COMMENT ON 'COUNTING NONINTERSECTING LATTICE PATHS WITH TURNS' BY C. KRATTENTHALER

MARTIN RUBEY

Institut für Mathematik der Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria. e-mail: a9104910@unet.univie.ac.at

The argument in the proof of Theorem 4 on pp. 11/12 that a family of two-rowed arrays with associated permutation not the identity permutation must contain a cross-ing point contains an error: the inequality $A_1^{(\sigma(i+1))} - 1 \leq A_1^{(\sigma(i))}$ on page 12 is not true in general.

The paragraph at the bottom of page 11 to the top of page 12 must be replaced by:

"Finally we have to show that, given a pair $(\mathcal{P}, \sigma), \mathcal{P} = (P_1, \ldots, P_r), \sigma \neq id$, there exist neighbouring two-rowed arrays having a crossing point.

If $\sigma \neq id$ then there must exist an *i* with $\sigma(i+1) < i+1$. Without loss of generality we may assume that i is minimal with this property. Then all two-rowed arrays P_i with $j \leq i$ have nonnegative type, whereas P_{i+1} has negative type. Let us momentarily define $a_0^{(i+1)} := A_1^{(\sigma(i+1))} - 1$. (Recall that we denoted the

entries of P_j by $a_{\ell}^{(j)}$ and $b_{\ell}^{(j)}$, respectively, see (22).) Furthermore set $s_{i+1} = 0$. We show next that, either we find two neighbouring arrays containing a crossing point, or for any $j \in \{\sigma(i+1), \ldots, i\}$ there is an index $s_j \in \{1, 2, \ldots, k_j\}$ such that

$$a_{s_j}^{(j)} \le a_{s_{j+1}}^{(j+1)}$$
 and $b_{s_j}^{(j)} \ge b_{s_{j+1}}^{(j+1)}$. (C1)

We do a reverse induction on j. Suppose we have already found indices s_i, s_{i-1} , \ldots, s_{j+1} such that (C1) is satisfied. Since P_j has nonnegative type, the element $a_1^{(j)}$ exists. If $a_{s_{j+1}}^{(j+1)} < a_1^{(j)}$, then because of (13) and (C1) we have also

$$b_0^{(j)} = A_2^{(\sigma(j))} \le A_2^{(j)} \le A_2^{(\sigma(i+1))} < b_0^{(i+1)} \le b_{s_{j+1}}^{(j+1)},$$

and thus $(a_1^{(j)}, b_{s_{j+1}}^{(j+1)})$ is a crossing point of P_j and P_{j+1} . On the other hand, if $a_{s_{j+1}}^{(j+1)} \ge a_1^{(j)}$ then let s_j be maximal such that $a_{s_j}^{(j)} \le a_{s_{j+1}}^{(j+1)}$. We already know that $s_j \ge 1$. Because of (C1) we also have

$$E_1^{(j)} \ge E_1^{(\sigma(i+1))} \ge A_1^{(\sigma(i+1))} - 1 = a_0^{(i+1)} \ge a_{s_{j+1}}^{(j+1)},$$

and thus $s_j \leq k_j$.

Since P_j has nonnegative type, the element $b_{s_j}^{(j)}$ exists. If $b_{s_j}^{(j)} < b_{s_{j+1}}^{(j+1)}$, then by construction of s_j we have $a_{s_{j+1}}^{(j+1)} < a_{s_j+1}^{(j)}$, and thus $(a_{s_j+1}^{(j)}, b_{s_{j+1}}^{(j+1)})$ is a crossing point of P_j and P_{j+1} . If, on the other hand, $b_{s_j}^{(j)} \ge b_{s_{j+1}}^{(j+1)}$, then we have found s_j such that (C1) holds.

For $j = \sigma(i+1)$ though, this leads to a contradiction. For, the type of P_j is $\sigma(j) - j \ge 0$, and therefore

$$A_1^{(\sigma(j))} \le a_1^{(j)} + j - \sigma(j) \le a_{s_j}^{(j)} + j - \sigma(j) \le a_0^{(i+1)} + j - \sigma(j) = A_1^{(j)} - 1 + j - \sigma(j),$$

where we used (C1) for the last inequality. But on the other hand, by (13) we have $A_1^{(\sigma(j))} \ge A_1^{(j)} + j - \sigma(j)$, a contradiction."

Institut für Mathematik der Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria.