
Enumeration of Hamiltonian Circuits in

Rectangular Grids

Robert Stoyan∗

Volker Strehl†

Computer Science Department (Informatik)
University of Erlangen-Nürnberg

D-91058 Erlangen, Germany

[Note: this article has been accepted for publication by the
Journal of Combinatorial Mathematics and Combinatorial Computing]

Abstract

We describe an algorithm for computing the number hm,n of Hamilto-
nian circuits in a rectangular grid graph consisting of m × n squares.
For any fixed m, the set of Hamiltonian circuits on such graphs (for
varying n) can be identified via an appropriate coding with the words
of a certain regular language Lm ⊂ ({0, 1}m)∗. We show how to sys-
tematically construct a finite automaton Am recognizing Lm. This
allows, in principle, the computation of the (rational) generating func-
tion hm(z) of Lm. We exhibit a bijection between the states of Am
and the words of length m+ 1 of the familiar Motzkin language. This
yields an upper bound on the degree of the denominator polynomial
of hm(z), hence of the order of the linear recurrence satisfied by the
coefficients hm,n for fixed m.

The method described here has been implemented. Numerical data
resulting from this implementation are presented at the end of this
article.

∗rtstoyan@cip.informatik.uni-erlangen.de
†strehl@immd1.informatik.uni-erlangen.de

1

1 Introduction

We consider the problem of enumerating Hamiltonian circuits on rectangular
grid graphs.

cc cc cc ccc c c cc c c c
cc cc ccc c cc c c
cc cc ccc c cc c c

0 n
0

m

Figure 1. The grid graph G∗3,9

Let hm,n denote the number of Hamiltonian circuits on a grid graph with
(m+ 1)× (n+ 1) vertices as in Fig. 1, and let

hm(z) =
∑
n≥1

hm,nz
n

denote the associated generating function for fixed m. The main goal of this
article is to outline an algorithm which allows to systematically compute
— in principle — hm(z) for any m. It turns out that hm(z) is always a
rational function, a fact that has been observed by authors who studied this
enumeration problem for small values of m by ad hoc methods ([3],[4],[5]).
This result is an immediate consequence of the transfer-matrix method,
which we employ here for the general approach. See Sec. 4.7 in [7] for
a presentation of this method. Indeed, we show how Hamiltonian circuits
on grid graphs can be encoded by the words of a suitable language that is
recognized by a finite automaton. Note that Hamiltonicity of a graph has
both a local (every vertex is visited exactly once) and a global (the subgraph
is connected) aspect. It is quite obvious how to code the local aspect in a
way that can be checked by a finite automaton. It is less obvious how the
same can be done for the global aspect in a systematical way. This is the
main contribution of the present article.

Once a coding in terms of a regular language has been given and a
recognizing finite automaton has been constructed, the computation of the
generating function hm(z) is a routine matter — in principle! In practice
there are severe limits due to the exponentially increasing number of states
(as a function of m). Indeed, we can give precise information about the
number of states of our automata (prior to minimization) and thus an upper
bound for the degree of the denominator polynomial of hm(z). Interestingly,

2

the states can be put into bijection with the words of the familiar Motzkin
language. Even though minimization may cut down the number of states
considerably (for m odd about half of the original states turn out to be non-
reachable), we conjecture that the growth of the degrees of the denominator
polynomials of hm(z) is of the same order as that of the Motzkin numbers.

We refer the reader to [2] for the basic notions of automata theory needed
here, and [1] for the relation between regular languages and rational gener-
ating functions.

The algorithm outlined here has been implemented by the first author
([8]). For efficiency reasons, this implementation uses a slightly different way
of representing the automaton in question, which we will not discuss here.
The program, written in the C++ language, and a complete description of
its functionality are available on request from the first author. At the end
of this article we present some results obtained by this program.

2 Representation and characterization

We begin by introducing some notation:
For positive integers m,n the grid graph Gm,n is given by its vertex set

{ (x, y) ; 1 ≤ x ≤ n, 1 ≤ y ≤ m } and the usual nearest-neighbour-edges of a
rectangular grid.

It is convenient for our purposes to introduce also the extended grid
graph G∗m,n with vertex set { (x, y) ; 0 ≤ x ≤ n, 0 ≤ y ≤ m }. See Fig. 1 for
an example.

A “cell” of G∗m,n is a quadrangle of points

[x, y] = {(x, y), (x− 1, y), (x, y − 1), (x− 1, y − 1)}

where 1 ≤ x ≤ n, 1 ≤ y ≤ m. Think of Gm,n as a graph whose vertices are
the cells of G∗m,n, and edges in Gm,n joining neighbouring cells in G∗m,n (i.e.
cells which have an edge of G∗m,n in common).

