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Abstract

We introduce a new family of symmetric functions, which are defined in
terms of ribbon tableaux and generalize Hall-Littlewood functions. We present
a series of conjectures, and prove them in two special cases.

1 Introduction

Hall-Littlewood functions [Li1] are known to be related to a variety of topics in rep-
resentation theory, geometry and combinatorics. These symmetric functions arise
in the character theory of finite linear groups [Gr], in the geometry of unipotent
varieties [Sh1, HSh], in particular as characteristics of the representations of the
symmetric group in their cohomology [HS], and appear to be related to the Quan-
tum Inverse Scattering Method [KR]. From a combinatorial point of view, their
description involves the deepest aspects of the theory of Young tableaux: the mul-
tiplicative structure (plactic monoid) and the ordered structure derived from the
cyclage operation [LS2, La]. There exists also a description in terms of Kashiwara’s
theory of crystal bases [LLT4].

Another kind of application of Hall-Littlewood functions is concerned with the
representation theory of the complex linear group GL(n,C). The general setting
is the following. Suppose we are given a finite dimensional representation V of
G = GL(n,C). The symmetric group Sk acts (on the right) on the tensor space
W = V ⊗k by

v1 ⊗ v2 ⊗ · · · ⊗ vk · σ = vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(k) .

Let γ ∈ Sk be a k-cycle. The eigenvalues of γ, as an endomorphism of W are ζr,
r = 0, . . . , k − 1, where ζ is a primitive k-th root of unity.
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Let W (i) ⊂ V ⊗k be the eigenspace of γ corresponding to the eigenvalue ζ i.
Then, W (i) is a sub-G-module of W , and an important problem is to compute its
decomposition into irreducibles from the character of V . In terms of symmetric
functions, this is a plethysm problem: if F = chV is the formal character of V and

`
(i)
k = ch

[
(Cn)⊗k

](i)
=

1

k

∑
d|k
c(i, d)p

k/d
d

is the character of W (i) in the special case where V = Cn (the basic representation

of G), the problem is to expand the plethysm `
(i)
k ◦ F as a linear combination of

Schur functions
`

(i)
k ◦ F =

∑
λ

cλsλ .

The coefficients cλ are nonnegative integers, for which it is rather unlikely that a
closed formula could exist, and a combinatorial interpretation of these coefficients,
allowing their individual computation, should be considered as a satisfactory solution
of the problem.

This problem is solved in [LLT1, LLT2], in the case where V is a tensor product
of exterior or symmetric powers of the basic representation, i.e. V = Λµ1Cn⊗ · · · ⊗
ΛµrCn, or V = Sµ1Cn⊗· · ·⊗SµrCn. The answer in this case is that the character of
W (i) can be obtained by reducing modulo 1− qk a certain Hall-Littlewood function.
The required combinatorial interpretation is then obtained from the one of Hall-
Littlewood functions.

Another case which is completely solved is when k = 2 and V = Vλ is an
irreducible representation [CL]. This involves a new version of the Littlewood-
Richardson rule, where ordinary tableaux are replaced by domino tableaux. This
rule can also be formulated as a property of the reduction modulo 1− q2 of certain
symmetric functions, also defined in terms of domino tableaux, and depending on a
parameter q [CL, KLLT].

In this paper, we introduce a new family of symmetric functions H
(k)
λ (x; q), de-

fined as generating functions of certain sets of k-ribbon (or rim-hook) tableaux
according to a statistic called spin, which contains the Hall-Littlewood functions
and the domino functions as particular cases, and continue to display the same type
of behaviour, at least at the experimental level.

We present a series of conjectures on these new functions, and prove them in the
two extreme cases: for the shortest possible ribbons (dominoes), and for sufficiently
long ones (the stable case).

The methods used for proving these two cases are quite different. In the domino
case, the proofs are entierely combinatorial, and do not seem to be generalizable
to other cases. This is probably due to the fact that the hyperoctahedral group is
the only group in the series Sn[Ck], k ≥ 2 (wreath products of a cyclic group by a
symmetric group) which is also a Weyl group. In the stable case, the proofs rely
upon the cell decompositions of unipotent varieties [Sh1, HSh]. We believe that
the intermediate cases may also be proved by similar techniques, in terms of the
geometry of other subvarieties of flag manifolds.
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2 Hall-Littlewood functions and unipotent vari-

eties

Our notations for symmetric functions will be essentially those of the book [Mcd],
to which the reader is referred for more details.

Let X = {x1, x2, . . .} be an infinite set of indeterminates and Sym be the ring of
symmetric functions in X, with coefficients in C(q), q being another indeterminate.
In what follows, the scalar product 〈 , 〉 on Sym will always be the standard one,
for which Schur functions form an orthonormal basis. We denote by Q′µ(X; q) the
image of the Hall-Littlewood function Qµ(X; q) by the ring homomorphism pk 7→
(1 − qk)−1pk. That is, (Q′µ) is the adjoint basis of the basis (Pµ) for the standard
scalar product, and in λ-ring notation, Q′µ(X; q) = Q(X/(1 − q); q). In the Schur
basis,

Q′µ(X; q) =
∑
λ

Kλµ(q)sλ(X) (1)

where the Kλµ(q) are the Kostka-Foulkes polynomials. The polynomial Kλµ(q) is
the generating function of a statistic c called charge on the set Tab (λ, µ) of Young
tableaux of shape λ and weight µ

Kλµ(q) =
∑

t∈Tab (λ,µ)

qc(t) . (2)

We shall also need the Q̃′-functions, defined by

Q̃′µ(X; q) =
∑
λ

K̃λµ(q)sλ(X) = qn(µ)Q′µ(X; q−1) . (3)

The polynomial K̃λµ(q) is the generating function of the complementary statistic
c̃(t) = n(µ) − c(t), which is called cocharge. The operation of cyclage endows
Tab (λ, µ) with the structure of a rank poset, in which the rank of a tableau is equal
to its cocharge (see [La]).

When the parameter q is interpreted as the cardinality of a finite field Fq, it
is known that K̃λµ(q) is equal to the value χλ(u) of the unipotent character χλ of
G = GLn(Fq) on a unipotent element u with Jordan canonical form specified by the
partition µ (see [Lu2]).

