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Abstract

Based on our earlier description of the distribution into 2-blocks of the spin
characters of the covering groups of symmetric groups we compute the heights
of such characters in the blocks containing them. We also give a complete set
of labels for the spin characters of minimal height in a 2-block. Another related
topic treated here is the determination of the minimal power of 2 dividing a spin
character degree and the explicit description of the labels of spin characters with
this minimal power of 2 in their degree. Also, an upper bound for the heights of
spin characters in 2-blocks is derived, and the labels of spin characters attaining
this bound are described.

As an application of our results we show that the 2-blocks of the covering groups
of symmetric groups provide further evidence for some important representation

theoretical conjectures.
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1 Introduction and preliminaries

It was proved by Schur [11] in 1911 that the finite symmetric groups S, have
covering groups S, of order 2|S,| = 2 n!. This means that there is a non-split
exact sequence
1—><Z>—>§n1>5n—>1

where (z) is a central subgroup of order 2 in S,,.
Those irreducible characters of S,, which have (z) in their kernel, will be referred
to as ordinary characters. The other irreducible characters of S, are referred to
as spin characters.
It is well-known that the ordinary characters of S, are labelled canonically by the
partitions A = (€1, s, ..., 0y) of n; thus €y > 0y > -+ >4, >0, 14+ -+ 4, = n.
The length £(X) of A is defined as m. The set of partitions of n is denoted P(n)
and for A € P(n), [\] denotes the corresponding ordinary character of S, (resp.
of S,). We also write A - n instead of A € P(n). For A € P(n) H, denotes the
product of all the hook lengths of A and then the hook formula for the degree of
[A] is

(1) = nl/ )y

(see [5], 2.3.21).

Let p be a prime number. The distribution of the ordinary characters into p-
blocks is described by a theorem, which is still called the Nakayama Conjecture
(see [5], 6.1.21). If A € P(n), let A, denote its p-core, obtained from X by
removing successively all p-hooks from A ([5], 2.7.16). Then for A\, u € P(n), [A]
and [g] are in the same p-block B of S, if and only if A,y = p(,). In this situation
Al = [Ap)| is a multiple of p, say [A| — [A(;)| = pw. The integer w is an invariant
of the block B, called the weight w(B) of B.

Let sgn = [17] denote the sign character of S,, and S,. An irreducible character y
of 5, is called self-associate if x - sgn = Y. Otherwise y is called non self-associate
and y and y’ = x - sgn are called a pair of associate characters.

The associate classes of spin characters of S, are labelled canonically by the
partitions of n into distinct parts, A\ = ({1,0y, ..., lpn), &1 > Ly > L, > 0,
b+ 0+ -+ L, =n. We let D(n) denote the set of such partitions and divide

D(n) into two subsets as follows:

Dt(n) = {A=({,....0,) €D(n)|n—m even}
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D (n) = {A=(lL,....0,) €D(n) | n—m odd}.

To each A € D*(n) corresponds a self-associate spin character (A) and to each
A € D™ (n) corresponds a pair (A) and (\)" of associate spin characters. For
A € D(n) we let Hy denote the product of the bar lengths of A, (see [7], [3]).
Then the bar formula for the degree of (A) is

N (1) = 2= m,

(see [3], Theorem (10.7)).

For odd primes p a result analogous to the Nakayama Conjecture holds for spin
characters ([4], [2]); instead of removing p-hooks you have to remove p-bars. In
this case a p-block cannot contain ordinary and spin characters at the same time.
The weight of a block of spin characters is defined analogously to the weight of
blocks of ordinary characters.

In this paper we consider the case p = 2, where the characters of a 2-block B
of S,, may be considered as the ordinary characters in a unique 2-block Bof S,.
Then B also contains some spin characters. The distribution of spin characters
into 2-blocks was described in [1] (see Theorem 1.1 for the exact statement). The
weight w(é) of a 2-block of S,, is defined as w(B), where B is the 2-block of S,

contained in B. We consider the following questions:

(I) What is the minimal power of 2 dividing the degree of spin characters of S,

and what are the labels of these characters?

(IT) What are the possible heights of the spin characters in a given 2-block B of

S, and what are the labels of characters of minimal height ?