A Hamiltonian circuit of G∗m,n is a subgraph H∗ of G∗m,n with the fol-
lowing properties:

- every vertex (x, y) has degree 2 w.r.t. H∗

- H∗ is connected

By a discrete version of the Jordan curve theorem it is clear that each cell
[x, y] of G∗m,n lies either “inside” or “outside” such a Hamiltonian circuit

3

H∗. This gives rise to a mapping

H : Gm,n → {0, 1} : (x, y) 7→
{

1 if [x, y] is an “inside” cell w.r.t. H∗

0 if [x, y] is an “outside” cell w.r.t. H∗

Let now F : Gm,n → {0, 1} be any mapping. We will use the same notation
F for different presentations of the same object:

- a mapping from (the vertex set of) Gm,n to {0, 1}, as indicated;

- the corresponding (m× n)-matrix which has entry F (x, y) in position
(x, y);

- the induced subgraph of Gm,n with vertex set F−1(1);

- the word F (1)F (2) . . . F (n) over the alphabet Σm := {0, 1}m where F (k)

denotes the k-th column of the matrix F , written as a word over Σm,
for convenience.c
c
c
ccc c c cc c c c

c
cc
c
cc
c
ccc c cc c

c
c
c
cc
c
ccc c cc c

sss
ss
ssss
s
s s
s s
s ps s s s s
ssssss s ss ss s ss ss ss ss s s ssss
s p s ss

s s s s s s s s ss 1 0 1 0 1 1 1 1 1

1 1 1 1 1 0 1 0 0

1 1
00 1 0 0 0 1 0 1

1 1 0 1 1 1 1

01 1 0 1 0 1 0 1

ccc
c
c
c
ccccc
c
c
ccc
c
c
ccccc
c
c
cc
cc

Figure 2. Three representations : conventional, matrix, induced subgraph.

Our first goal is to give a handy characterization of those mappings F
that correspond to the Hamiltonian circuits of G∗m,n. For this purpose we
need a concept which allows us to represent the degree constraint of circuits.

Two vectors (or words) u = u1 . . . up , v = v1 . . . vp ∈ {0, 1}p (for some
p) are compatible, if for all k (1 ≤ k < p)(

uk vk
uk+1 vk+1

)
6∈
{(

1 1
1 1

)
,

(
0 0
0 0

)
,

(
1 0
0 1

)
,

(
0 1
1 0

)}

Think of the matrix on the left as representing the “inside”-“outside”
situation of four neighbouring cells of G∗m,n with respect to a Hamiltonian
circuit H∗. It is clear that neither of the matrices on the r.h.s is possible
because they represent the situation at vertices of degree 0 or 4 w.r.t. the
subgraph H∗. Note that all the other 12 (2 × 2)-matrices over {0, 1} may
occur because they represent the situation occuring at vertices of degree 2.

4

For any vector (word) w ∈ {0, 1}m let w denote the augmented vector
0 · w · 0 ∈ {0, 1}m+2, constructed by prepending and appending a 0 to w.
Furthermore, let 0 = 0m ∈ {0, 1}m denote the all-zero vector and 0 = 0m+2

the corresponding augmented vector.
It is easy to see, that the following holds:

• if H∗ is a Hamiltonian circuit of G∗m,n, then

– the sequence of vectors

0 , H
(1)

, H
(2)

, . . . , H
(n)

, 0

is a compatible sequence, i.e. H(i) is compatible with H
(i+1) for

0 ≤ i ≤ n, where we put H(0) = 0 = H
(n+1) ;

– the induced subgraph H of Gm,n is a tree.

It is a little less obvious that the converse also holds: any mapping
F : Gm,n → {0, 1} such that the sequence 0, F (a)

, . . . , F
(n)
,0 is compatible

and such that F , viewed as an induced subgraph of Gm,n, is a tree, actually
gives rise to a Hamiltonian circuit of G∗m,n. We give a short outline of proof:

F will be used to define a subgraph F ∗ of G∗m,n in the obvious way:

• an edge (x− 1, y)←→ (x, y) , where 1 ≤ x ≤ n, 0 ≤ y ≤ m belongs to
F ∗ (together with its endpoints) iff F (x, y) 6= F (x, y + 1)

• an edge (x, y − 1)←→ (x, y), where 0 ≤ x ≤ n, 1 ≤ y ≤ m belongs to
F ∗ iff F (x, y) 6= F (x+ 1, y)

We have used here the augmented (m+ 2)× (n+ 2)-matrix F :

F (x, y) =
{
F (x, y) if 1 ≤ x ≤ n, 1 ≤ y ≤ m
0 if x ∈ {0, n+ 1} or y ∈ {0,m+ 1}

is obtained by bordering F with zeros.
The compatibility condition guarantees that F ∗ has degree 2 at each

vertex. The tree condition guarantees that F ∗ is connected.