In this specialization, the coefficients

G̃νµ(q) = 〈hν , Q̃′µ〉 (4)

of the Q̃′-functions on the basis of monomial symmetric functions are also the values
of certain characters of G on unipotent classes. Let Pν denote a parabolic subgroup
of type ν of G, for example the group of upper block triangular matrices with
diagonal blocks of sizes ν1, . . . , νr, and consider the permutation representation of
G over C[G/Pν ]. The value ξν(g) of the character ξν of this representation on an
element g ∈ G is equal to the number of fixed points of g on G/Pν . Then, it can be
shown that, for a unipotent u of type µ,

ξν(u) = G̃νµ(q) . (5)
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The factor set G/Pν can be identified with the variety Fν of ν-flags in V = Fn
q

Vν1 ⊂ Vν1+ν2 ⊂ . . . ⊂ Vν1+...νr = V

where dimVi = i. Thus, G̃νµ(q) is equal to the number of Fq-rational points of the
algebraic variety Fuν of fixed points of u in Fν .

It has been shown by N. Shimomura ([Sh1], see also [HSh]) that the corre-
sponding complex variety Fuν [C] admits a cell decomposition, involving only cells of
even real dimensions. More precisely, this cell decomposition is a partition in locally
closed subvarieties, each being algebraically isomorphic to an affine space. Thus,
the odd-dimensional homology groups are zero, and if

Πνµ(t2) =
∑
i

t2idimH2i(Fuν ,Z)

is the Poincaré polynomial of Fuν , one has |Fuν | = Πνµ(q). But this is also equal to
G̃νµ(q), and as this is true for an infinite set of values of q, one has Πνµ(z) = G̃νµ(z)
as polynomials. That is, the coefficient of Q̃′µ on the monomial function mν is the
Poincaré polynomial of Fuν , for a unipotent u of type µ.

Writing
Q̃′µ =

∑
λ,ν

K̃λµ(q)Kλνmν , (6)

one sees that
G̃νµ(q) =

∑
(t1,t2)∈Tab (λ,µ)×Tab (ν,µ)

qc̃(t1) . (7)

Knuth’s extension of the Robinson-Schensted correspondence [Kn] is a bijection
between the set ∐

λ

Tab (λ, µ)× Tab (λ, ν)

of pairs of tableaux with the same shape, and the double coset space Sµ\Sn/Sν of
the symmetric group Sn modulo two parabolic subgroups. Double cosets can be
encoded by two-line arrays, integer matrices with prescribed row and column sums,
or by tabloids.

Let ν and µ be arbitrary compositions of the same integer n. A µ-tabloid of
shape ν is a filling of the diagram of boxes with row lengths ν1, ν2, . . . , νr, the lowest
row being numbered 1 (French convention for tableaux), such that the number i
occurs µi times, and such that each row is nondecreasing. For example,

3
1 1 1
1 1 3
2 3

is a (5, 1, 3)-tabloid of shape (2, 3, 3, 1).
We denote by L(ν, µ) the set of tabloids of shape ν and weight µ. A tabloid

will be identified with the word obtained by reading it from left to right and top to
bottom. Then,

G̃νµ(q) =
∑

T∈L(ν,µ)

qc̃(T ) . (8)
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Example 2.1 To compute G̃42,321(q) one lists the elements of L((4, 2), (3, 2, 1)),
which are

2 3
1 1 1 2

2 2
1 1 1 3

1 3
1 1 2 2

1 2
1 1 2 3

1 1
1 2 2 3

Reading them as prescribed, we obtain the words

231112 221113 131122 121123 111223

whose respective charges are 2, 1, 3, 2, 4. The cocharge polynomial is thus G̃42,321(q) =
1 + q + 2q2 + q3.

In Shimomura’s decomposition of the fixed point variety Fuµ of a unipotent of
type ν, the cells are indexed by tabloids of shape ν and weight µ. The dimension
d(T ) of the cell cT indexed by T ∈ L(ν, µ) is computed by an algorithm described
below, and gives another combinatorial interpretation of the polynomial G̃µν(q),
exchanging the rôles of shape and weight:

G̃µν =
∑

T∈L(µ,ν)

qc̃(T ) =
∑

T∈L(ν,µ)

qd(T ) . (9)

The dimensions d(T ) are given by the following algorithm.

1. If T ∈ L(ν, (n)) then d(T ) = 0;

2. If µ = (µ1, µ2) has exactly two parts, and T ∈ L(ν, µ), then d(T ) is computed
as follows. A box α of T is said to be special if it contains the rightmost 1
of its row. For a box β of T , put d(β)=0 if β does not contain a 2, and if
β contains a 2, set d(β) equal to the number of nonspecial 1’s lying in the
column of β, plus the number of special 1’s lying in the same column, but in
a lower position. Then

d(T ) =
∑
β

d(β) .

3. Let µ = (µ1, . . . , µk) and µ∗ = (µ1, . . . , µk−1). For T ∈ L(ν, µ), let T1 be the
tabloid obtained by changing the entries k into 2 and all the other ones into
1. Let T2 be the tabloid obtained by erasing all the entries k, and rearranging
the rows in the appropriate order. Then,

d(T ) = d(T1) + d(T2) . (10)

Example 2.2 With T =

1 4
1 2 3
1 1 2 ∈ L(332, 4211), one has

T1 :=

1 2
1 1 1
1 1 1 T2 =

1
1 2 3
1 1 2 T21 =

1
1 1 2
1 1 1 T22 =

1
1 2
1 1 2

where the special entries are printed in boldtype. Thus, d(T ) = t(T1) + d(T2) =
2 + d(T21) + d(T22) = 4.
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We shall need a variant of this construction, in which the shape ν is allowed
to be an arbitrary composition, and where in step 3, the rearranging of the rows
is supressed. Such a variant has already been used by Terada [Te] in the case of
complete flags.

That is, we associate to a tabloid T ∈ L(ν, µ) an integer e(T ), defined by

1. For T ∈ L(ν, (n)), e(T ) = d(T ) = 0;

2. For T ∈ L(ν, (µ1, µ2)), e(T ) = d(T );

3. Otherwise e(T ) = e(T1) + e(T2) where T1 is defined as above, but this time T2

is obtained from T by erasing the entries k, without reordering.