To these questions we remark the following:

The first part of (I) was answered by Wagner [12] and in [8] the power of 2 dividing
a spin character degree was computed. In Section 2 we give a complete answer
to question (I) including an essentially different proof of Wagner’s result: The
minimal power of 2 in a spin character degree is 2! where ¢ = [%ﬂ] Here s(n)
is the number of summands in the 2-adic decomposition of n. The number of spin
characters of S, with a minimal 2-power in their degree depend in a complicated
way on n. Thus there is no result analogous to Macdonald’s beautiful result for

the ordinary characters (Theorem 2.1 below).
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The second author has proved that the number of characters of a given height
in a p-block of S, depends only on the weight of the block for any prime p.
A similar statement can be made for p-blocks of spin characters of S, for odd
primes p. Here there is a modification in that also the sign of the p-bar-core of
the block plays a role, i.e. whether the p-bar-core is in DT or in D~. But in any
of the cases the heights of characters lie between 0 and (w — > a;)/(p — 1) where

w =3 a;p' is the p-adic decomposition of w. The maximal height occurs in some

but not all blocks for p = 2. For instance a 2-block of S,, of weight 8 does not
contain a character of height 7. In Section 3 we prove that also the number of
spin characters of a given height in a 2-block B of S, depends only on the weight
w = w(é) of B. Moreover the heights of spin characters in a 2-block of weight

w range between

le—s(w)] - [Sw—Zs('w)] |
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It is also possible to describe explicitly the labels of spin characters of the minimal
possible height. Such characters always exist whereas there may be no spin
characters of the maximal possible height.

In the final section we check some conjectures concerning block invariants for the
2-blocks of S,. A recent conjecture of Robinson [10] is verified for all p-blocks of
Shp.

We give a brief survey of the results in characteristic 2 which are needed here.
It follows from the Nakayama Conjecture that the 2-blocks of S, (and thus of
gn) are labelled canonically by the 2-cores of integers ¢ satisfying ¢ = n (mod n).
It is easy to see that the only 2-cores at all are the partitions ki, £ > 0, where
krp = (k,k—1,...,1) is a “triangular” partition of k(k + 1)/2. The main result
of [1] is as follows. For a partition A = (¢1,...,¢,,) € D(n) we set

() — (VI:ZH]’ l%] V22+1]’ l%} szﬂl l%D :

the doubling of A. Then

Theorem 1.1 ([1]) Let A € D(n). Then (X) and [dbl(N)] belong to the same
2-block of S,,.



For the study of the powers of 2 dividing spin character degrees a theory of 4-cores
and 4-quotients for partitions A € D(n) plays a role, which is similar to that of
p-cores and p-quotients in the study of ordinary character degrees.

Given A € D(n) it is possible to define its 4-core Ay (which is a partition of the
form (4t + 1,4t —3,...,5,1) or (4t + 3,4t —1,...,7,3)) and its 4-quotient A%
(see [1]). The 4-quotient is a partition and the following relation is satisfied:

Al =A@l + 2@

Moreover, dbl(A)) = (dbl()))2), which implies that M| is the weight of the
2-block containing (A). From A and A one may easily recover the partition .
Suppose p = A4 is the 4-quotient of ), say p = (:¥™*%) (written exponentially)
with ; € {0,1}. Then we set p, = (¢") and p. = (:%).

Let A, (resp. A.) denote the partition consisting of all odd (resp. even) parts of
A. Then A, = 2p.. There is a combinatorial process associating to each partition
a with odd distinct parts a new partition p(«); this is described in [1, §3], [8,
§4] and [9, §7]. With this notation, p, = u(A,). There is for instance an explicit
formula (Theorem 3.1 below) for the height of (A) in the 2-block containing it

based on the partitions p, and p., involving the 2-powers in the character degrees

[po](1) and (pc)(1).

Acknowledgement A major part of this work was done during a stay at the Mathe-
matisches Forschungsinstitut Oberwolfach in August 1994. The authors gratefully
acknowledge support by a grant from the EC (Network on Algebraic Combina-
torics). Thanks are due to A. O. Morris for drawing our attention to the reference

[12].

2 On the 2-part of spin character degrees

First we fix some further notation.
Let n € IN, then

va(n) = 2-adic valuation of n

On) = {A=U,....0n)Fn]|l odd for ¢ =1,... 1}
Mo(n) = {pkn|w(lpl(1)) =0}

mo(n) = | Mo(n)|



For a partition «a of n, we set
s(a) = s(lal)
ap) = 2-coreof a,
and we write a € My as an abbreviation of a € My(|a|).

