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Abstract. We derive enumeration formulas for families of nonintersecting lattice paths
with given starting and end points and a given total number of North-East turns. These

formulas are important for the computation of Hilbert series for determinantal and
pfaffian rings.

1. Introduction. Recent work of Abhyankar and Kulkarni [1, 2] and of Conca,
Herzog and Trung [4, 5, 8] showed that the computation of Hilbert series for determi-
nantal and pfaffian rings boils down to counting families of n nonintersecting lattice
paths with given starting and end points and a given total number of turns in certain
regions. If one forgets about the number of turns, i.e., if one is interested in the
plain enumeration of nonintersecting lattice paths with given starting and end points,
then the solution is a certain determinant. This is classical now (cf. [6; 7, Cor. 2;
17, Theorem 1.2]). However, the method that is used for the plain enumeration (the
“Gessel–Viennot involution”, which actually can be traced back to Lindström [15]
and Karlin and McGregor [9]), is not appropriate to keep track of turns. Still, the
answers to “turn enumeration” are determinants. But new methods are needed now.

In this note we develop the basic theory of turn enumeration of nonintersecting
lattice paths. Theorem 1 solves the turn enumeration of (unrestricted) nonintersecting
lattice paths with given starting and end points, Theorem 4 provides a generalization.
Theorem 2 solves the turn enumeration of nonintersecting lattice paths that stay
below a diagonal line with given starting and end points, Theorem 5 provides a
generalization. Finally, Theorem 3 solves a problem that is equivalent to the turn
enumeration of nonintersecting lattice paths that stay above a diagonal line with given
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2 C. KRATTENTHALER

starting and end points, Theorem 6 provides a generalization. We also briefly indicate
how these theorems are related to the computation of Hilbert series for determinantal
and pfaffian rings.

What concerns the proofs of these results, it turns out that lattice paths are not
the right objects to play with. The objects that are natural in the context of turn
enumeration are two-rowed arrays. To prove the determinant formulas we construct
operations on two-rowed arrays (the operations (24)/(25) → (28)/(29), (37a)/(37b)
→ (38a)/(38b), (32) → (33), (39) → (40)) that are in some sense analogous to the
Gessel–Viennot involution for paths and the reflection principle for paths. These
operations are inspired by operations from [10, 13].

A full account of this theory will be the subject of forthcoming papers [11, 12]. In
particular, these papers contain more enumeration results concerning nonintersecting
lattice paths with a given total number of turns. Besides, the impact of our results
to the theory of determinantal and pfaffian rings is explained in detail there. Also,
more general enumeration results for non-crossing two-rowed arrays are presented
there that lead to summation theorems for Schur functions. An interesting feature
is that it is the Robinson–Schensted–Knuth correspondence and its properties that
constitute the link between “turn enumeration” of nonintersecting lattice paths and
the above mentioned applications.

The paper is organized as follows. In the next section we explain our terminology
and state our results (Theorems 1–6). Then, in section 3, we provide the proofs of
Theorems 4–6. Theorems 1–3 follow as special cases.

2. The results. We consider lattice paths in the plane consisting of unit horizontal
and vertical steps in the positive direction. In the sequel we shall call them shortly
paths. Let P be a path from A = (A1, A2) to E = (E1, E2). Later we frequently
abbreviate the fact that a path P goes from A to E by P : A → E .

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • • •

•

•

P0

Figure 1

A point in a path P which is the end point of a vertical step and at the same time
the starting point of a horizontal step will be called a North-East turn (NE-turn for
short) of the path P . The NE-turns of the path in Figure 1 are (1, 1), (2, 3), and
(5, 4). Similarly, a point in a path P which is the end point of a horizontal step and
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at the same time the starting point of a vertical step will be called an East-North turn
(EN-turn for short) of the path P . The EN-turns of the path in Figure 1 are (2, 1),
(5, 3), and (6, 4).

The aim of this note is to prove the following three theorems about the enumeration
of nonintersecting lattice paths with a given total number of turns. Here, as usual,
paths are called nonintersecting if no two of them have a point in common.