3 Constructing Hamiltonian circuits

Let us now consider the problem of systematically constructing Hamiltonian
circuitsH∗ ⊆ G∗m,n for fixedm and arbitrary n ∈ N. We have seen that these

5

circuits correspond to mappings H : Gm,n → {0, 1} such that the sequence
0, H(1)

, H
(2)
, . . . ,H

(n)
,0 of augmented column vectors is a compatible one,

and that the induced subgraph H ⊆ Gm,n is a tree. This implies that
each initial seqment 0, H(1)

, . . . ,H
(k) is a compatible sequence and that the

corresponding subgraph H(1...k) ⊆ Gm,k is a forest. This forest is “special”
in that all its trees have at least one vertex belonging to the last, the k-th
column. We will now consider two aspects: continuation and termination.

• Continuation: if we want to extend such an initial segment in a way
that may ultimately lead to a Hamiltonian circuit H∗ ⊆ G∗m,n for some
n > k, we have to examine as candidates for the (k + 1)-st column
H(k+1) all nonzero vectors K ∈ {0, 1}m such that the following holds:

– H
(k) and K are compatible;

– the subgraph induced by H(1), . . . ,H(k),K in Gm,k+1 is again a
special forest.

The first of these conditions can be easily checked by a finite automa-
ton. What is less obvious is that for checking the second condition we
do not need to know the whole “history” H(1), . . . ,H(k), but only a
limited (i.e. bounded for m fixed) amount of information in addition
to knowing H(k) :

- we need to know which of the 1-cells of H(k) (i.e. the y such that
H

(k)
y = H(k, y) = 1) belong to the same tree in the special forest

induced by H(1), . . . ,H(k).

We can then check whether the addition of K as (k+1)-st column leads
to a cycle or not in the new induced subgraph, and if not, whether all
the previously existing trees are now merged into trees which all have
at least one vertex belonging to in the (k + 1)-st column. Note that
the addition of K may also create new trees consisting of just a single
vertex or a string of vertices in the (k+ 1)-st column. (In the example
given in Fig. 4, this happens in the third column.)

• Termination: If all the vertices of H(k) belong to the same tree, then by
maintaining the property of being a “special” forest by continuation,
it is clear that the forest induced by H(1), . . . ,H(k) is in fact a single
tree. If H(k) turns out to be compatible with 0, we may terminate the
construction and a Hamiltonian cycle of G∗m,k is constructed.

6

4 Some technical details

It should be evident from the previous section that for each fixed m > 0 a
finite automaton can be constructed which works over the alphabet Σm =
{0, 1}m and which accepts a word H = H(1)H(2) . . .H(n) ∈ Σ∗m if and only
if the corresponding matrix H represents a Hamiltonian circuit of G∗m,n. In
this section we look a little closer on the problem how to construct such an
automaton. The main point is, of course, how to integrate the knowledge
about the forest induced by initial segments H(1)H(2) . . .H(k) into the states
of such an automaton.

Let us begin with recalling some familiar concepts from combinatorics.
A partition of the set [1..n] := {1, 2, . . . , n} can be specified by a function
π : [1..n]→ [1..n] such that

π(1) = 1 , 1 ≤ π(j) ≤ max{π(i); i < j}+ 1 for 2 ≤ j ≤ n

The idea of this coding is that element j belongs to block number k if π(j) =
k, and the sequence of smallest elements in blocks numbered 1, 2, 3, . . . is
increasing.

A partition π of [1..n] is non-crossing (ncp) if for each quadruple 1 ≤
i < j < k < l ≤ n

π(i) = π(k) ∧ π(j) = π(l) implies π(i) = π(j)(= π(k) = π(l))

For later use we introduce the notation NCPn to denote the set of non-
crossing partitions of [1..n].

If we look at the situation discussed above, namely that of a sequence
H(1),H(2), . . . ,H(k) in Σm inducing a “special” forest in Gm,k, we notice that
the partition π of the vertices belonging toH(k) according to the membership
in the trees of the forest is necessarily an ncp. More precisely, let

H
(k) = 0j01i10j11i20j2 . . . 1ir0jr with i1, . . . , ir, j0, j1, . . . , jr > 0

7

be the unique factorization of H(k) into maximal 0-blocks
and maximal 1-blocks. Vertices belonging to the same
1-block obviously belong to the same tree induced by
H(1), . . . ,H(k). Thus a partition π of [1..r] indicates to
which tree the vertices of each 1-block belong. An ex-
ample is given in Fig. 4, where a Hamiltonian circuit on
G∗9,5, written in matrix form, is given, together with the
ncps associated to the five column vectors and coding the
backward tree structure. These partitions π must belong
to NCP for obvious topological reasons. Otherwise we
would have a contradictory situation as indicated in Fig. 3.
These objects, pairs (u, π) consisting of a vector u ∈
{0, 1}m together with an ncp π on its set of maximal 1-
blocks, are actually the states of the automaton we are
going to construct.