Lemma 2.3 Let λ = (λ1, . . . , λr) be a partition, and let ν = λ·σ = (λσ(1), . . . , λσ(r)),
σ ∈ Sr. Then, the distribution of e on L(ν, µ) is the same as the distribution of d
on L(λ, µ). That is,

Dλµ(q) =
∑

T∈L(λ,µ)

qd(T ) = Eνµ(q) =
∑

T∈L(ν,µ)

qe(T ) .

In particular, Dλµ(q) = Eλµ(q).

Proof — This could be proved by repeating word for word the geometric argument of
[Sh1]. We give here a short combinatorial argument. As the two statistics coincide
on tabloids whose shape is a partition and whose weight has at most two parts,
the only thing to prove, thanks to the recurrence formula, is that e has the same
distribution on L(β, (µ1, µ2)) as on L(α, (µ1, µ2)) when β is a permutation of α. The
symmetric group being generated by the elementary transpositions σi = (i, i+1), one
may assume that β = ασi. We define the image Tσi of a tabloid T ∈ L(α, (µ1, µ2))
by distinguishing among the following configurations for rows i and i+ 1:

1.
x1 . . . xk 2 2r

1 . . . 1 1 2s
σi
−−−→

x1 . . . xk 2 2s

1 . . . 1 1 2r

2.
1 . . . 1 1 2r

x1 . . . xk 2 2s
σi
−−−→

1 . . . 1 1 2s

x1 . . . xk 2 2r

3. In all other cases, the two rows are exchanged:

x1 . . . xr
y1 . . . ys

σi
−−−→

y1 . . . ys
x1 . . . xr

From this definition, it is clear that e(Tσi) = e(T ). Moreover, it is not difficult to
check that this defines an e-preserving action of the symmetric group Sm on the set
of µ-tabloids with m rows, such that L(α, µ)σ = L(ασ, µ) (the only point needing a
verification is the braid relation σiσi+1σi = σi+1σiσi+1.
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Thus, for a partition λ and a two-part weight µ = (µ1, µ2), d and e coincide on
L(λ, µ), and for σ ∈ Sm, Eλσ,µ(q) = Dλµ(q). Now, by induction, for µ = (µ1, . . . , µk),

Dλµ(q) =
∑

T∈L(λ,µ)

qd(T1)qd(T2)

=
∑

λ̄=shape (T1)

qd(T1)Dλ̄,µ∗(q) =
∑

λ̄=shape (T1)

ee(T1)Eλ̄,µ∗(q) = Eλµ(q) .

2

Example 2.4 Take λ = (3, 2, 1), µ = (4, 2) and ν = λσ1σ2 = (3, 1, 2). The µ-
tabloids of shape λ are

T

2
1 2
1 1 1

2
1 1
1 1 2

1
1 1
1 2 2

1
2 2
1 1 1

1
1 2
1 1 2

d(T ) 3 2 0 2 1

The ν-tabloids of shape λ are

T

1 1 1
1
2 2

1 1 1
2
1 2

1 1 2
1
1 2

1 1 2
2
1 1

1 2 2
1
1 1

e(T ) 2 3 0 2 1

Thus, Dλµ(q) = Eνµ(q) = 1 + q + 2q2 + q3 = G̃µλ(q). The tabloids contributing a
term q2 are apparied in the following way:

2
1 1
1 1 2 −→

1 1 2
2
1 1

1
2 2
1 1 1 −→

1 1 1
1
2 2

Remark The only property that we shall need in the sequel is the equality
Dλµ(q) = Eλµ(q). However, it is possible to be more explicit by constructing a
bijection exchanging d and e. The above action of Sm can be extended to tabloids
with arbitrary weight, still preserving e. Suppose for example that we want to apply
σi to a tabloid T whose restriction to rows i, i+ 1 is

1 1 2 3 7 7 9
1 1 1 2 6 6 6 8 8 9

One first determines the positions of the greatest entries, which are the 9’s, in Tσi.
Starting with an empty diagram of the permuted shape (10, 7), one constructs T1 as
above by converting all the entries 9 of T into 2 and the remaining ones into 1. Then
we apply σi to T1, and the positions of the 2 in T1σi give the positions of the 9 in
Tσi. Then, the entries 9 are removed from T ad the procedure is iterated until one
reaches a tabloid whose rows i and i + 1 are of equal lenghts. This tabloid is then
copied (without permutation) in the remaining part of the result. On the example,
this gives
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1 1 1 1 1 1 2
1

9

1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2
1 1 1 1 1 1 1 1 1 2 9

9

2 2
1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1 1 1 1 2 2
1 1 1 1 1 1

9
9

8 8

1 1 1 1 2 2
1 1 1 1 1 1 1

1 1 1 1 1 1 1
1 1 1 1 2 2 7 7 9

8 8 9

1 1 1 1
1 1 1 1 2 2 2

1 1 1 1 2 2 2
1 1 1 1

6 6 6 8 8 9
7 7 9

1 1 1 2
1 1 1 1

1 1 1 2
1 1 1 1

1 1 2 3 6 6 6 8 8 9
1 1 1 2 7 7

3 Specializations at roots of unity

As recalled in the preceding section, the Hall-Littlewood functions with parameter
specialized to the cardinality q of a finite field Fq provide information about the
characters of the linear group GL(n,Fq) over this field. It turns out that when
the parameter is specialized to a complex root of unity, one obtains information
about representations of GL(n,C), that is, a combinatorial decomposition of certain
plethysms [LLT1, LLT2]. We give now a brief review of the main results of these
papers.

The first one is a factorization property of the functions Q′λ(X, q) when q is
specialized to a primitive root of unity. This is to be seen as a generalization of
the fact that when q is specialized to 1 the function Q′λ(X; q) reduces to hλ(X) =∏
i hλi(X).

Theorem 3.1 Let λ = (1m12m2 . . . nmn) be a partition written multiplicatively. Set
mi = kqi + ri with 0 ≤ ri < k, and µ = (1r12r2 . . . nrn). Then, ζ being a primitive
k-th root of unity,

Q′λ(X; ζ) = Q′µ(X; ζ)
∏
i≥1

[Q′(ik)(X; ζ)]qi . (11)

The functions Q′(ik)(X; ζ) appearing in the right-hand side of (11) can be ex-
pressed as plethysms.
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Theorem 3.2 Let pk ◦ hn denote the plethysm of the complete function hn by the
power-sum pk, which is defined by the generating series

∑
n

pk ◦ hn(X) zn =
∏
x∈X

(1−

zxk)−1. Then, if ζ is as above a primitive k-th root of unity, one has

Q′(nk)(X; ζ) = (−1)(k−1)npk ◦ hn(X).