Theorem 1. Let Ai = (A(i)
1 , A

(i)
2 ) and Ei = (E(i)

1 , E
(i)
2 ) be lattice points satisfying

A
(1)
1 ≤ A(2)

1 ≤ · · · ≤ A(r)
1 , A

(1)
2 > A

(2)
2 > · · · > A

(r)
2 ,

and
E

(1)
1 < E

(2)
1 < · · · < E

(r)
1 , E

(1)
2 ≥ E(2)

2 ≥ · · · ≥ E(r)
2 .

The number of all families P = (P1, . . . , Pr) of nonintersecting lattice paths Pi : Ai →
Ei, such that the paths of P altogether contain exactly K NE-turns, is∑

k1+···+kr=K

det
1≤s,t≤r

((
E

(t)
1 −A

(s)
1 + s− t

ks + s− t

)(
E

(t)
2 −A

(s)
2 − s+ t

ks

))
. � (1)

Remark. A special case of Theorem 1 is of relevance in the computation of Hilbert
series for determinantal rings. This was shown by several authors [5, 14, 16]. In
fact, Kulkarni [14, Main Theorem 5] derived this special case (r = p, K = E,
Ai = (0, ap−i+1), Ei = (m(2)−bp−i+1,m(1))) from Abhyankar’s formula [1, (20.14.4),
p. 484] for the Hilbert series for certain determinantal rings, while Conca and Herzog
[5] used it to give an alternative proof of Abhyankar’s formula, see also [11]. On
the other hand, Modak [16] gave an independent (manipulative) proof of this special
case. Slight variations of Theorem 1 solve the computation of Hilbert series for rings
generated by minors of a symmetric matrix as considered by Conca [4], see [11].

Theorem 2. Let Ai = (A(i)
1 , A

(i)
2 ) and Ei = (E(i)

1 , E
(i)
2 ) be lattice points satisfying

A
(1)
1 ≤ A(2)

1 ≤ · · · ≤ A(r)
1 , A

(1)
2 > A

(2)
2 > · · · > A

(r)
2 ,

E
(1)
1 < E

(2)
1 < · · · < E

(r)
1 , E

(1)
2 ≥ E(2)

2 ≥ · · · ≥ E(r)
2 ,

and A
(i)
1 ≥ A

(i)
2 , E

(i)
1 ≥ E

(i)
2 , i = 1, . . . , r. The number of all families P =

(P1, . . . , Pr) of nonintersecting lattice paths Pi : Ai → Ei, which do not cross the
line x = y, and where the paths of P altogether contain exactly K NE-turns, is∑

k1+···+kr=K

det
1≤s,t≤r

((
E

(t)
1 −A

(s)
1 + s− t

ks + s− t

)(
E

(t)
2 −A

(s)
2 − s+ t

ks

)

−
(
E

(t)
1 −A

(s)
2 − s− t+ 1
ks − t

)(
E

(t)
2 −A

(s)
1 + s+ t− 1
ks + s

))
. � (2)

Remark. Theorem 2 can be applied for the computation of the Hilbert series for
certain ladder determinantal rings (one sided, with a diagonal upper bound) and also
for pfaffian rings, see [11]. For arbitrary one-sided ladders see [11, 12].
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Theorem 3. Let Ai = (A(i)
1 , A

(i)
2 ) and Ei = (E(i)

1 , E
(i)
2 ) be lattice points satisfying

A
(1)
1 < A

(2)
1 < · · · < A

(r)
1 , A

(1)
2 ≥ A(2)

2 ≥ · · · ≥ A(r)
2 ,

E
(1)
1 ≤ E(2)

