are in one-to-one correspondence to the d-splits
of X (see Section 5), that is, pairs {A, B} of non-empty subsets of X with
AN B=0and AU B = X such that

aa' + bb'" < min{ab+ a'b’, ab’ + a'b}

holds for all a,a’ € A and b,b’ € B and, therefore, aa’ + bb' < ab + '’ =
ab’ + a’b, since d satisfies the four-point condition. This correspondence
is given by associating to each open edge e the split induced on X by the
decomposition of T'x — e into its two connected components, that is, if z € X
belongs to either A or B, then A (or B) consists of all y € X for which A,
and h, are in the same connected component of Tx — e.



4.6 Ends of IR-trees

Given an IR-tree X, an end of X is an equivalence class of isometric embed-
dings ¢ : IR>g = X of the non-negative real numbers into X where ¢ is
equivalent to ¢ if and only if there exist o € IR and 8 € IRy with a4+ > 0
and ¢(t) = ¢ (t+ «a) for all t > 3.

If one chooses some zg € X, then each end ¢ of X can be represented
by an isometric embedding ¢g : IR>g <= X with ¢(0) = z¢. Let F(X) =
FE.,(X) be the set of all such isometric embeddings ¢g, and assume E(X) #
(. Define a map v : F(X) x E(X) — IRU{—oc0} by

v(o, Yo) == —2 - sup{t € Rxo | wo(t) = ¥o(t)}-
This map satisfies the conditions:
(1) v(go, Po) = v(¢o, o),
(2) v(po, ¥o) = —00 & @o = ¢, and
(3) (o, w0)+v(to, tg) < max{v(po, Po)+v (¥, o), v(#o, ¥o)+(¢0, to)},

for all ¢, ¢p, Yo, ¥y € E(X). Clearly, v differs from a metric satisfying
the four-point condition only by the fact that the diagonal {(w0, o) | o €
E(X)} C E(X) x E(X) is the v-preimage, not of 0, but of —oco — though,
of course, just changing the value of v from —oo to 0 for all pairs from the
diagonal would lead to a violation of (3). Hence, there is a more fundamen-
tal difference between metrics satisfying the four-point condition and maps
which satisfy the above three conditions.

Even so, one can carry out the T-construction on the pair (F(X),v) as
before by defining the space T'= T(g(x),) to be the set

{9 B(X) — R | p(go) = sup_{v(g0, o) - p(to)} for all o € E(X)),
Yo EE(X)

on which, as before, a metric can be defined by the map

(p:q) = sup_|p(wo) = q(po)| for all p,g € T.
poEE(X)
T can then be identified canonically with a sub-IR-tree of (X,d), and one
has T'= X if and only if for all z,y € X there exists some z € X — {y}
with y € (z, z) or, equivalently, if for every z € X there exists an isometric
embedding ¢ : IR — X of the real numbers into X with z in its image
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©(IR) (see [25]). In general, T corresponds to the union of the images of
all isometric embeddings of IR into X, which we denote by Xo C X. The
correspondence is given by associating to each z € X the map p, : F(X) —
IR which associates to each ¢g € FE(X) the real number o € IR for which
@o(t) = ¢(t + a) holds for all ¢ >> 0, where ¢ : R>g < X is the unique
isometric embedding with ¢(0) = z which is equivalent to ®o, that is, for
which such an a € IR exists.

4.7 Trees from ends

Given a non-empty set £ and a map v : £ x F — IRU {—oc0} satisfying
(4.6, (1)-(3)), T(g,v) is an IR-tree, and the set of ends of this IR-tree is the
“v-adic” completion of E (see [16] and [25]).

Important examples for such pairs (F,v) arise as follows: for a prime
number p, let w, : Q — ZU{—o0} denote the p-adic valuation of the rational

number field . If one puts F := Q*\{0} and
vi=wpodet: Ex K — ZU{-o0},

the composition of the determinant with the p-adic valuation, then the pair
(E,v) satisfies (4.6,(1)-(3)). Moreover, the equivalence classes of the ends
of the IR-tree T(g,) are in one-to-one correspondence to the points in the
projective line over the p-adic completion Q, of Q. Of course, corresponding
results hold for any pair (F,w) where F'is a field and w: FF — IRU {—o0}
is a valuation of F.