Example 3.3 With k = 3 (ζ = e2iπ/3), we have

Q′444433311(X; ζ) = Q′411(X; ζ)Q′333(X; ζ)Q′444(X; ζ) = Q′411(X; ζ) p4 ◦ h43 .

Given two partitions λ and µ, we denote by λ ∨ µ the partition obtained by
reordering the concatenation of λ and ν, e.g. (2, 2, 1)∨(5, 2, 1, 1) = (5, 23, 13). We
write µk = µ∨µ∨· · ·∨µ (k factors). If µ = (µ1, . . . , µr), we set kµ = (kµ1, . . . , kµr).

For k, n ∈ N, the Ramanujan or Von Sternecksum c(k, n) (also denoted Φ(k, n))
is the sum of the k-th powers of the primitive n-th roots of unity. Its value is given
by Hölder’s formula: if (k, n) = d and n = md, then c(k, n) = µ(m)φ(n)/φ(m),
where µ is the Moebius function and φ is the Euler totient function (see e.g. [NV]).

Let P (q) =
∑n−1
k=0 ak q

k ∈ Z[q] be a polynomial of degree ≤ n − 1. P is said to
be even modulo n if (i, n) = (j, n) ⇒ ai = aj. The following property [Co] can be
regarded as a generalization of the Moebius inversion formula:

Lemma 3.4 The polynomial P is even modulo n iff for every divisor d of n, the
residue of P (q) modulo the cyclotomic polynomial Φd(q) is a constant rd ∈ Z. In
this case, one has

ak =
1

n

∑
d|n
c(k, d)rd , rd =

∑
t|n
c(n/d, t)an/t .

With the aid of Ramanujan sums, we define the symmetric functions

`(k)
n =

1

n

∑
d|n
c(k, d)p

n/d
d . (12)

These functions were first encountered by Foulkes as Frobenius characteristics of
the representations of the symmetric group induced by irreducible representations
of transitive cyclic subgroup [Fo]. A combinatorial interpretation of the multiplic-
ity 〈sλ , `(k)

n 〉 has been given by Kraskiewicz and Weyman [KW]. This result is
equivalent to the congruence

Q′1n(X; q) ≡
∑

0≤k≤n−1

qk`(k)
n ( mod 1− qn) .

A proof using Cohen’s formula can be found in [De]. Taking into account Theorems
3.1 and 3.2, one obtains:
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Theorem 3.5 [LLT2] Let ei be the i-th elementary symmetric function, and for

λ = (λ1, . . . , λm), eλ = eλ1 · · · eλr . Then, the multiplicity 〈sµ , `(r)
k ◦ eλ〉 of the Schur

function sµ in the plethysm `
(r)
k ◦eλ is equal to the number of Young tableaux of shape

µ′ (conjugate partition) and weight λk whose charge is congruent to r modulo k.
This gives as well the plethysms with product of complete functions, since

〈sµ′ , `(r)
k ◦ eλ〉 =

{
〈sµ , `(r)

k ◦ hλ〉 if |λ| is even

〈sµ , ˜̀(r)
k ◦ hλ〉 if |λ| is odd

where ˜̀(r)
k = ω(`

(r)
k ) = `

(s)
k with s = k(k − 1)/2− r.

Example 3.6 With k = 4, r = 2 and λ = (2),

`
(2)
4 ◦ e2 = s431 + s422 + s41111 + 2s3311 + 2s3221

+2s32111 + s2222 + s22211 + 2s221111 + s2111111 .

To compute the coefficient 〈s32111 , `
(2)
4 ◦ e2〉 = 2, we have to find the number

of tableaux of shape (3, 2, 1, 1, 1)′ = (5, 2, 1), weight (2, 2, 2, 2) and charge ≡
2 ( mod 4). The two tableaux satisfying these constraints are:

3
2 4
1 1 2 3 4

4
2 3
1 1 2 3 4

which both have charge equal to 6.
Similarly, the reader can check that 〈s732 , `

(2)
4 ◦ e21〉 = 5 is the number of

tableaux with shape (3, 3, 2, 1, 1, 1, 1), weight (2, 2, 2, 2, 1, 1, 1, 1) and charge
≡ 2 ( mod 4).

A more combinatorial formulation of Theorems 3.1 and 3.2 can be presented
by means of the notion of ribbon tableau, which will also provide the key for their
generalization.

4 Ribbon tableaux

To a partition λ is associated a k-core λ(k) and a k-quotient λ(k) [JK]. The k-core
is the unique partition obtained by successively removing k-ribbons (or skew hooks)
from λ. The different possible ways of doing so can be distinguished from one another
by labelling 1 the last ribbon removed, 2 the penultimate, and so on. Thus Figure 1
shows two different ways of reaching the 3-core λ(3) = (2, 12) of λ = (8, 72, 4, 15).
These pictures represent two 3-ribbon tableaux T1, T2 of shape λ/λ(3) and weight
µ = (19).

To define k-ribbon tableaux of general weight and shape, we need some termi-
nology. The initial cell of a k-ribbon R is its rightmost and bottommost cell. Let
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T1 = 1
2

3
4

5

6

7

8

9

T2 = 4
2

6
1

7

8

5

3

9

Figure 1:

θ = β/α be a skew shape, and set α+ = (β1) ∨ α, so that α+/α is the horizontal
strip made of the bottom cells of the columns of θ. We say that θ is a horizontal
k-ribbon strip of weight m, if it can be tiled by m k-ribbons the initial cells of which
lie in α+/α. (One can check that if such a tiling exists, it is unique).

Now, a k-ribbon tableau T of shape λ/ν and weight µ = (µ1, . . . , µr) is defined
as a chain of partitions

ν = α0 ⊂ α1 ⊂ · · · ⊂ αr = λ

such that αi/αi−1 is a horizontal k-ribbon strip of weight µi. Graphically, T may be
described by numbering each k-ribbon of αi/αi−1 with the number i. We denote by
Tab k(λ/ν, µ) the set of k-ribbon tableaux of shape λ/ν and weight µ, and we set

K
(k)
λ/ν, µ = |Tab k(λ/ν, µ)| .