1 ≤ · · · ≤ E(r)
1 , E

(1)
2 > E

(2)
2 > · · · > E

(r)
2 ,

and A
(i)
1 ≥ A

(i)
2 , E

(i)
1 ≥ E

(i)
2 , i = 1, . . . , r. The number of all families P =

(P1, . . . , Pr) of nonintersecting lattice paths Pi : Ai → Ei, Pi : Ai → Ei, which do
not cross the line x = y, and where the paths of P altogether contain exactly K
EN-turns, is∑

k1+···+kr=K

det
1≤s,t≤r

((
E

(t)
1 −A

(s)
1 + s− t

ks + s− t

)(
E

(t)
2 −A

(s)
2 − s+ t

ks

)

−
(
E

(t)
1 −A

(s)
2 − s− t+ 3

ks − t+ 1

)(
E

(t)
2 −A

(s)
1 + s+ t− 3

ks + s− 1

))
. � (3)

Actually, more general results can be shown (see Theorems 4,5,6 below). However,
they are more conveniently formulated after before having modified the problem.

Suppose, P = (P1, . . . , Pr) is a family of nonintersecting lattice paths Pi : Ai → Ei.
Now we shift the i-th path Pi in the direction (−i + 1, i − 1) thus obtaining the
new path P ′i , i = 1, . . . , r. The new family P ′ = (P ′1, . . . , P

′
r) might be intersecting,

however it is non-crossing (see Figure 2).

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

•
• •

•

•
•

P1

P2

P3 −→ • • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

•

•

•

•

•

•
P ′1

P ′2 P ′3

nonintersecting lattice paths non-crossing lattice paths

Figure 2

Before we make precise what the exact meaning of non-crossing in this context is
(see (10) below), we introduce some notation.

Obviously, given the starting and the final point of a path, the North-East turns
uniquely determine the path. Suppose that P is a path from A = (A1, A2) to E =
(E1, E2) and let the North-East turns of P be (a1, b1), (a2, b2), . . . , (ak, bk), where
we assume that the (ai, bi) are ordered from left to right, which is equivalent with
A1 ≤ a1 < a2 < · · · < ak ≤ E1 − 1, and A2 + 1 ≤ b1 < b2 < · · · < bk ≤ E2. Then P
can be represented by the two-rowed array

a1 a2 . . . ak
b1 b2 . . . bk

, (4)



NONINTERSECTING LATTICE PATHS WITH TURNS 5

or, if we wish to make the bounds which are caused by the starting and the final point
transparent,

A1 ≤ a1 a2 . . . ak ≤ E1 − 1
A2 + 1 ≤ b1 b2 . . . bk ≤ E2

. (5)

For a given starting point and a given final point, by definition the empty array is
the representation for the only path that has no North-East turn. For the path in
Figure 1 we obtain the array representation

1 2 5
1 3 4 ,

or with bounds included,
1 ≤ 1 2 5 ≤ 5
0 ≤ 1 3 4 ≤ 6 .

Later, also two-rowed arrays with rows of unequal length will be considered. But
these arrays also will have the property that the rows are strictly increasing. So by
convention, whenever we speak of two-rowed arrays we mean two-rowed arrays with
strictly increasing rows. We shall frequently use the short notation (a | b) for two-
rowed arrays, where a denotes the sequence (ai) of elements of the first row, and b
denotes the sequence (bi) of elements of the second row.

Let P1, P2 be two paths, P1 : A → E , P2 : B → F , where A = (A1, A2), B =
(B1, B2), E = (E1, E2), F = (F1, F2) with

A1 ≤ B1, A2 > B2, E1 < F1, E2 ≥ F2.

Roughly speaking, these inequalities mean that A is located in the North-West of B
(strictly in direction North and weakly in direction West), and E is located in the
North-West of F (weakly in direction North and strictly in direction West). Let the
array representations of P1 and P2 be

P1 : A1 ≤ a1 . . . ak ≤ E1 − 1
A2 + 1 ≤ b1 . . . bk ≤ E2

(6)

and
P2 : B1 ≤ c1 . . . cl ≤ F1 − 1

B2 + 1 ≤ d1 . . . dl ≤ F2
, (7)

respectively.
Suppose that P1 and P2 intersect, i.e. have a point in common. Let S be a meeting

point of P1 and P2. By definition set ak+1 := E1 and b0 := A2. (Note that the
thereby augmented sequences a and b remain strictly increasing.)