For a partition A = ({4,...,{,) € D(n), we set
A = 4-quotient of A (see [1, § 3]),

an = [5]

For later use we recall

Theorem 2.1 (Macdonald [6])
Ifn= 22]“, ki > ky > ... > ks, then mo(n) = 2k +-+he,

i=1
In fact, the set Mo(n) can be described explicitly using the 2-core tower (see [9,
§6]). Using the notation of the Theorem, a partition « belongs to Mgy(n) if and
only if there is exactly one 2-core (1) in the k;-th layer of the 2-core tower of «,

for i =1,...,s, and all other 2-cores in the 2-core tower of a are ().

It is the aim of this section to give a description of the set of partitions labelling
spin characters of minimal 2-part in their degree.

First we consider only partitions into distinct odd parts.

Proposition 2.2 Letn > 1, s = s(n) and let A € D(n)NO(n). Let & = dbl(N)(y),

so |k| = @ for some k € INy.

Then we have

5 if k=0
”2;1 ifk=1 or 2
) =] = yk—3

nt? ifk=5
[M] otherwise

2

Proof. Let p = A4, r = |p|, so n = |k| 4+ 4r. By [9, 7.12] or [8, 4.8] we have

V(1) = n — 5 — 7 — dafp)
where

dy(p) = va(H,).
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Using
s < s(k) 4+ s(r),

we obtain
_ _n— x| n— ||
rt+dy(p) S tn(r) =2r—sr) = 9 s(r) < 9 (s — s(k))
Hence |
((y(1) > A= 20()

It is easy to check that for & € {0,1,2,3,5} the stated expressions follow. For

k=4or k>b5onehas s(k) < %, and thus

() > AR

Since

{n—|—~|/<;|/2-‘ _ ln—l—(|l-€£—|— 3)/2] |

the assertion follows.

Corollary 2.3 Letn € N, n > 1, s = s(n) and A € D(n) N O(n).
Then

n—s:s

(V) 2 |15 1.

Definition 2.4 Forn € IN, set

M) = (3 € 00) L) = |5 1)

Proposition 2.5 Forn € IN we have

{(3)} for n =3
Mi(n)NO(n) = {X € D(n) N O(n) | |A| — 42D <3, s(A\D) = 1,AH) € M,}
for n >3

Proof. We use the notation of Proposition 2.2 and its proof. Assuming that

va((A)(1)) = [”55] + 1 holds, one immediately obtains & < 2 by Proposition 2.2.

More precisely, for k =0 s =1, for K =1 one has s = 2, and for k =2 s = 2 or 3.

Checking the inequalities of the proot of Proposition 2.2, one finds that p € Mg
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has to be satisfied. Moreover, s = 2 and k = 2 only occurs for n = 3, A = (3),
and the other cases are equivalent to r being a 2-power and k£ < 2. This gives
the sets on the right hand side above.

Conversely, in all these cases the required equality holds.

Theorem 2.6 Letn € IN, s = s(n).

(a) If X € D (n), then

() 2 [P,

(b) If X € D~ (n), then

() 2 |22

Proof. Let
A= ZQi)\i with \; € (DN O)(|\]) or A, = 0.
i>0
Then
n=>3 2|\
i>0
and

da(X) = D2 da(Ni) + (n = D |A)

K3

where dy(\) = vy(Hy) [9, 7.7) or [8, 4.3]. Noticealso that £(\) = 3, 4(\:) = 325 [\
(mod 2), since the partitions A; have only odd parts.
Furthermore, by [9, 7.8] or [8, 4.4]

1
Now by the Bar Formula

ra((MN) (1)) =n — s+ a(X) — da(A).