�
�
�
�
�

L
L
L
L
L �
�
�
�
��

L
L
L
L
LL

- e

1

1...

1

1...

1

1...

1

1... A

B

A

B

Figure 3.

1 1 1 1 1
0 0 1 0 0
1 1 1 1 1
0 0 1 0 1
1 1 1 0 1
1 0 0 0 1
1 0 1 1 1
1 0 0 0 1
1 1 1 0 1

→

 1
2
3

 ,


1
1
2
3

 ,
 1

2
1

 ,
 1

2
2

 ,(1
1

)

Figure 4. Example : The partitions π corresponding to the columns.

We now define the state set:

Qm = { q = (u, π) ; u ∈ {0, 1}m, π ncp on maximal 1-blocks of u }

5 Construction of the automaton Am
Let Lm ⊂ Σ∗m denote the set of matrices corresponding to Hamiltonian
circuits on G∗m,n for some n ≥ 1. Lm will be considered as a language over
the alphabet Σm = {0, 1}m, written as column vectors, and with horizontal
concatenation of columns as operation. In this section we will construct a
finite automaton Am recognizing this language Lm.

8

�
�
�
�

0
1
0

(1)

�
�
�
�

0
0
1

(1)

�
�
�
�

1
0
1

(
1
1

)

�
�
�
�

1
0
1

(
1
2

) �
�
�
�

1
1
1

(1)

�
�
�
�

1
0
0

(1)

�
�
�
�

0
0
0

()

��-
�
�

�

��
���

?6

-

HH
HH

H
HH

HY

��
��
��*
��

���
���

-
�

XXXXXXXzPPq

HHY

�

��3

-

�

@
@

@
@
@
@
@I

�
�
�
�

1
1
0

(1)

�
�
�
�

0
1
1

(1)-
�

Figure 5. The transition system T3

We first construct a transition system Tm = (Qm,→) as follows:

for q, q′ ∈ Qm with q = (u, π), q′ = (v, σ) we put q → q′ if and
only if the following holds

– u and v ∈ {0, 1}m+2 are compatible vectors

– extending the (type of) special forest structure encoded in
q = (u, π) via the ncp π by column v again leads to a (type
of) special forest structure, which is encoded by (v, σ).

It must be admitted that checking the second item is rather intricate to
implement. No further details are given here, see [8]. We point out, however,
that given a state q = (u, π) and v ∈ Σm such that u and v are compatible,
there is at most one σ such that q′ = (v, σ) ∈ Qm and q → q′ holds. The
paths of length n+1 in Tm, starting at q0 := (0, ∅) and ending in q0, without
returning to q0 in between, precisely correspond to the Hamiltonian circuits
of G∗m,n.

This leads to the construction of the automatonAm := 〈Q′m,Σm, δ, α,Ω〉.
Again, we take Σm = {0, 1}m as alphabet and define a complete determin-
istic automaton over the state set

Q′m = {Qm \ q0} ∪ {α, ρ}

9

where the new states α (ρ resp.) serve as initial (dead resp.) states. The
set Ω of terminal states is given by

Ω = { (u, πω) ; (u, πω)→ q0 in Tm }

Here πω = (1) denotes the ncp where all 1-blocks belong to the same class.
The transition function δ : Q′m × Σm → Q′m is defined as follows:

– for q = (u, π), q′ = (v, σ) ∈ Qm \ {q0} :

δ(q, v) :=
{
q′ iff q → q′ in Tm
ρ iff q 6→ q′ in Tm

– for each u ∈ Σm such that q0 → (u, πα) in Tm :

δ(α, u) = (u, πα)

Here πα is the ncp where each 1-block of u is in a class by itself.
The language Lm of Hamiltonian circuits on G∗m,n (for some n ≥ 1)

is the language accepted by Am. In particular, we have thus shown that
the language Lm is a regular (rational) language for any m, and that its
generating function is rational.

6 A review of the Motzkin language

In the next section we will present another way of writing the states of
our transition systems Tm, hence of the automata Am. This has the double
advantage of being closer to the actual implementation of the automata, and
of giving precise information about the size (number of states) of Tm and
Am. Quite surprisingly, it turns out that the states of Tm can be put into
bijection with the words of length m+ 1 of the familiar Motzkin language.