• •

•

S
(cJ , dJ)

(aI , bI−1)

P1

P2

Figure 3
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Considering the East-North turn (aI , bI−1) in P1 immediately preceding S (and
being allowed to be equal to S) and the North-East turn (cJ , dJ) in P2 immediately
preceding S (and being allowed to be equal to S), we get the inequalities (cf. Figure 3)

cJ ≤ aI , (8a)

bI−1 ≤ dJ , (8b)

where
1 ≤ I ≤ k + 1, 1 ≤ J ≤ l. (8c)

Of course, k, l, aI , bI , cJ , dJ , etc., refer to the array representations of P1 and P2.
It now becomes apparent that the above assignments for ak+1 and b0 are needed for
the inequalities (8a,b) to make sense for I = 1 or I = k + 1. Note that S = (aI , dJ).
Vice versa, if (8a,b,c) is satisfied then there must be a meeting point between P1 and
P2 (because of the particular location of the starting and end points A,B, E ,F).

Summarizing, the existence of I, J satisfying (8a,b,c) characterize the array repre-
sentations of intersecting pairs of paths.

Now, if P2 is shifted in direction (−1, 1), we obtain the path P ′2 with array repre-
sentation

B′1 ≤ c′1 . . . c′l ≤ F ′1 − 1
B′2 + 1 ≤ d′1 . . . d′l ≤ F ′2

, (9)

where c′i = ci − 1, d′i = di + 1, B′1 = B1 − 1, B′2 = B2 + 1, F ′1 = F1 − 1, F ′2 = F2 + 1.
The conditions (8a,b,c) become

c′J < aI , (10a)

bI−1 < d′J , (10b)

where
1 ≤ I ≤ k + 1, 1 ≤ J ≤ l. (10c)

We take (10a,b,c) as definition of two paths P1 and P2 with array representations (6)
and (9), respectively, being non-crossing. We call the point (aI , d′J) crossing point of
P1 and P2.

Let x = (x1, x2, . . . ) and y = (y1, y2, . . . ) be sequences of indeterminates. Given a
path P1 with array representation (6) we define a weight for P1 by

wx,y(P1) =
k∏
i=1

xaiybi . (11)

This weight is extended to families P = (P1, . . . , Pr) of lattice paths by

wx,y(P) =
r∏
j=1

wx,y(Pj). (12)

Now we are prepared to formulate the promised generalizations of Theorems 1,2,3.
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Theorem 4. Let Ai = (A(i)
1 , A

(i)
2 ) and Ei = (E(i)

1 , E
(i)
2 ) be lattice points satisfying

A
(1)
1 + 1 ≤ A(2)

1 + 2 ≤ · · · ≤ A(r)
1 + r, A

(1)
2 ≥ A(2)

2 ≥ · · · ≥ A(r)
2 , (13)

and
E

(1)
1 ≤ E(2)

1 ≤ · · · ≤ E(r)
1 , E

(1)
2 − 1 ≥ E(2)

2 − 2 ≥ · · · ≥ E(r)
2 − r. (14)

The generating function
∑
P wx,y(P) where the sum is over all families P = (P1, . . . ,

Pr) of non-crossing lattice paths Pi : Ai → Ei, is

det
1≤s,t≤r

(fs−t(x, A
(s)
1 , E

(t)
1 − 1,y, A(s)

2 + 1, E(t)
2 )), (15)

where fm(x, a, b,y, c, d) =
∑
k ek+m(xa, . . . , xb)ek(yc, . . . , yd) with en(z1, . . . , zh) de-

noting the elementary symmetric function in the variables z1, . . . , zh.