(a) If A € DT(n), then n = Y |Ai| (mod?2), and we obtain

(n = |Ail).

k3

1

(1) =n—s+ 3 (a(X) = d:(N)) — 5



By Corollary 2.3

if |A\;| > 1. Hence

va({(A) (1)) > % — s+ %|{|)\Z| =1} + E (|);| _ [|)\2| —Sé)\i) + 1] N 1)

2
[A;1>1

Since s < 3°; s(A;), we thus obtain

v((N(1) = ? n lzl (|Ai| —;(Ai) _ [m - sé)\i) + 1] .\ 1)

>
o 2

N> 11N # () (mod2))]
N> 11N = s(0) (mod2))]

Now, if there is no contribution from some |\;| > 1, then X is the partition

corresponding to the 2-adic decomposition of n, and hence s = n(mod?2) as
A € Dt (n), so [%} = =2

Thus in any case vo((A)(1)) > [”_QL'H] )

(b) If A € D~ (n), then n £ ¥, |Ai| (mod 2) and we have

(VW) = 0= s+ Y (a(h) — b)) — 5 (n = A+ 1)

n—s—1 1
> DS M > 1A # s(0) (mod2) )

FHIAL > T A] = s(A) (mod 2) ]

by similar reasoning as in (a).

Again, if there is no contribution from some |A;| > 1, then A corresponds to the
2-adic decomposition of n, and thus 2=2=% = [”2;5] as A € D™ (n).

Hence vy((A)(1)) > [”_5] for all A € D~ (n).

2
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For the following we have to introduce some further notations. For n € IN we set

Maln) = (3 &0 Lm0 = |5
MEG) = D3 e D) ) = |

Mzn) = {heD ()] m((N(1)) = [‘—”]}
mo(n) = M;t (n)|
Ain) = W)
mrn) = M)

Attention M (n) is not the set Mo(n) N DT (n)!

(
ol

Furthermore, if n = Z oFi ky > ko > ... > ky, is the 2-adic decomposition of n,
i=1
we let 5(n) = (2%,...,2%) € D(n) denote the corresponding partition of n.

Theorem 2.7 Let n € IN, s = s(n), and let € be a sign. We set
Dy(n) = =>"2'N; € D°(n) | g : [Aig| > 15 and for this \;, we have:
>0
s(Nig) £ 2, M € My, s =[{\i # 0} +5(\;,) — 1}

Then we have

i {62(n)} if n=s(mod?2)
Di(n) if n# s(mod?2)

{ Dy (n) if n=s(mod2)
{62(n)} U Dy (n) if n# s(mod?2)

Mo(n) = {62(n)} UDg(n)

Proof. This follows from the proof of the previous Theorem and Proposition 2.5.
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Remark 2.8 By different methods, A. Wagner [12] has shown that for a field ¥
of characteristic # 2, the degree of any projective representation of S, over F' is
L NEEG)
divisible by 2172
by the 2-adic decomposition of n is divisible by exactly this 2-power.

. He has also noticed that the complex representation labelled

3 Heights of spin characters in 2-blocks

We now want to study the height of irreducible spin characters in their 2-blocks.
The relationship between the 2-combinatorics for dbl(A) and the 4-combinatorics
for A in described in detail in [1]. As in § 1, we denote by p = A® the 4-quotient
of A, say p = (¢¥™*) with ¢; € {0,1}, and we set p, = (™) and p. = ().

Let A, resp. A. denote the partition consisting of all odd resp. even parts of A.
Then A, = 2p. and p, = p(A,) in the notation of [9, 7.11]. Furthermore, the spin
character (A) belongs to a 2-block of weight w = w(X) = 2|p,| + |pe|-

Finally, we define

h(A) = R((N)

to be the height of the spin character (\) in its 2-block of S,.

We now have:

Theorem 3.1 Let A € D(n), w = w(A), p,, pe as defined above. Then

HO) =l () + a0+ )+ 2+ [ 1) 40

where

L if |pe| odd and p. € D~
7(pe) =

0 otherwise
Proof. As a 2-block of S, of weight w is of defect v5(2 - (2w)!), we have

BN = (1) = ra(2 - nl) + 152 - (20))
= na((20)!) — do(A) + a())

With A, defined as above, we have by [9, 7.5 and 7.6] or [8, 4.1 and 4.2]:
dr(A) = dz(Xo) + [pe| + da(pe)
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Furthermore,

n—KM]:V&%H&MJMJ—K&>
2 2

a()) = [

= a(A,)+alp,) + l";'] +7(pe)

as 1s easily checked.