4.8 The ends of the Real tree

The space of ends of the Real Tree as defined in 4.2 is easy to describe: it is
isomorphic to the set F of all subsets of IR which are bounded from above,
plus some additional element % (represented by the isometry ¢, : IR —
X|R :t — {t}) and can be endowed with the map v from ' x E to IRU{—o0}
defined by v(e, f) := sup(eAf), if e, f # %, v(e,*x) = v(*,e) := 0, if e # %,
and, of course, v(*,*) := —oco. Indeed, the simplest way to construct X|p
and to study its properties, is to analyse the pair (F,v) first and then to
identify X|g with (g, (see [17]).

4.9 Buildings

One can generalize T-theory to pairs (F,v) of “higher” rank, satisfying
appropriate analogues of (4.6, (1)-(3)):

11



A simple valuated matroidis a pair (F, v) consisting of a set £ and a map
v : Pan(E) — RU{—o00} (where Pgn(F) := {2 C E'|#2 < co}) satisfying
the following variant of the Steinitz exchange condition:

(SEP) for all z,y € Pan(FE) and a € z\y there exists some b € y\z with
v(z) +o(y) <ol(zU{b}\{a}) + v((y U{a})\{b})

(see [18] and [19]). Then one can define the space Tz ,) to be the set

{p: F—= IR | ple)= sup  {v(zU{e}) — Zp(a)} for all e € '},
ngﬁn(E\{e}) aEx

where, again, the map
(p,q) — sup Ip(e) — qle)| for all p,q € T(g,)
e

defines a metric on T(g ). For these “higher-dimensional” analogues of IR-
trees, it is possible to define ends in such a way that, as above, the set of
ends of T(,) is the completion of E with respect to v, as defined in [16]
(see [25]).

Again, p-adic numbers give rise to important examples: if ' := Q;'\{0}
and

v:=wy,odet: Pgy(F) — IRU{—00}

R {wpodet(el,...,em), if 2 ={e1,...,em},
—00, else,

then the pair (F,v) is a (well-defined!) simple valuated matroid (see [19]),
and the associated space T(g ,) is the euclidean building for the general linear
group G'L,,(Q,), the simplicial structure of T(5,v), as introduced in Section
3, reflecting the chamber complex structure of the building (see [25]). Of
course, this also holds more generally for any valuation w : FF — IRU {—o0}
of some field F.

Finally, let us note that it might be of interest to study the é-relaxation
of these concepts, too, in particular, if one wanted to capture, in the context
of combinatorial group theory, properties characteristic to the arithmetic
groups of higher rank.

12



5 Coherent Decompositions

5.1 Split decompositions

We begin this section with a question. Suppose that d is a metric defined
on a finite set X, which additively decomposes into two metrics (or pseudo-
metrics) d; and dy, that is, the equality d(z, y) = di(z,y)+dz(z, y) holds for
all z,y in X. Then, what can we say about the relationship between 7'(d)
and T'(dy) 4+ T(d2) :={fi+ f2| f1 € T(d1), f € T(d2)}? Here, of course, we
set

P(d) == {f € R | f(z) + f(y) > d'(z,y) for all 2,y € X},

and

T() = {] € R¥| [(2) = sup{d () ~ J(y)} for all » € X},

for every map d': X x X — IR (or even IRU{—00}), whether it is a metric,
a pseudo-metric, or any other map.

In [6], some progress is made in answering this question, which we sum-
marize here. We start with a little background on the subject of split de-
compositions. A split, S, of a set X is simply a bipartition of X into two
non-empty sets, say A and B. The split (pseudo) metric, 6s, associated to
this split is defined by the formula

0 ifz,ye Aorz,y€ B,
1 otherwise.

bs(z,y) :{

For every pair A, B of non-empty subsets of X, we can associate the isolation
indez, ozf1 g, With respect to any pseudo-metric d, which is defined as

d — . : 1t / l AU It
aypi=1/2 ma,Eerl’lg’lb/EB{maX{ab—}—ab,ab—}—ab,aa +bb'} — aad’ — bb'}.