Theorem 5. Let Ai = (A(i)
1 , A

(i)
2 ) and Ei = (E(i)

1 , E
(i)
2 ) be lattice points satisfying

(13) and (14) and
A

(1)
1 ≥ A(1)

2 and E
(1)
1 ≥ E(1)

2 . (16)

The generating function
∑
P wx,x(P) where the sum is over all families P = (P1, . . . ,

Pr) of non-crossing lattice paths Pi : Ai → Ei, such that P1 does not cross the line
x = y, is

det
1≤s,t≤r

(fs−t(x, A
(s)
1 , E

(t)
1 − 1,x, A(s)

2 + 1, E(t)
2 )

− f−s−t(x, A(s)
2 + 1, E(t)

1 − 1,x, A(s)
1 , E

(t)
2 )). (17)

Theorem 6. Let Ai = (A(i)
1 , A

(i)
2 ) and Ei = (E(i)

1 , E
(i)
2 ) be lattice points satisfying

A
(1)
1 ≤ A(2)

1 ≤ · · · ≤ A(r)
1 , A

(1)
2 − 1 ≥ A(2)

2 − 2 ≥ · · · ≥ A(r)
2 − r, (18)

E
(1)
1 + 1 ≤ E(2)

1 + 2 ≤ · · · ≤ E(r)
1 + r, E

(1)
2 ≥ E(2)

2 ≥ · · · ≥ E(r)
2 , (19)

and (16). The generating function
∑
P wx,x(P) where the sum is over all families

P = (P1, . . . , Pr) of non-crossing lattice paths Pi : Ai → Ei, such that P1 does not
cross the line x = y, is

det
1≤s,t≤r

(fs−t(x, A
(s)
1 + 1, E(t)

1 ,x, A(s)
2 , E

(t)
2 − 1)

− f−s−t+2(x, A(s)
2 , E

(t)
1 ,x, A(s)

1 + 1, E(t)
2 − 1)). (20)

Clearly, Theorems 1,2,3 result from Theorems 4,5,6, respectively, by “unshifting”,
i.e. by replacing A(i)

1 by A(i)
1 − i+ 1, A(i)

2 by A(i)
2 + i− 1, etc., setting xi = yi = z and

extracting the coefficient of z2K in (15), (17), and (20), respectively.
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3. The proofs.

Proof of Theorem 4. In the proof we are also considering skew two-rowed arrays. Let
j > 0. We say that the two-rowed array P is of the type j if P has the form

a−j+1 a−j+2 . . . a−1 a0 a1 . . . ak
b1 . . . bk

for some k ≥ 0. We say that P is of the type −j if P has the form

a1 . . . ak
b−j+1 b−j+2 . . . b−1 b0 b1 . . . bk

for some k ≥ 0. Note that the placement of indices is chosen such that non-positive
indices can occur only in one row of P , while the positive indices occur in both rows
of P . We extend the weight function wx,y to skew arrays in the obvious way,

wx,y(P ) =
∏
i

xai
∏
j

ybj .

First we give the combinatorial interpretation of the determinant (15) in terms of
two-rowed arrays. It is easy to see that (15) is the generating function∑

(P,σ)

sgnσ wx,y(P), (21)

where the sum is over all pairs (P, σ) of permutations σ in Sr, the symmetric group
of order r, and families P = (P1, . . . , Pr) of two-rowed arrays, Pi being of type σ(i)− i
and the bounds for the entries of Pi being as follows,

A
(σ(i))
1 ≤ . . . a

(i)
ki
≤ E(i)

1 − 1

A
(σ(i))
2 + 1 ≤ . . . b

(i)
ki

≤ E(i)
2

, (22)

i = 1, . . . , r.
The outline of the proof is as follows. Next we extend the notion of being non-

crossing to two-rowed arrays. We then show that in the sum (21) all contributions
corresponding to pairs (P, σ), where P is a crossing family (to be explained below)
of two-rowed arrays, cancel. This is done by constructing a weight-preserving, sign-
reversing involution on those pairs. Finally we show that in a pair (P, σ) with σ 6= id
the family P must be crossing. This establishes that only pairs (P, id) where P is a
non-crossing family of two-rowed arrays contribute to the sum (21). But these pairs
exactly correspond to the families of non-crossing paths under consideration, hence
Theorem 4 would be proved.