Finally we recall the definition of the k-sign εk(λ/ν). Define the sign of a ribbon R
as (−1)h−1, where h is the height of R. The k-sign εk(λ/ν) is the product of the
signs of all the ribbons of a k-ribbon tableau of shape λ/ν (this does not depend on
the particular tableau chosen, but only on the shape).

The origin of these combinatorial definitions is best understood by analyzing
carefully the operation of multiplying a Schur function sν by a plethysm of the form
pk ◦hµ. Equivalently, thanks to the involution ω, one may rather consider a product
of the type sν [pk ◦ eµ]. To this end, since

pk ◦ eµ = (eµ1 ◦ pk) · · · (eµn ◦ pk) = mkµ1 · · ·mkµn

one needs only to apply repeatedly the following multiplication rule due to Muir
[Mu] (see also [Li3]):

sνmα =
∑
β

sν+β ,

sum over all distinct permutations β of (α1, α2, . . . , αn, 0, . . . ). Here the Schur
functions sν+β are not necessary indexed by partitions and have therefore to be
standardized, this reduction yielding only a finite number of nonzero summands.
For example,

s31 m3 = s61 + s313 + s31003 = s61 − s322 + s314 .

11



Other terms such as s34 or s3103 reduce to 0. It is easy to deduce from this rule that
the multiplicity

〈sνmkµi , sλ〉

is nonzero iff λ′/µ′ is a horizontal k-ribbon strip of weight µi, in which case it is
equal to εk(λ/ν). Hence, applying ω we arrive at the expansion

sν [pk ◦ hµ] =
∑
λ

εk(λ/µ)K
(k)
λ/ν ,µ sλ

from which we deduce by 3.1, 3.2 that

K
(k)
λµ = (−1)(k−1)|µ| εk(λ)Kλµk(ζ)

and more generally, defining as in [KR] the skew Kostka-Foulkes polynomialKλ/ν ,α(q)
by

Kλ/ν ,α(q) = 〈sλ/ν , Q′α(q)〉

we can write
K

(k)
λ/ν ,µ = (−1)(k−1)|µ| εk(λ/ν)Kλ/ν ,µk(ζ) .

It turns out that enumerating k-ribbon tableaux is equivalent to enumerating k-
uples of ordinary Young tableaux, as shown by the correspondence to be described
now. This bijection was first studied by Stanton and White [SW] in the case of
ribbon tableaux of right shape λ (without k-core) and standard weight µ = (1n)
(see also [FS]). We need some additional definitions.

Let R be a k-ribbon of a k-ribbon tableau. R contains a unique cell with co-
ordinates (x, y) such that y − x ≡ 0 ( mod k). We decide to write in this cell the
number attached to R, and we define the type i ∈ {0, 1, . . . , k − 1} of R as the
distance between this cell and the initial cell of R. For example, the 3-ribbons of T1

are divided up into three classes:

• 4, 6, 8, of type 0;

• 1, 2, 7, 9, of type 1;

• 3, 5, of type 2.

Define the diagonals of a k-ribbon tableau as the sequences of integers read along
the straight lines Di : y − x = ki. Thus T1 has the sequence of diagonals

((8), (4), (2, 3, 6), (1, 5, 9), (7)) .

This definition applies in particular to 1-ribbon tableaux, i.e. ordinary Young
tableaux. It is obvious that a Young tableau is uniquely determined by its se-
quence of diagonals. Hence, we can associate to a given k-ribbon tableau T of shape
λ/ν a k-uple (t0, t1, . . . , tk−1) of Young tableaux defined as follows; the diagonals
of ti are obtained by erasing in the diagonals of T the labels of all the ribbons of
type 6= i. For instance, if T = T1 the first ribbon tableau of Figure 1, the sequence
of diagonals of t1 is ((2), (1, 9), (7)), and

12



1 7
2 9

t1 =

The complete triple (t0, t1, t2) of Young tableaux associated to T1 is

4 6
8

1 7
2 9

3 5
τ 1 =

(
, ,

)

whereas that corresponding to T2 is

1 8
3

4 5
6 9

2 7
τ 2 =

(
, ,

)

One can show that if ν = λ(k), the k-core of λ, the k-uple of shapes (λ0, λ1, . . . , λk−1)
of (t0, t1, . . . , tk−1) depends only on the shape λ of T , and is equal to the k-quotient
λ(k) of λ. Moreover the correspondence T −→ (t0, t1, . . . , tk−1) establishes a bijec-
tion between the set of k-ribbon tableaux of shape λ/λ(k) and weight µ, and the set
of k-uples of Young tableaux of shapes (λ0, . . . , λk−1) and weights (µ0, . . . , µk−1)
with µi =

∑
j µ

j
i . (See [SW] or [FS] for a proof in the case when λ(k) = (0) and

µ = (1n)).
For example, keeping λ = (8, 72, 4, 15), the triple

3 3
4

1 3
2 4

2 3
τ =

(
, ,

)

with weights ((0, 0, 2, 1), (1, 1, 1, 1), (0, 1, 1, 0)) corresponds to the 3-ribbon tableau

T = 1
2

2
3

3

3

3

4

4

of weight µ = (1, 2, 4, 2).
As before, the significance of this combinatorial construction becomes clearer

once interpreted in terms of symmetric functions. Recall the definition of φk, the
adjoint of the linear operator ψk : F 7→ pk ◦ F acting on the space of symmetric
functions. In other words, φk is characterized by

〈φk(F ) , G〉 = 〈F , pk ◦G〉 , F, G ∈ Sym .