As

w

va((2w)!) = 2w — s(w) = w + 1y <|pe|

) + 2ot + i),

we thus obtain

(A = na((2]pa))) = da(Xo) + a(Xo) + va(lpel!) = da(pe) + a(pe)va (|;U|) tw

|pe|

2

—lpel + l ] +7(pe)
By [9, 7.12] we know

JQ()\o) - O‘()‘o) = |PO| + d2(p0)7

MO = Clo = ] = o)+ lpd )+ () + 2+ 2] 5000

|pe|

)+ 20+ |l 2000,

= ol = g + o)) + ) 2l []] 2000

_ wmuu»+wwmu»+w(w

el

proving the assertion.

The main point of this formula is that it does not depend on the 2-core of the
2-block, but only on the 4-quotient of A. Thus in conjunction with the corre-

sponding result for 2-blocks of 5,,, it implies the following reduction result:

Theorem 3.2 Let B be a 2-block of S, of weight w, and let By be the principal
2-block of Sy .
Then

ki(B) = ki(Bo) for all i € INy.
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Based on the results of the previous section, we now want to investigate the spin

characters of minimal height in a 2-block.

Theorem 3.3 Let n € IN, A € D(n), w = w()), s = s(w).

(a) If X € DT (n), then

o>~

(/\)z["f .

(b) If X € D~ (n), then

(¢) If X has d-quotient p < (p,,p.) = (0,63(w)), then h(\) = [2102_—3] In this
case, A € D*C)(n), where

e(s)z{ + if s is even

— if s is odd.

Proof. We use the same notation as before, so by Theorem 3.1 we have

W) = o] )+l )+ )+ 2l + 1] 40

pe|
9

> () (1)) + s(p) + s(pa) — s(w) + 21 |+[ ]+v<pe>

a € n) if and only if w i1s even an e € or w is o an
(a) By [1, 3.3], A € D*(n) if and only if d p. € DY, dd and

pe € D™. Using w = |p.| (mod 2), we obtain in the first case by Theorem 2.6:
) 2 [P L )+ ) — s+ 2+
where B
B 1 if Pe € ./ME)}—
~ 1 0 otherwise
Hence
B > 20pe| + 5(pe) + 25(po) — 25 + 4fpo| + 1
- 2
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_ [2w + s(pe) +2s(p,) — 2s + 1]
2

>

[ 2w + 5(/’.0) — st 1] ((since s < s(po) + s(pe))

>

2w — s + 1]
2

In the second case, |pe| is odd and p. € D™, so ¥(p.) = 1 and hence

el e 6—1
h() > [M] + 8+ s(pe) + 5(po) — s+ 2|po| + p |2 +1

with B
5_{ Lif po g My

0 otherwise

Similarly as above we get this time

h(X) > +1>

2'w—|—5(po)—3—1] [Zw—s—l—l]

2

(b) Again we use [1, 3.3], and consider first the case where w = |p.| (mod 2) is

even and p. € D~. Here, similarly as above,

h(A) = lwl+5+8(po)+8(pe)—s+2|po|+m

2
2w — S8
> 55
- 2

In the second case, |p.| is odd and p. € D%, so

7 el e —I'l 6_1
i) = [P )+ o) skl +

2
[Q'w — 3]
>
- 2

as before.

(c) The first assertion is easily checked using the formula given in Theorem 3.1.

The second one is immediate from the fact that the number of even parts in A
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equals the number of parts of p. = d2(w).

Again, by going through the sequence of inequalities in the proof above, we can
describe the set of spin characters of minimal height in a 2-block in detail. First
we need some further definitions. Let B be a 2-block of S, of weight w. Then we

set

-z Mi(n)  if n is even
Mge(n) if n is odd.

Theorem 3.4 Let B be a 2-block of S, of weight w = Y2V w > we > >
ws, and let ¢ be a sign. Set

Dyn,w) = {}€D(n) |w=w(), A =2p., pe € Mi(w))
Di(n,w) = {A €D (n)|w=uw(d), 2@ o (pos pe), Fw; >0: p, € -/MO(QM_I),
pe € Mi(w — 2"}

Then we have:

Di(n,w) if e(s)=¢
Di(n,w) UD5(n,w) if e(s) #¢

and

Dy (n,w) if s is odd
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Proof. This follows by a careful analysis of the inequalities in the proof of the
preceding Theorem. We omit the details.

Remark 3.5 (i) By definition, K5 (B ) C Ko(B ) but note that ICS’(E) C ICO(B)
if and only if s(w) is even.

(ii) If e(w) = &(s) = &, then K5(B) = {\ = & + 26,(w)}, where & is the 4-core of
the spin characters in B.