Let M1 and M2 be two-rowed arrays, given by

M1 : A1 ≤ . . . ak ≤ E1 − 1
A2 + 1 ≤ . . . bk ≤ E2
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and
M2 : B1 ≤ . . . cl ≤ F1 − 1

B2 + 1 ≤ . . . dl ≤ F2
,

respectively. By definition we set ak+1 := E1, we set b0 := A2 in case that the
sequence . . . b0 is empty, and we set c0 := B1 − 1 in case that the sequence . . . c0 is
empty. We say that (aI , dJ) is a crossing point of M1 and M2 if

cJ < aI (23a)

bI−1 < dJ (23b)

and
1 ≤ I ≤ k + 1, 0 ≤ J ≤ l. (23c)

These inequalities should be understood to hold only if all variables are defined. In
particular, if the sequence . . . d0 is empty the inequality (23b) does not make sense
for J = 0. However, if the sequence . . . c0 is empty the inequality (23a) makes sense
because of the conventional assignment for c0 above.

Let (P, σ) be a pair under consideration for the sum (21). Besides, we assume that
P contains two two-rowed arrays Pi and Pi+1 with consecutive indices that have a
crossing point. In the sequel two-rowed arrays with consecutive indices will be called
neighbouring two-rowed arrays. A pair (P, σ) where P contains neighbouring two-
rowed arrays with a crossing point will be called crossing. Otherwise it will be called
non-crossing. We are going to construct a weight-preserving (with respect to the
weight function wx,y) and sign-reversing (with respect to sgnσ) involution on crossing
pairs (P, σ). Consider all crossing points of neighbouring arrays. Among these points
choose those with maximal x-coordinate, and among all those choose the crossing
point with maximal y-coordinate. Denote this crossing point by S. Let i be minimal
such that S is a crossing point of Pi and Pi+1. Let Pi = (a | b) = (. . . aki | . . . bki) and
Pi+1 = (c | d) = (. . . cki+1 | . . . dki+1). Recall that Pi is of type σ(i)− i and Pi+1 is of
type σ(i+ 1)− i−1 and that the bounds of the entries in Pi and Pi+1 are determined
by (22). By (23), S being a crossing point of Pi and Pi+1 means that there exist I
and J such that Pi looks like

A
(σ(i))
1 ≤ . . . aI−1 aI . . . aki ≤ E(i)

1 − 1
A

(σ(i))
2 + 1 ≤ . . . bI−1 bI . . . bki ≤ E(i)

2

, (24)

Pi+1 looks like

A
(σ(i+1))
1 ≤ . . . . . . . . cJ cJ+1 . . . cki+1 ≤ E(i+1)

1 − 1
A

(σ(i+1))
2 + 1 ≤ . . . dJ−1 dJ . . . . . . . . dki+1 ≤ E(i+1)

2

, (25)

S = (aI , dJ),

cJ < aI (26a)

bI−1 < dJ (26b)
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and
1 ≤ I ≤ ki + 1, 0 ≤ J ≤ ki+1. (26c)

Because of the construction of S the indices I and J are maximal with respect to
(26a,b,c).

We map (P, σ) to the pair (P̄, σ ◦ (i, i + 1)) ((i, i + 1) denotes the transposition
exchanging i and i+1), where P̄ = (P1, . . . , Pi−1, P̄i, P̄i+1, Pi+2, . . . , Pr) with P̄i being
given by

. . . cJ aI . . . aki

. . . dJ−1 bI . . . bki
, (27a)

P̄i+1 being given by
. . . . . . . aI−1 cJ+1 . . . cki+1

. . . bI−1 dJ . . . . . . . . dki+1

. (27b)