In the present section we recall some (familiar) facts about the Motzkin
language M over the ternary alphabet {x, x, y}. This language can be de-
fined as the unique solution in {x, x, y}∗ of the fixed point equation

Z = y∗ · (λ+ x · Z · x · Z) ,

where λ denotes the empty word. This equation reflects the fact that M is
a context-free language, generated by the (unambiguous) grammar

Z → Y + Y · x · Z · x · Z , Y → λ+ y · Y

Hence, a word w ∈ {x, x, y}∗ belongs to M if and only if one of the two
cases holds:

10

– w = yk for some k ≥ 0

– w has a factorization w = yk · x · u · x · v with u, v ∈ M and k ≥ 0
(recursion!)

Another way of looking at the Motzkin language is by taking the Dyck
language over the alphabet {x, x} and “shuffling” it with the set of words
y∗ = {yk ; k ≥ 0}.

We note in passing that the set NCPn of non-crossing partitions of [1..n]
is in bijection with the words of length 2n of the Dyck-language over {x, x},
hence the cardinality]NCPn is the Catalan number catn = 1

n+1

(2n
n

)
.

We now list some known facts about motn :=]Mn, the number of
Motzkin words of length n:

– The sum representation

motn =
bn/2c∑
k=0

catk

(
n

2k

)
=
bn/2c∑
k=0

1
k + 1

(
2k
k

)(
n

2k

)

– The generating function

∑
n

motn zn =
1− z −

√
1− 2z − 3z2

2z2

= 1 + z + 2z2 + 4z3 + 9z4 + 21z5 + 51z6 + . . .

– The asymptotic behaviour

motn =
√

3
4π n3

3n − 45
32

1√
3π n5

3n +O

(
3n

n7/2

)

7 A bijection

We will now define a mapping Ψ which maps the state set Qm of the tran-
sition system Tm bijectively onto the setMm+1 of words of length m+ 1 of
the Motzkin language M over the alphabet {x, x, y}.

The definition is by induction on m.

– For m = 0, we formally introduce Q0 = {(λ, ∅)}, where λ is the empty
word and ∅ denotes the empty partition, the unique element of NCP0.
This “state” is mapped by Ψ onto the word y ∈M1.

11

– More generally: for any m ≥ 0, the state set Qm contains the element
(0m, ∅), and this particular state will be mapped by Ψ onto the word
ym+1 ∈Mm+1.

– Let q = (u, π) ∈ Qm, q 6= (0m, ∅). Then u ∈ {0, 1}m has r maximal
1-blocks for some r with 1 ≤ r ≤ bm/2c, and π is an element of NCPr.
As in Section 4, write

u = 0 · u · 0 = 0j01i10j11i20j2 . . . 1ir0jr

with i1, . . . , ir, j0, . . . , jr > 0 and

i1 + . . .+ ir + j0 + . . .+ jr = m+ 2

Now factorize π according to the last position in π(1)π(2) . . . π(r)
where “1” appears. Let

k = max{ ν ; π(ν) = 1 }
h = max{π(ν) ; 1 ≤ ν ≤ k }

Thus k is this last position and h is the maximum block number that
appears up to this position. By the properties of non-crossing parti-
tions it is clear that after position k only block numbers bigger than
h appear in π. More precisely:

π′ := π(1)π(2) . . . π(k − 1) ∈ NCPk−1

π′′ := (π(k + 1)− h)(π(k + 2)− h) . . . (π(r)− h) ∈ NCPr−k

(This decomposition π 7→ (π′, π′′) can actually be used to produce a
bijection between NCPr and the set of Dyck words of length 2r.)

Now let

q′ :=
(
0j01i10j1 . . . 0jk−21ik−10jk−1 , π′

)
∈ Qm′

q′′ :=
(
0jk1ik+10jk+1 . . . 0jr−11ir0jr , π′′

)
∈ Qm′′

where

i1 + · · ·+ ik−1 + j0 + · · ·+ jk−1 = m′ + 2
ik+1 + · · ·+ ir + jk + · · ·+ jr = m′′ + 2

12

and define
Ψ(q) := yik−1 · x ·Ψ(q′) · x ·Ψ(q′′)

If we assume (by induction) that

Ψ(q′) ∈Mm′+1 and Ψ(q′′) ∈Mm′′+1

then — in view of the characterization on M given in the previous
section — we have

Ψ(q) ∈Mt where t = ik + 1 +m′ + 1 +m′′ + 1 = m+ 1 ,

as desired. It is a routine task to check that this decomposition and
the mapping Ψ can be perfectly reversed, i.e. Ψ maps Qm bijectively
onto Mm+1 for each m ≥ 0.