Littlewood has shown [Li3] that if λ is a partition whose k-core λ(k) is null, then

φk(sλ) = εk(λ) sλ0 sλ1 · · · sλk−1 (13)
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where λ(k) = (λ0, . . . , λk−1) is the k-quotient. Therefore,

K
(k)
λµ = εk(λ) 〈pk ◦ hµ , sλ〉 = εk(λ) 〈φk(sλ) , hµ〉 = 〈sλ0 sλ1 · · · sλk−1 , hµ〉

is the multiplicity of the weight µ in the product of Schur functions sλ0 · · · sλk−1 ,
that is, is equal to the number of k-uples of Young tableaux of shapes (λ0, . . . , λk−1)
and weights (µ0, . . . , µk−1) with µi =

∑
j µ

j
i . Thus, the bijection described above

gives a combinatorial proof of (13).
More generally, if λ is replaced by a skew partition λ/ν, (13) becomes [KSW]

φk(sλ/ν) = εk(λ/ν) sλ0/ν0 sλ1/ν1 · · · sλk−1/νk−1

if λ(k) = ν(k), and 0 otherwise. This can also be deduced from the previous combi-
natorial correspondence, but we shall not go into further details.

Returning to Kostka polynomials, we may summarize this discussion by stating
Theorems 3.1 and 3.2 in the following way:

Theorem 4.1 Let λ and ν be partitions and set ν = µk ∨ α with mi(α) < k.
Denoting by ζ a primitive kth root of unity, one has

Kλ, ν(ζ) = (−1)(k−1)|µ|∑
β

εk(λ/β)K
(k)
λ/β, µKβ, α(ζ) . (14)

Example 4.2 We take λ = (42, 3), ν = (22, 17) and k = 3 (ζ = e2iπ/3). In this case,
ν = µk ∨ α with µ = (12) and α = (22, 1). The summands of (14) are parametrized
by the 3-ribbon tableaux of external shape λ and weight µ. Here we have three such
tableaux:

1
2

1
2

1

2

so that

K443, 221111111(ζ) = 2K41, 221(ζ)−K32, 221(ζ) = 2(ζ2 + ζ3)− (ζ + ζ2) = 2ζ2 + 3 .

When |α| ≤ |λ(k)|, (14) becomes simpler. For if |α| < |λ(k)| then Kλ, ν(ζ) = 0,
and otherwise the sum reduces to one single term

Kλ, ν(ζ) = (−1)(k−1)|µ|εk(λ/λ(k))K
(k)
λ/λ(k), µ

Kλ(k), α(ζ) .

In particular, if ν = (1n), one recovers the following theorem of Morris and Sultana
[MS].

Theorem 4.3 Let λ be a partition of n and ζ a primitive kth root of unity. Denote
by H(λ(k)) the product of the hook-lengths of the k partitions λ0, . . . , λk−1, and by
|λ(k)| the sum of their weights. Set n = kq + r, 0 ≤ r < k. If r 6= |λ(k)|, then
Kλ, (1n)(ζ) = 0, otherwise,

Kλ, (1n)(ζ) = (−1)(k−1)qεk(λ/λ(k))
|λ(k)|!
H(λ(k))

Kλ(k), 1
r(ζ) .
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Indeed, the correspondence just described between k-ribbon tableaux and k-uples
of Young tableaux shows at once, in view of the classical hook-formula [JK], that

K
(k)
λ/λ(k), 1

q =
|λ(k)|!
H(λ(k))

.

5 H-functions

Let λ be a partition without k-core, and with k-quotient (λ0, . . . , λk−1). For a
ribbon tableau T of weight µ, let xT = xµ1

1 x
µ2
2 · · ·xµrr . Then, the Stanton-White

correspondence shows that the generating function

G(k)
λ =

∑
T∈Tab k(λ, · )

xT =
k−1∏
i=0

∑
ti∈Tab (λi, · )

xti =
k−1∏
i=0

sλi (15)

is a product of Schur functions. Introducing in this equation an appropriate statis-
tic on ribbon tableaux, one can therefore obtain q-analogues of products of Schur
functions. The statistic called cospin, described below, leads to q-analogues with
interesting properties.

Let R be a k-ribbon, h(R) its heigth and w(R) its width.

w(R)

h(R)

The spin of R, denoted by s(R), is defined as

s(R) =
h(R)− 1

2
(16)

and the spin of a ribbon tableau T is by definition the sum of the spins of its ribbons.
For example, the ribbon tableau

1

2

1
2

3
5

1
2

4

2
5

4
5

6
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has a spin equal to 6.
For a partition λ without k-core, let

s∗k(λ) = max{s(T ) | T ∈ Tab k(λ, · )} . (17)

The cospin s̃(T ) of a k-ribbon tableau T of shape λ is then

s̃(T ) = s∗k(λ)− s(T ) . (18)

Although s(T ) can be a half-integer, it is easily seen that s̃(T ) is always an integer.
Also, there is one important case where s(T ) is an integer. This is when the shape λ
of T is of the form kµ = (kµ1, kµ2, . . . , kµr). In this case, the partitions constituting
the k-quotient of λ are formed by parts of µ, grouped according to the class modulo
k of their indices. More precisely, λi = {µr | r ≡ −i mod k}

We can now define three families of polynomials

G(k)
λ (X; q) =

∑
T∈Tab k(λ, · )

qs̃(T )xT (19)

H̃(k)
µ (X; q) =

∑
T∈Tab k(kµ, · )

qs̃(T )xT = G(k)
kµ (X; q) (20)

H(k)
µ (X; q) =

∑
T∈Tab k(kµ, · )

qs(T )xT = qs
∗
k(kµ)H̃(k)

µ (X; 1/q) . (21)

The parameter k will be called the level of the corresponding symmetric functions.
There is strong experimental evidence for the following conjectures.

Conjecture 5.1 (symmetry) The polynomials G̃
(k)
λ , H̃(k)

µ and H(k)
µ are symmetric.

Conjecture 5.2 (positivity) Their coefficients on the basis of Schur functions are
polynomials with nonnegative integer coefficients.

Conjecture 5.3 (monotonicity) H(k+1)
µ −H(k)

µ is positive on the Schur basis.

Conjecture 5.4 (plethysm) When µ = νk, for ζ a primitive k-th root of unity,

H
(k)

νk (ζ) = (−1)(k−1)|ν| pk ◦ sν

Equivalently,

H
(k)

νk (q) mod 1− qk =
k−1∑
i=0

qk`
(i)
k ◦ sν

The following statements will be proved in the forthcoming sections.

Theorem 5.5 The difference Q′µ −H(2)
µ is nonnegative on the Schur basis.