(iii) If w is odd and s(w) even, then note that in the Dy contribution of Ko(B)
above, for any w; > 0 the partition p. = éz(w — 2"%) is the only element in

My (w — 2%) = M (w — 2%).

Corollary 3.6 Let B be a 2-block of S, of weight w = 377 2" wy > wy >
> Wy,

ko_ (B) = my (w) + Z my (w — 2w¢)2w¢—1 _ ma(w) + Z mo(w B 2wi)2w,‘—1

ko(B) = ki (B)+ky (D)

kg(B) = )+ Zmo — 202 = mi(w) + 5
ko (B) = mg(w) = m0(‘w) = ko(B)
(tii) If w is odd, s(w) = s even, then

k(B) = mg(w)=m(w)

- = . w— 1

B (B) = m(w) + 32" = m (w) +
=1

o w—1

Ko(B) = mif(w) + g (w) + —
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() If w and s(w) = s are both odd, then

s—1 s—1
E(B) = mg(w)+ Y my (0 — 1902470 = g (w) + 3 mofw — 22"
=1 =1

ko (B) = mg(w)=1=ko(B)

Proof. This follows from the preceding Theorem, Theorem 2.8 and Macdonald’s
Theorem 2.1.

Before proceeding, let us look at some examples to illustrate the results above.

Examples 3.7 (i) Let B be the 2-block of weight w = 5 in Sjs. Then the
minimal spin character height is [@ﬂ] = 4.

To compute I@O(é) we need M5(5) and My(2), which are easy to calculate:

) [ (A (1)) {(5)}

| v2
) [ (A (1)) {4, 1)}

ME() = {heDH

o(5) = {AeD(

Mo(2) = {(2),(1%)}

Hence IC"'( ) (8,3,2)}, /CE(E) = {(10,3),(11,2),(7,3,2,1)},
here /Co( ): B C

5 2} =
5 1} =

(ii) Let B be the 2-block of weight w = 6 in §15. Here the minimal spin character
height is [%] = 5.
We first compute:

MG(6) = {(4,2)}, Mg(6) = {(6),(3,2,1)}

M) = (D) M@ = {@).

My(2) = {(2)}), M) = {4}
With this we obtain
Ki(B) = {(.4.3)
Ko (B) = {(12,3),(6,4,3,2),(8,7),(11,4),(7,4,3,1)}

)
Again, Ko(B) = K¢ (B) U K (B).

We want to conclude this section by considering spin characters of maximal height
in their 2-block. We have the following upper bound for the height:
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Theorem 3.8 Let A € D(n), w = w(A), s = s(w). Then

E()\) < [3'w —23] .

2

Proof. Using the notation introduced before, we have by Theorem 3.1

M) = ol () + (o)) + 0 + 2l )+ 2]

p Pe
< 1ol =500+ Il = s(p) + 2l +s(p.) +s(p) — s+ 2]

since Y(p.) = 0 if p. is a 4-core. As w = 2|p,| + |p.|, this gives

iz wefz] o= 2]

Keeping the notation from above, we can describe explicity for which A € D(n)

the bound above is attained:

Theorem 3.9 Let A € D(n), w = w(A), s = s(w), e = e(w). Then h(\) =

[3w—25

> ] if and only if p, ts a 2-core and one of the following holds:

(i) pe is a 4-core (in this case, A € D*(n)).

(i) w is odd and p. = (4k + 1,4k = 1)+ 1,...,5,2,1) or p. = (4k + 3,4(k —
1)+3,...,7,3,2) for some k € Ng (in this case, A € DT (n)).

Proof. That p, has to be a 2-core is immediate from the inequality in the proof
above.

Now va({p)(1)) +7(pe) = |pe| — s(p.) if and only if p. is a 4-core or v({p.)(1)) =
|pe| — s(pe) — 1 and ~v(pe) = 1. By [8, p. 245] this happens exactly in the cases
stated in (ii) above.

The assertions on the parity of A follow easily from the fact that the number of
even parts in A is the length of p..

It is clear that the conditions on p,, p. given above lead to a partition A with

h() = [252]
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Corollary 3.10 Let B be a 2-block of S, of weight w, s = s(w). Then B contains
a spin character of height [?”“”2;25] if and only if w = 20¢ 4+ Ay or w is odd and
w = 20A¢ + A1 4 2, where Ao, Ay are triangular numbers.