Let us illustrate this construction of Ψ by an example. For this purpose
we take states q = (u, π) ∈ Qm with u as above and write it as

q ≡ 0j0π(1)i10j1π(2)i20j2 . . . π(r)ir0jr

i.e. we replace the ones in the 1-blocks of u = 0 · u · 0 by the corresponding
π-values of the blocks. We let Ψ operate on words of this type. (Note that
in this coding we have Ψ(0n) = yn−1 for n > 0.)

Let m = 30 and q = (u, π) with

u = 01120311021301140211011202110311 ∈ {0, 1}30

and
π = 1 2 1 1 3 4 3 5 ∈ NCP8

We have
k = 4 , h = 2 , ik = 4 , π′ = 1 2 1 , π′′ = 1 2 1 3

so that
q ≡ 0212032102130114023101420231035101

will be mapped onto

Ψ(q) = y3 · x ·Ψ(02120321021301) · x ·Ψ(021101220211033101)

13

Proceeding inductively we arrive at

Ψ(02120321021301) = y2 · x ·Ψ(0212032102) · x ·Ψ(0)
= y2 · x · y · x ·Ψ(02) · x ·Ψ(031102) · x
= y2 · x · y · x · y · x · x ·Ψ(03) · x ·Ψ(02) · x
= y2 · x · y · x · y · x · x · y2 · x · y · x

and

Ψ(021101220211033101) = x ·Ψ(0211012202) · x ·Ψ(031101)
= x · x ·Ψ(02) · x ·Ψ(011202) · x · x ·Ψ(03) · x ·Ψ(0)
= x2 · y · x · y · x ·Ψ(0) · x ·Ψ(02) · x · x · y2 · x
= x2 · y · x · y · x · x · y · x · x · y2 · x

To conclude this section, we take the example of a Hamiltonian circuit
(in matrix form) given at the end of Section 4 and show how it translates
into a sequence of Motzkin words (as columns).

1 1 1 1 1
0 0 1 0 0
1 1 1 1 1
0 0 1 0 1
1 1 1 0 1
1 0 0 0 1
1 0 1 1 1
1 0 0 0 1
1 1 1 0 1

x̄ x̄ x̄ x̄ x̄
x x x̄ x̄ x̄
x̄ x̄ x y x
x x x̄ y y
x̄ x̄ x x y
x y x x y
y y y x̄ y
y x̄ y y y
y x y y y
y x y x x

'

Figure 6. A (matrix) Hamiltonian circuit and its Motzkin translation

8 Compatible vectors again

In this section we point out a simplification that is possible in both construc-
ing the automata Am and computing with them. This is due to a simple
parity argument that is inherent in the concept of compatible vectors (or
words), as introduced in Section 2.

Consider the following simple transition system on four states, named
00, 01, 10, and 11.

14

y

y

y

y
6

?

I@
@
@
@
@R

��
�

�
�
�	

��
�
�

�
�	

I@
@
@
@
@R ����� -

00

10

01

11

Figure 7. The transition system for compatible vectors

To each walk w of length m in this transition graph, given by the se-
quence w = w0, w1, . . . , wn of states it visits, we associate two words of
length m+ 1 over {0, 1} :

uw := the concatenation of the first components of w0, w1, . . . , wm

vw := the concatenation of the second components of w0, w1, . . . , wm

It is easy to see that the pairs (uw, vw) of words of the same length thus
generated are precisely the pairs of compatible vectors as defined in Section
2.

For Tm and Am we need to consider (and to produce) all compatible
pairs (u, v) = (0 ·u ·0, 0 · v ·0) with u, v ∈ {0, 1}m — i.e. we have to consider
walks of length m+ 1 starting and ending in state 00. Note that each walk
of that kind has an even number of transitions to or from state 11. Legal
transitions between the other three states, however, have the property that
the generate a factor 00 either in uw or in vw, but not in both words.

This last observation has the following consequence: call u ∈ {0, 1}m an
even vector if the word u = 0 · u · 0 contains an even number of factors 00,
otherwise u is odd. Now, by the previous remark:

let u, v ∈ {0, 1}m be vectors such that u and v are compatible,
then

– if m is odd, then either both of u, v are even or both are
odd

– if m is even, then one of u, v is even and the other one is
odd

15

We draw the following consequences:

• if m is odd, then 0m is even and only states q = (u, π) ∈ Qm with even
u are reachable from 0m in Tm. Hence all the states q = (u, π) with u
odd can be eliminated from the construction.

• if m is even, then 0m is odd and we need an even number of transitions
for a walk that leads from 0m back to 0m, since successive states must
alternate in “parity”.

The last remark reflects the well known fact that G∗m,n has a Hamiltonian
circuit if and only if not both m and n are even.