Theorem 5.6 For k ≥ `(µ), H(k)
µ is equal to the Hall-Littlewood function Q′µ.
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Taking into account the results of [LLT1, LLT2] and [CL], this is sufficient to
establish all the conjectures for k = 2 and k ≥ `(µ).

Example 5.7 (i) The 3-quotient of λ = (3, 3, 3, 2, 1) is ((1), (1, 1), (1)) and

G̃33321(q) = m31 + (1 + q)m22 + (2 + 2q + q2)m211

+(3 + 5q + 3q2 + q3)m1111

= s31 + qs22 + (q + q2)s211 + q3s1111

is a q-analogue of the product

s1s11s1 = s31 + s22 + 2s211 + s1111 .

(ii) The H-functions associated to the partition λ = (3, 2, 1, 1) are

H
(2)
3211 = s3211 + q s322 + q s331 + q s4111

+(q + q2) s421 + q2 s43 + q2 s511 + q3 s52

H
(3)
3211 = s3211 + q s322 + (q + q2) s331 + q s4111

+(q + 2q2) s421 + (q2 + q3) s43 + (q2 + q3) s511

+2q3 s52 + q4 s61

H
(4)
3211 = s3211 + q s322 + (q + q2) s331 + q s4111

+(q + 2q2 + q3) s421 + (q2 + q3 + q4) s43 + (q2 + q3 + q4) s511

+(2q3 + q4 + q5) s52 + (q4 + q5 + q6) s61 + q7 s7

= Q′3211

and we see that s3211 < H
(2)
3211 < H

(3)
3211 < H

(4)
3211 = Q′3211 .

(iii) The plethysms of s21 with the cyclic characters `
(i)
3 are given by the reduction

modulo 1− q3 of

H
(3)
222111 = q9s63 + (q + 1)q7s621 + q6s6111 + (q + 1)q7s54 + (q3 + 2q2 + 2q + 1)q5s531

+(q2 + 2q + 1)q5s522 + (q3 + 2q2 + 2q + 1)q4s5211 + (q + 1)q4s51111

+(q2 + 2q + 1)q5s441 + (q3 + 2q2 + 3q + 2)q4s432 + (2q3 + 3q2 + 3q + 1)q3s4311

+(q3 + 3q2 + 3q + 2)q3s4221 + (q3 + 2q2 + 2q + 1)q2s42111 + q3s411111 + (q3 + 1)q3s333

+(2q3 + 3q2 + 2q + 1)q2s3321 + (q2 + 2q + 1)q2s33111 + (q2 + 2q + 1)q2s3222

+(q3 + 2q2 + 2q + 1)qs32211 + (q + 1)qs321111 + (q + 1)qs22221 + s222111

Indeed,

H
(3)
222111 mod 1− q3 = (2s5211 + s22221 + s321111 + 3s4311
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+2s32211 + s522 + 3s432 + 3s3321 + s33111 + s3222 + s51111

+3s4221 + 2s531 + 2s42111 + s54 + s621 + s441)q2

+(2s5211 + s22221 + s321111 + 3s4311 + 2s32211 + s522

+3s432 + 3s3321 + s33111 + s3222 + s51111

+3s4221 + 2s531 + 2s42111 + s54 + s621 + s441)q

+2s33111 + s63 + s6111 + 2s531 + 2s522 + 2s5211 + 2s441

+2s432 + 3s4311 + 3s4221 + 2s42111 + s411111 + 2s333

+2s3321 + 2s3222 + s222111 + 2s32211

= q2`
(2)
3 ◦ s21 + q`

(1)
3 ◦ s21 + `

(0)
3 ◦ s21 .

6 The case of dominoes

For k = 2, the conjectures can be established by means of the combinatorial con-
structions of [CL] and [KLLT]. In this case, conjectures 5.1, 5.2 and 5.4 follow
directly from the results of [CL], and the only point remaining to be proved is
Theorem 5.5.

The important special feature of domino tableaux is that there exits a natural
notion of Yamanouchi domino tableau. These tableaux correspond to highest weight
vectors in tensor products of two irreducible GLn-modules, in the same way as
ordinary Yamanouchi tableaux are the natural labels for highest weight vectors of
irreducible representations.

The column reading of a domino tableau T is the word obtained by reading the
successive columns of T from top to bottom and left to right. Horizontal dominoes,
which belong to two succesive columns i and i+ 1 are read only once, when reading
column i. For example, the column reading of the domino tableau

1
2

3

4

1
2

is col (T ) = 431212.
A Yamanouchi word is a word w = x1x2 · · ·xn such that each right factor v =

xi · · ·xn of w satisfies |v|j ≥ |v|j+1 for each j, where |v|j denotes the number of
occurences of the letter j in v.

A Yamanouchi domino tableau is a domino tableau whose column reading is a
Yamanouchi word. We denote by Yam2(λ, µ) the set of Yamanouchi domino tableaux
of shape λ and weight µ.

It follows from the results of [CL], Section 7, that the Schur expansions of the
H-functions of level 2 are given by

H
(2)
λ =

∑
µ

∑
T∈Yam2(2λ,µ)

qs(T )sµ . (22)
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On the other hand,
Q′λ =

∑
µ

∑
t∈Tab (µ,λ)

qc(t)sµ . (23)

To prove Theorem 5.5, it is thus sufficient to exhibit an injection

η : Yam2(2λ, µ) −→ Tab (µ, λ)

satisfying
c(η(T )) = s(T ) .

To achieve this, we shall make use of a bijection described in [BV], and extended
in [KLLT], which sends a domino tableau T ∈ Tab 2(α, µ) over the alphabet X =
{1, . . . , n}, to an ordinary tableau t = φ(T ) ∈ Tab (α, µ̄µ) over the alphabet X̄∪X =
{n̄ < . . . < 1̄ < 1 < . . . < n}. The weight µ̄µ means that t contains µi occurences of
i and of ī. The tableau φ(T ) is invariant under Schützenberger’s involution Ω, and
the spin of T can be recovered from t by the following procedure [KLLT2].