If the pair A, B forms a split, S, of X and the isolation index of S, ozds =
O‘Cfll,Bv is positive, then we call S a d-split. Let & = S§(d) denote the set of all
d-splits of X. The main theorem of [6] states that

do:=d - %05
Ses

is a split-prime pseudo-metric, which, by definition, is a pseudo-metric dg
such that ozdso = 0 for all splits S of X. We call dy the split-prime residue of
d.

13



Let us now return to the original question. Clearly, if a metric d decom-
poses as d = dy + dy, then P(dy)+ P(dy) is a subset of P(d). Further, P(d)
is equal to P(dy) 4+ P(ds) if and only if the minimal members of P(dy + d3)
decompose, that is, if T'(d) is contained in P(dy) + P(dz) in which case, for
every decomposition f = fi + f, of some map f € T'(d) with f; € P(d;) and
f2 € P(dy), one must have f; € T'(dy) and fy € T'(dg). If this holds, we call
dy and dy coherent. More generally, we define k& pseudo-metrics dy, ..., d;
to be coherent if P(dy+...+dy) is equal to P(dy)+ ...+ P(dy), and in this
case we say that the pseudo-metrics dy, ..., d; constitute a coherent decom-
position of the pseudo-metric d := dy + ...+ dg. Theorem 8 of [6] links split
decompositions with coherent decompositions. We state this theorem here
for completeness:

Let d be a metric on X. Assume that

d=di+ ) As-bs
SESl
is a decomposition of d such that dy is a pseudo-metric, &; is a collection
of splits of X, and Ag > 0 for all members of §;. Then this constitutes a
coherent decomposition of d, that is,

P(d) = P(d1) + Y P(As-6s) = P(d1) + > _ As- P(bs)
SeS SeS

holds, if and only if Ag < a% for all S € &1, in which case one has agl = adS,

for all splits S not in &y, and ozdsl = ozds — Ag, for all splits S in &; — in
particular, the split-prime residues of d and d; must coincide.

5.2  Split decomposition, trees, and phylogenetic analysis

It has been shown in [6] that, if d satifies the four-point condition, then
d=Y " a%-6bs.

In other words, if d is a tree-like metric, then the split-prime residue of d
vanishes, while — as mentioned in Section 4.5 — the d-splits are precisely
the splits induced by the edges of the associated tree, their weights corre-
sponding to the length of these edges. Split decomposition was designed, in
particular, to analyse phylogenetic distance data, which are in general not
too far from satisfying the four-point condition as they somehow reflect the
phylogenetic tree, but, of course, they rarely satisfy it precisely. Applications
of split decomposition to biology are discussed in [14], [10], [5], and [1].
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5.3 Cyclic split systems

According to [6], there are at most (Z) d-splits for any (pseudo) metric
d, defined on a set X of cardinality m. Moreover, this upper bound is
attained if and only if the metric is cyclic, that is, there exists a bijection
@: X — {1,...,n} such that the d-splits are precisely all splits of the form

{o ' {a,a+1,...,b—1}), X —¢o ' {a,a+1,....,6—1})}

(with 1 < a < b <n),in which case the split-prime residue of d necessarily
vanishes. In [26], it has been shown that an arbitrary system of splits is
contained in a cyclic split system if and only if the smallest system of splits
containing the given system and containing, for any two of its splits S; =
{Al,Bl} and 52 = {AQ,BQ} with Al N A2 7£ @ 7£ B1 N BQ, the Spht {Al N
Az, By U By} is weakly compatible (that is, it does not contain three splits,
Sy = {Ay, B1},S2 = {Ag, By}, and S3 = {As, B3} such that there exist
elements a, ay,as,a3 € X with a € A; N Ay N Az and “a; € A; if and only
if ¢ = j for all 4,5 € {1,2,3}”). In turn, this is (essentially) equivalent to
the fact that there exists a “nice” planar representation of the given split
system (for details, see [26]).