The next to last remark is illustrated by our example for m = 3: there
are mot4 = 9 states in T3, namely

(000, ∅) , (001, 1) , (010, 1) , (100, 1) , (101, 11) , (101, 12) , (111, 1)
(011, 1) , (110, 1)

of which the last two are “odd”, hence unreachable from any of the seven
“even” states, see Fig. 5.

The precise evaluation of the size of the set of unreachable states in the
case of odd m will be given elsewhere.

We conclude this section with a conjecture that has been verified by our
computations up to m = 12, but for which we are unable to give a proof in
general:

• in the automaton Am, all accessible states are also coaccessible, i.e.
from every state, which is accessible from the initial state α, there is
at least one path that leads to the final state ω.

If this conjecture were true in general, the minimization procedure à la
Nerode for the automaton Am that we employ prior to computing the gen-
erating function (see the end of the following section) could be simplified
considerably by just identifying states that have the same set of successor
states.

9 Computing the generating function hm(z)

From Section 5 we know that the generating function hm(z) =
∑
n≥1 hm,n z

n

is rational. In this section we informally discuss a way of actually computing
hm(z), at least for small values of m. As mentioned in the introduction, a

16

program has been written which carries out these computations for arbitrary
m — in principle. We have explicitly computed the automata Am, recog-
nizing the Hamiltonian language Lm, for m ≤ 12. Some of our results are
presented in the concluding section. Needless to say that the exponential
growth of Am (in terms of the number of states, as made precise by the
Motzkin-coding in Section 7) puts severe bounds on practical computations.

A standard way of computing hm(z) proceeds as follows: one takes the
automaton Am and represents it by the transition matrix

Am =
(
a(m)
p,q

)
p,q∈Q′′

where a(m)
p,q =

{
1 if δ(p, v) = q for some v ∈ Σm

0 else

with Q′′m = Q′m \{α, ρ}. Note that, by the definition of Am, there is at most
one v ∈ Σm such that δ(p, v) = q, for any p, q,∈ Q′′m.

Let s denote the vector of states immediately acessible from the initial
state α of Am :

s = (sp)p∈Q′′m where sp =
{

1 if δ(α, u) = p = (u, πα) for some u ∈ Σ∗

0 else

and, correspondingly, let t denote the vector of terminal states

t = (tq)q∈Q′′m where tq =
{

1 if q ∈ Ω
0 else

Then, for any n ≥ 0,
hm,n+1 = s ·An

m · tT

and thus
hm(z) =

∑
n≥1

hm,n z
n = z · s · (I− zAm)−1 · tT

where I denotes an identity matrix of the same format as Am.
Inverting the matrix I − zAm is feasible only for very moderate values

of m. One way to compute hm(z) for larger values of m is by producing suf-
ficiently many initial coefficients hm,1 , hm,2 , hm,3 , . . . using the matrix Am

and its powers, and then employing the techniques of Padé approximation.
In particular, the size of the matrix Am gives us an upper bound on the
degree of the denominator polynomial of hm(z), so that we know in advance
when to stop the approximation procedure.

A slightly more sophisticated approach that we have experimented suc-
cessfully with for the purpose of computing hm(z) is a combination of mod-
ular arithmetic and the Berlekamp-Massey algorithm (see e.g. Section 8.6 in

17

[6]): we compute the residues of the sequence hm,1 , hm,2 , hm,3 , . . . modulo
various (not too big) primes p and apply the Berlekamp-Massey algorithm
over the finite fields GF (p) in parallel. This gives a very fast way of de-
termining the true degree of the denominator polynomial of hm(z). The
numerator and denominator polynomial themselves can then be obtained
by Chinese remaindering techniques. A more detailed description of this
approach will be given elsewhere.

One more aspect must be mentioned: the techniques just sketched will
not be applied to the automaton Am and its transition matrix Am them-
selves. We will, of course, first apply standard minimization techniques from
automata theory in order to cut down the size of the matrices to be han-
dled, by eliminating inaccessible states (remember Section 8) and identifying
equivalent states. The minimal automaton Ãm obtained from Am gives us
a transition matrix Ãm considerably smaller in size, thus leading to a much
better à priori bound on the degree of the numerator polynomial of the
hm(z). Nonetheless, our numerical results seem to indicate that the growth
rates of the number of states after minimization is of the same order as the
one for the automata Am themselves.

10 Numerical results

10.1 The generating functions hm(z)/z up to m = 8

We give the rational generating functions hm(z)/z for 1 ≤ m ≤ 6 and the
degrees of the numerator and denominator polynomials for m = 7, 8. For
these two latter cases the polynomials have been computed explicitly and
are available on request, as are (very large, with n in the thousands) initial
segments of the coefficient sequences hm,n (n ≥ 1) up to n = 12.