More precisely, B contains a non-selfassociate spin character of height [37““2;23] if
and only if w is odd and of the form w = 2Aq+ A1, where Aqg, A1 triangular num-
bers. If this is the case, the number of pairs of non-selfassociate spin characters
in B of height [3”2;23] equals the number of decompositions of w as w = 2A¢+ Ay

with Ag, Ay triangular numbers.

Examples 3.11 (i) w = 4 is the smallest weight that can not be written in the

form above; in such a block the maximal spin height is 4.

(ii) For w = 7 we have 7 = 2-3+1 = 2-143+42, leading to A = (9, 3,2,1) € D~ (15)
and A = (6,5,4) € D*(15) as the partitions of maximal spin height [37““2;25] =7
in a 2-block of weight 7 in 515.

Remark 3.12 Note that by the bounds obtained in this section, there is only
an interval of length [%] — [%] for possible spin character heights in a 2-block of
weight w.

4 Applications

Using the results of [1] and the results of the preceding sections we want to prove
that the following conjectures hold for the 2-blocks of S, (see [9]); below, B is
always a p-block of the finite group G and 6(B) is its defect group.

Conjecture 4.1 (Brauer) k(B) < |6(B)].

Conjecture 4.2 (Brauer’s Height 0 Conjecture) k(B) = ko(B) if and only if
6(B) is abelian.

Conjecture 4.3 (Olsson) ko(B) < |6(B): 6(B)|

All these conjectures are known to hold for the p-blocks of S, if p is an odd prime
(see [9]). For dealing with the case p = 2, we first recall a result from [1]:
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Theorem 4.4 Let B be a 2-block of S, of weight w, and let B be the 2-block of
S, containing B. Then

k(B) = k(B) + p(w) + 5~ (w) = k(2,w) + p(w) + §~ (1)
where k(2,w) is the number of 2-quotients of weight w, i.e. the number of pairs
of partitions (Ao, A1) with || + || = w.

Corollary 4.5 Let B be a 2-block of S,,, then k(B) < |6(B)|.

Proof. Let B C B be the 2-block of S, contained in B, and let w be its weight.
It is known that k(B) = k(2,w) < |6(B)| (see [9]). Hence by the theorem above

we obtain

k(B) = k(B) + p(w) + 5~ (w) < 2k(2,w) < 2/6(B)| = [§(B)|.

With the same notations as above, we know by Theorem 3.3 that the irreducible
spin characters in B are of height > [@ﬂ], and that there always is an ir-
reducible spin character of exactly this height in B. Hence there are irreducible
2w—s(w)

> ] =0, i.e. exactly if w < 1.

spin characters of height 0 in B if and only if [

This immediately implies

Corollary 4.6 Brauer’s Height 0 Conjecture holds for all 2-blocks of S, for all
n € IN.

Corollary 4.7 Olsson’s Conjecture holds for all 2-blocks of S,,, for all n € IN.

Recently, Robinson [10] has put forward a new conjecture on the height of an

irreducible character:

Conjecture 4.8 (Robinson) Let B be a p-block of the finite group G, D = 6(B)

its defect group and x an irreducible character in B. If D is non-abelian, then

h(x) < log,|D : Z(D)| .

We provide further evidence for this conjecture by proving
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Theorem 4.9 Robinson’s Conjecture holds for all p-blocks of S,,, for all primes p
and all n € IN.

Proof. Let B be a p-block of S, of weight w, and let D be its defect group. If p

is an odd prime, then the height of an irreducible character x in B satisfies
w— 3 a
h(x) £ —=—
p—1
where w = 3 a;p* is the p-adic decomposition of w [9, 11.9 and 13.8]. The defect

group D of B is isomorphic to a Sylow p-subgroup of gpw, which is non-abelian

?

if and only if w > 3. Hence the inequality above holds.

It p = 2, then the height of an ordinary irreducible character in B is bounded by
w—s(w) [9, 11.9], and the height of an irreducible spin character in B is bounded
by [w] by Theorem 3.8. On the other hand, by [12] we have |Z(D)| = 2
if D is non-abelian, so logs|D : Z(D)| = v2((2w)!) = 2w — s(w). Hence if D is
non-abelian, which is exactly the case if w > 2, then again the inequality above

is satisfied for the irreducible characters in B.
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