Let α = 2λ, β = α′, βodd = (β1, β3, . . . ) and βeven = (β2, β4, . . . ). Then, there
exists a unique factorisation t = τ1τ2 in the plactic monoid Pl (X∪X̄), such that τ1 is
a contretableau of shape α1 = (βeven)′ and τ2 is a tableau of shape α2 = (βodd)′. The
spin of T = φ−1(t) is then equal to the number |τ1|+ of positive letters in τ1, which
is also equal to the number |τ2|− of negative letters in τ2. Moreover, τ2 = Ω(τ1).

Example 6.1 With the following tableau T of shape (4, 4, 2, 2), one finds

1
1

1
2

2
3

3̄ 2̄ 1̄ 1
211̄2̄

1̄
1 3

2
t =T =

φ

By jeu-de-taquin, we find that in the plactic monoid

t =

1̄ 1
2̄ 1̄

2̄
3̄

3
2
1 2
1̄ 1 = τ1τ2 .

The number of positive letters of τ1 and the number of negative letters of τ2 are
both equal to 1, which is the spin of T .

This correspondence still works in the general case (α need not be of the form
2λ) and the invariant tableau associated to a domino tableau T admits a similar
factorisation t = τ1τ2, but in general τ2 6= Ω(τ1) and the formula for the spin is
s(T ) = 1

2
(|τ1|+ + |τ2|−).

The map η : Yam2(2λ, µ) −→ Tab (µ, λ) is given by the following algorithm: to
compute η(T ),
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1. construct the invariant tableau t = φ(T )

2. apply the jeu-de-taquin algorithm to t to obtain the plactic factorization t =
τ1τ2, and keep only τ2.

3. Apply the evacuation algorithm to the negative letters of τ2, keeping track of
the successive stages. After all the negative letters have been evacuated, one
is left with a Yamanouchi tableau τ in positive letters.

4. Complete the tableau τ to obtain the tableau t′ = η(T ) using the following
rule: suppose that at some stage of the evacuation, the box of τ2 which disap-
peared after the elimination of ī was in row j of τ2. Then add a box numbered
j to row i of τ .

Theorem 6.2 The above algorithm defines an injection

η : Yam2(2λ, µ) −→ Tab (µ, λ)

satifying c ◦ η = s.

Corollary 6.3 H
(2)
λ ≤ Q′λ

Example 6.4 Let T be the following Yamanouchi domino tableau, which is of shape
2λ = (6, 4, 4, 2, 2), of weight µ = (4, 3, 2) and has spin s(T ) = 3

1
1

2

3
3

2
2

1 1

T =

Then,

φ(T ) =

3 3
1 2
1̄ 1̄ 2 2
2̄ 2̄ 1̄ 1
3̄ 3̄ 2̄ 1̄ 1 1 ≡

1̄ 1 3
1̄ 2
2̄ 1̄

2̄
3̄

3
2
1 2
2̄ 1
3̄ 1̄ 1

and the succesive stages of the evacuation process are

3
2
1 2
2̄ 1
3̄ 1̄ 1 −→

×
3
2 2
1 1
2̄ 1̄ 1 −→

3
2 ×
1 2
1̄ 1 1 −→

×
3
2 2
1 1 1

ī = 3̄ ī = 2̄ ī = 1̄
j = 5 j = 3 j = 4
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so that we find

η(T ) =

3 5
2 2 3
1 1 1 4

a tableau of shape µ = (4, 3, 2), weight λ = (3, 2, 2, 1, 1) and charge c(t′) = 3.

7 The stable case

As the Q′-functions are known to verify all the conjectured properties of H-functions,
the stable case of the conjectures will be a consequence of theorem 5.6. This result
will be proved by means of Shimomura’s cell decomposition of unipotent varieties.

A tabloid t of shape ν = (ν1, . . . , νk) can be identified with a k-tuple (w1, . . . , wk)
of words, wi being a row tableau of lenght νi. The Stanton-White correspondence
ψ assciates to such a k-tuple of tableaux a k-ribbon tableau T = ψ(t). Thus,
the cells of a unipotent variety Fuµ (where u is of type ν) are labelled by k-ribbon
tableaux of a special kind. The following theorem, which implies the stable case
of the conjectures, shows that this labelling is natural from a geometrical point of
view.

Theorem 7.1 The Stanton-White correspondence ψ sends a tabloid t ∈ L(ν, µ)
onto a ribbon tableau T = ψ(t) whose cospin is equal to the dimension of the cell ct
of Fuµ labelled by t, when one uses the modified indexation for which the dimension
of ct is e(t) (see Section 2). That is,

s̃(ψ(t)) = e(t) .

At this point, it is useful to observe, following [Te], that the e-statistic can be
given a nonrecursive definition, as a kind of inversion number. Let t = (w1, . . . , wk)
be a tabloid, identified with a k-tuple of row tableaux. Let y be the r-th letter of
wi and x be the r-th letter of wj, and suppose that x < y. Then, the pair (y, x) is
said to be an e-inversion if either

(a) i < j

or

(b) i > j and there s on the right of x in wj a letter u < y

Then e(t) is equal to the number of inversions (y, x) in t.

Example 7.2 Let t ∈ L((2, 3, 2, 1), (2, 3, 1, 1, 1)) be the following tabloid (the num-
ber under a letter y is the number of e-inversions of the form (y, x)):

t =

(
2 3 , 1 1 2 , 4 5 , 2

1 1 0 0 0 3 1 1

)

so that e(t) = 7. Its image under the SW-correspondence is the 4-ribbon tableau
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1
2

2
4

1
3

5

2

whose cospin is equal to 7.
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structures in algebra and geometric combinatorics” (A. de Luca Ed.), Quaderni della
Ricerca Scientifica del C. N. R., Roma, 1981.

[LS2] A. Lascoux and M. P. Schützenberger, Sur une conjecture de H.O. Foulkes, C.R.
Acad. Sci. Paris 286A (1978), 323-324.

[Li1] D. E. Littlewood, On certain symmetric functions, Proc. London Math. Soc. 43
(1961), 485-498.

[Li2] D. E. Littlewood, The theory of group characters and matrix representations of groups,
Oxford, 1950 (second edition).

[Li3] D. E. Littlewood, Modular representations of symmetric groups, Proc. Roy. Soc. A.
209 (1951) 333-353

[Lu1] G. Lusztig, Singularities, character formulas, and a q-analog of weight multiplicities,
Analyse et topologie sur les espaces singuliers (II-III), Astérisque 101-102 (1983), 208-
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