Note that for m even the generating function hm(z)/z is actually “even”
in the sense of being a function of z2. This follows from the parity argument
given in Section 8.
m = 1 :

1
−z + 1

= 1 + z + z2 + z3 + z4 + . . .

m = 2 :
1

−2z2 + 1
= 1 + 2z2 + 4z4 + 8z6 + 16z8 + . . .

m = 3 :
1

−z4 + 2z3 − 2z2 − 2z + 1
= 1 + 2z+ 6z2 + 14z3 + 37z4 + 92z5 + 236z6 + . . .

18

m = 4 :

3z2 + 1
−2z6 − 11z2 + 1

= 1 + 14z2 + 154z4 + 1696z6 + 18684z8 + . . .

m = 5 :

(z − 1) (z11 − z10 + 3 z9 + 12 z8 − 3 z7

−2z14 + 4z13 − 28z12 − 42z11 + 82z10 + 8z9 − 118z8 + 66z7

· · · − 3 z4 + 21 z3 − 3 z2 − 1)
+ 35z6 − 90z5− 12z4 + 63z3 − 14z2 − 5z + 1

= 1+4z+37z2+154z3+1072z4+5320z5+32675z6+175294z7+1024028z8+. . .

m = 6:

96z32 − 48z30 − 4592z28 − 9162z26 + 64012z24 − 252197z22

−144z36−1728z34+5972z32−17732z30−92790z28+178842z26+1036420z24

· · · + 643288z20 − 797154z18 + 453054z16 − 40229z14

− 3390877z22 + 4008954z20 − 2681994z18 + 1690670z16 − 1251439z14

· · · − 111603z12 + 87046z10 − 33250z8 + 6525z6 − 568z4 + 7z2 + 1
+ 815141z12 − 386724z10 + 116734z8 − 20403z6 + 1932z4 − 85z2 + 1

= 1 + 92z2 + 5320z4 + 301384z6 + 17066492z8 + 966656134z10 + . . .

m = 7 : degree of numerator : 64, degree of denominator : 66.

1+8z+236z2 +1696z3 +32675z4 +301384z5 +4638576z6 +49483138z7 + . . .

m = 8 : degree of numerator : 206, degree of denominator : 208.

1+596z2 +175294z4 +49483138z6 +13916993782z8 +3913787773536z10 +. . .

The reader may check the obvious property hm,n = hn,m from these data.

19

10.2 Data of the computed automata (matrices)

num. of states num. of transitions
m Am Ãm Am Ãm
1 3 3 3 3
2 5 4 6 5
3 10 6 20 14
4 22 13 64 44
5 52 22 224 121
6 128 74 803 543
7 324 117 2966 1396
8 836 461 11133 7349
9 2189 728 42409 18285

10 5799 3094 163295 105154
11 15512 4828 634700 255196
12 41836 21552 2486247 1556317

The number]Q′m of
states of Am equals
motm + 1. The size]Q′′m
of Am equals motm − 1.
Similarly, Ãm is bigger
by 2 than Ã.

10.3 Computation times and memory use

m cpusec bytes
1 .0394 24
2 .0448 46
3 .0656 150
4 .0946 254
5 .9802 2166
6 20.4996 21920
7 2189.6090 350512
8 2251385.5 26895646

These are the average computation times for
the generating functions. The bytes column
shows the maximum memory need of the main
datastructures of the program. The computa-
tions reported here have been done on a sparc

2 (30MHz). The computation for m = 8 was
performed on a sparc 10.

20

References

[1] Berstel, Jean and Reutenauer, Christophe : Rational series and their
languages. Springer, Berlin 1988.

[2] Hopcroft, John E. and Ullman, Jeffrey D. : Introduction to Automata
Theory, Languages and Computation. Addison-Wesley 1979.

[3] Kreweras, Germain : Dénombrement des Cycles Hamiltoniens dans un
Rectangle Quadrillé. European Journal of Combinatorics 13 (1992),
473-467.

[4] Kwong, Harris : Enumeration of Hamiltonian Cycles in P4 × Pn and
P5 × Pn. Ars Combinatoria 33 (1992), 87-96.

[5] Kwong, Harris and Rogers, D. G. : A Matrix Method for Counting
Hamiltonian Cycles on Grid Graphs. To appear in European Journal of
Combinatorics.

[6] Lidl, Rudolf and Niederreiter, Harald : Finite Fields (Encyclopedia
of Mathematics and its Applications, vol. 20), Cambridge University
Press, 1984.

[7] Stanley, Richard P. : Enumerative Combinatorics. Wadsworth &
Brooks/Cole, Monterey, California 1986.

[8] Stoyan, Robert : Anzahl der Hamilton-Kreise in rechteckigen Git-
tern. Studienarbeit im Fach Informatik an der Universität Erlangen-
Nürnberg, 1993.

21