5.4 Split decompositions and overlapping clustering

From the point of view of cluster theory, split decomposition can be viewed
as a particular instance of overlapping clustering procedures. This point of
view has been worked out in detail in [4], [7], and [9], where different aspects
have been stressed. In [4], weak hierarchies have been introduced which are
set systems (or hypergraphs) related to similarity measures in the same way
that split systems are related to metrics. In [7], lattice theoretic aspects
of the weak-hierarchy concept are worked out in detail, leading to a deeper
understanding of weak hierarchies and to far-reaching generalizations of local
and global similarity data. In [9], the connection between various kinds
of split systems on the one hand and corresponding quaternary relations
on the other is analysed, leading to axiomatic characterizations of various
important classes of split systems.

15



5.5 Split decompositions and the Travelling Salesman’s Pro-
blem

For any metric space X of cardinality n and any (pseudo) metricd : X x X —

IR, define
TSP(d) := min{z d(e(i),e(t—1)) | ¢:{0,1,...,n}—X,p(0) = ¢(n)}.

It is easy to see that for any decomposition of d of the form

d=di+) Xs-ds
SeS

with d; a pseudo-metric, § a system of splits and Ag > 0 for all S € S, one
has

TSP(d)>2-) s,

so that, in particular,

TSP(d)>2- > of.
SeS(d)

It can be shown (see [20]) that the following three statements are equivalent:

e The split-prime residue of d|yxy vanishes for all Y C X with #Y =5
and the system S(d) of d-splits can be embedded into a cyclic split
system.

o TSP(d) =23 ses(a ag.

o TSP(d) = sup{2- > gcs As}, where the supremum is taken over all
decompositions of the form d = d; + ES@S Ag - 65 as discussed above.

5.6 Embedding metric spaces into the rectilinear plane: a
six-point criterion

The main result obtained by H.-J. Bandelt and V. Chepoi in [2] states that
a metric space embeds into the rectilinear plane (i.e. is L'-embeddable in
|R2) if and only if every subspace with five or six points does. The proof of
this result takes advantage of split decomposition theory, of which we have
discussed some of the basic concepts above. In particular, the proof uses the
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concept of a totally decomposable metric space, (X, d), which means that the
metric d can be written in the form

d=Y"a%-6s,

SeSs

where § is the set of all d-splits, i.e. the split-prime residue of d vanishes. As
shown in [6], this holds for (X, d) if (and only if) it holds for every five-point
subspace of X.

6 The Block Decomposition

In [15], a unique additive decomposition of a metric d defined on a finite set
X is introduced which is called its block decomposition. This decomposition
is a particular instance of a coherent decomposition, though it differs in
many ways from the split decomposition described in the previous section.
The block decomposition arises from particular properties of the topology
of Ty when X is finite, and we briefly describe the ideas giving rise to it
here.

If R is an equivalence relation on X, then we denote its set of equivalence
classes by X/R. We say that two equivalence relations Ry and Ry on X are
compatible if they satisfy the following conditions:

e neither Ry nor Ry is equal to X x X;
e there exist sets A; € X/R;,i= 1,2, such that Ay U A; = X.

A set of equivalence relations is compatible if any two relations contained
within that set are compatible. Note that each pseudo-metric d defined on
X induces an equivalence relation on X by setting = equivalent to y, for z,y
in X, if and only if the distance between z and y relative to d is equal to zero.
A t-decomposition of the pseudo-metric d is a finite set of pseudo-metrics D
defined on X such that;

[ ] d:zd,epd/;

e the set of equivalence relations induced on X by the elements of D is
compatible.

In [15], we define the concept of a d-tree. A d-treeis a (graph theoretical)
tree, T, with vertex set W U V and edge set £ C {{w,v}|we W,ve V},
which satifies the following conditions:
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e the set W contains the set X;

e the set X, considered as a subset of T', contains every vertex of degree
one;

e cach v € V is labelled by a metric d,, which is defined on the neigh-
borhood of v in T', N (v) :={w € W |{w,v} € F};

e for every two vertices z,y in X, one has

m
d($7 y) = E dv,'(wi—h wi)7
i=1
where x = wq, v1, w1y, v, ..., Uy, w, = y are the consecutive vertices

in the (unique) shortest path from z to y in 7.

