COMMENT ON 'COUNTING NONINTERSECTING LATTICE PATHS WITH TURNS' BY C. KRATTENTHALER

Martin Rubey
Institut für Mathematik der Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria. e-mail: a9104910@unet.univie.ac.at

The argument in the proof of Theorem 4 on pp. 11/12 that a family of two-rowed arrays with associated permutation not the identity permutation must contain a crossing point contains an error: the inequality $A_{1}^{(\sigma(i+1))}-1 \leq A_{1}^{(\sigma(i))}$ on page 12 is not true in general.

The paragraph at the bottom of page 11 to the top of page 12 must be replaced by:
"Finally we have to show that, given a pair $(\mathcal{P}, \sigma), \mathcal{P}=\left(P_{1}, \ldots, P_{r}\right), \sigma \neq \mathrm{id}$, there exist neighbouring two-rowed arrays having a crossing point.

If $\sigma \neq \mathrm{id}$ then there must exist an i with $\sigma(i+1)<i+1$. Without loss of generality we may assume that i is minimal with this property. Then all two-rowed arrays P_{j} with $j \leq i$ have nonnegative type, whereas P_{i+1} has negative type.

Let us momentarily define $a_{0}^{(i+1)}:=A_{1}^{(\sigma(i+1))}-1$. (Recall that we denoted the entries of P_{j} by $a_{\ell}^{(j)}$ and $b_{\ell}^{(j)}$, respectively, see (22).) Furthermore set $s_{i+1}=0$. We show next that, either we find two neighbouring arrays containing a crossing point, or for any $j \in\{\sigma(i+1), \ldots, i\}$ there is an index $s_{j} \in\left\{1,2, \ldots, k_{j}\right\}$ such that

$$
\begin{equation*}
a_{s_{j}}^{(j)} \leq a_{s_{j+1}}^{(j+1)} \quad \text { and } \quad b_{s_{j}}^{(j)} \geq b_{s_{j+1}}^{(j+1)} . \tag{C1}
\end{equation*}
$$

We do a reverse induction on j. Suppose we have already found indices s_{i}, s_{i-1}, \ldots, s_{j+1} such that (C1) is satisfied. Since P_{j} has nonnegative type, the element $a_{1}^{(j)}$ exists. If $a_{s_{j+1}}^{(j+1)}<a_{1}^{(j)}$, then because of (13) and (C1) we have also

$$
b_{0}^{(j)}=A_{2}^{(\sigma(j))} \leq A_{2}^{(j)} \leq A_{2}^{(\sigma(i+1))}<b_{0}^{(i+1)} \leq b_{s_{j+1}}^{(j+1)}
$$

and thus $\left(a_{1}^{(j)}, b_{s_{j+1}}^{(j+1)}\right)$ is a crossing point of P_{j} and P_{j+1}.
On the other hand, if $a_{s_{j+1}}^{(j+1)} \geq a_{1}^{(j)}$ then let s_{j} be maximal such that $a_{s_{j}}^{(j)} \leq a_{s_{j+1}}^{(j+1)}$. We already know that $s_{j} \geq 1$. Because of (C1) we also have

$$
E_{1}^{(j)} \geq E_{1}^{(\sigma(i+1))} \geq A_{1}^{(\sigma(i+1))}-1=a_{0}^{(i+1)} \geq a_{s_{j+1}}^{(j+1)}
$$

and thus $s_{j} \leq k_{j}$.
Since P_{j} has nonnegative type, the element $b_{s_{j}}^{(j)}$ exists. If $b_{s_{j}}^{(j)}<b_{s_{j+1}}^{(j+1)}$, then by construction of s_{j} we have $a_{s_{j+1}}^{(j+1)}<a_{s_{j}+1}^{(j)}$, and thus $\left(a_{s_{j}+1}^{(j)}, b_{s_{j+1}}^{(j+1)}\right)$ is a crossing point of P_{j} and P_{j+1}. If, on the other hand, $b_{s_{j}}^{(j)} \geq b_{s_{j+1}}^{(j+1)}$, then we have found s_{j} such that (C1) holds.

For $j=\sigma(i+1)$ though, this leads to a contradiction. For, the type of P_{j} is $\sigma(j)-j \geq 0$, and therefore
$A_{1}^{(\sigma(j))} \leq a_{1}^{(j)}+j-\sigma(j) \leq a_{s_{j}}^{(j)}+j-\sigma(j) \leq a_{0}^{(i+1)}+j-\sigma(j)=A_{1}^{(j)}-1+j-\sigma(j)$,
where we used (C1) for the last inequality. But on the other hand, by (13) we have $A_{1}^{(\sigma(j))} \geq A_{1}^{(j)}+j-\sigma(j)$, a contradiction."

Institut für Mathematik der Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria.