In [15], it is shown that there is a one-to-one correspondence between (iso-
morphism classes of) d-trees and t-decompositions of d.

We now give an example of a block decomposition. Let d denote the
graph metric defined on the six-point set {1,...,6} pictured in Figure 1,
where the metric assigns length 1 to each simple edge and length 2 to each
double edge. The d-tree associated to d is pictured in Figure 2 and consists
of two “blocks”, labelled by v; and vy, which are connected at the vertex
wy. The set W contains the vertices {1,...,6}, together with the vertex
wy, and the set V' is equal to the union of the two vertices vy and vy. The
metrics d,, and d,, are pictured in Figure 3. The block decomposition of d
is given by d = dy + d3, where the metrics d; and dy are defined as follows.
Let A equal the set {1,2,3} and B equal the set {4,5,6}. Then we have

0 ifi=jor{i,j} e BxB,
di(i,j) =4 1 if{i, 5} € {{1,2},{1,3}},{2} x B, or {3} x B,
2 if i) = {2,5) or {i,7} € {1} x B,
and
0 ifi=jor{i,j}eAxA,
da(i,j)= ¢ 1 if {15} € {{4,5},{5,6}}, A x {4}, or A x {6},
2 if {i,j} = {4,6} or {i,j} € A x {5}.

We close this section with an explanation of how the topology of Ty
enters into the block decompositions. In [11, Theorem 6] it is shown that if
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Figure 1: The graph representing metric d

Figure 3: The metrics d,, and d,,
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there exists a split AUB of X and a map f € Px satisfying f(z)+ f(y) = zvy,
forallz € Aand y € B, then fis an element of Tx. Moreover, amap f € Tx
is of this form if and only if it is either of the form A, for some z in X, or
it is a cut point of T, that is, the set Tx — {f} consists of at least two
connected components. Given a finite set F of such points contained in T’y
which contains all of the points h, for z € X, we construct a d-tree, whose
vertices in W correspond to the elements of F, and whose vertices in V
correspond to the connected components of T’y — F, while an edge connects
a component with an element of F if and only if that point is contained in
the boundary of the component. Employing the fact that Tx is compact,
we then show that every d-tree can be obtained in this way and that there
exists — up to a splitting of intervals — a unique finest such d-tree. The t-
decomposition to which this finest d-tree corresponds is precisely the block
decomposition.

7 T-Theory and Groups

Let G be an arbitrary group, endowed with a length function [ : G — IR0,
i.e. a map, [, satisfying the following conditions:

o l{g)=1(g™") > 0;
e l(g)=0eg=1;
o I(gh) < l(g)+1(h);

for all g, h contained in G. Then the group GG can be considered as a metric
space, where we define the distance, D, between any two elements g, A in
G to be D(g,h) := l(gh™"). By employing this idea, one can use the T-
construction on the metric space (G, D) to investigate relationships between
properties of the group G and the length function /. For example, in [11,
Theorem 10] it is shown that if G is a group, endowed with an interger
valued length function, which satisfies the condition

sup{l(g") | k € Z} = oo

for all elements g € GG not equal to the identity, and if dim.q ., T D) is
less than or equal to n, then the cohomological dimension of GG is also less
than or equal to n. In the case when n is equal to one, this recovers a result
of R. Lyndon (see [24] and also [9]) as, by a famous result of Stallings, it
implies that G must be free.
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One can also use the T-construction to investigate group actions on
finite metric spaces. In [12], the case where X is a finite metric space
whose group of isometries acts transitively on X, and where one has the
equality dim.q,(X) = |#X/2], is studied. For example, it is shown
that the Feit-Thompson Theorem can be recovered, using T-theory, from
it’s simple consequence that any finite simple group acts transitively as a
group of isometries on some finite metric space X satisfying dim (X) =

[#X/2].

comb
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