First of all, this operation is well-defined, i.e., all the rows in (27a) and (27b) are
strictly increasing. To see this we have to check cJ < aI , dJ−1 < bI , aI−1 < cJ+1,
and bI−1 < dJ . This is obvious for the first and last inequality, because of (26a) and
(26b). As for the second inequality, let us suppose dJ−1 ≥ bI . Then, by (26a), we have
cJ < aI < aI+1 and bI ≤ dJ−1 < dJ . This means that (aI+1, dJ) is a crossing point of
Pi and Pi+1, with an x-coordinate larger than that of S = (aI , dJ), contradicting the
“maximality” of S. Similarly, if we assume aI−1 ≥ cJ+1, we have cJ+1 ≤ aI−1 < aI
and, by (26b), bI−1 < dJ < dJ+1. This means that (aI , dJ+1) is a crossing point of
Pi and Pi+1, with a y-coordinate larger than that of S = (aI , dJ), again contradicting
the “maximality” of S.

We claim that (P̄, σ◦(i, i+1)) is again a pair under consideration for the generating
function (21). That is, we claim that P̄i is of type (σ ◦ (i, i+ 1))(i)− i = σ(i+ 1)− i,
that P̄i+1 is of type (σ ◦ (i, i+ 1))(i+ 1)− i− 1 = σ(i)− i− 1, and that the bounds
for the entries of P̄i are given by

A
(σ(i+1))
1 ≤ . . . cJ aI . . . aki ≤ E(i)

1 − 1
A

(σ(i+1))
2 + 1 ≤ . . . dJ−1 bI . . . bki ≤ E(i)

2

, (28)

and that those for P̄i+1 are given by

A
(σ(i))
1 ≤ . . . . . . . . aI−1 cJ+1 . . . cki+1 ≤ E(i+1)

1 − 1
A

(σ(i))
2 + 1 ≤ . . . bI−1 dJ . . . . . . . . dki+1 ≤ E(i+1)

2

. (29)

The claims concerning the types of P̄i and P̄i+1 are trivial. Therefore let us consider
the bounds. We distinguish between several cases.

(a) If 2 ≤ I ≤ ki and 2 ≤ J ≤ ki+1 − 1 there is no problem, since then the
sequences . . . aI−1, aI . . . aki , . . . bI−1, bI . . . bki , . . . cJ , cJ+1 . . . cki+1 , . . . dJ−1,
dJ . . . dki+1 are all nonempty and therefore the constraints in (28) and (29)
obviously hold.

(b) If I = 1 and the sequence . . . a0 is empty we have to prove cJ+1 ≥ A
(σ(i))
1 .

Suppose a1 > cJ+1. The inequality (26b) implies b0 < dJ < dJ+1 therefore
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the point (a1, dJ+1) would also be a crossing point of Pi and Pi+1 which
violates the maximality of J with respect to (26a,b,c). Hence, by (24) we
have cJ+1 ≥ a1 ≥ A(σ(i))

1 .
(c) If I = 1 and the sequence . . . b0 is empty we have to prove dJ ≥ A

(σ(i))
2 + 1.

In this case the assignment b0 := A
(σ(i))
2 applies. Because of (26b) we have

A
(σ(i))
2 = b0 < dJ .

(d) If J = 0 and the sequence . . . c0 is empty we have to prove aI ≥ A(σ(i+1))
1 . In

this case the assignment c0 := A
(σ(i+1))
1 − 1 applies. Because of (26a) we have

A
(σ(i+1))
1 − 1 = c0 < aI .

(e) If J = 1 and the sequence . . . d0 is nonempty nothing has to be proved.
(f) If J = 1 and the sequence . . . d0 is empty we have to prove bI ≥ A(σ(i+1))

2 + 1.
Suppose d1 > bI . The inequality (26a) implies cJ < aI < aI+1 therefore
the point (aI+1, dJ) would also be a crossing point of Pi and Pi+1 which
violates the maximality of I with respect to (26a,b,c). Hence, by (25) we have
bI ≥ d1 ≥ A(σ(i+1))

2 + 1.
(g) If I = ki + 1 we have to prove cJ ≤ E(i)

1 − 1 and dJ−1 ≤ E(i)
2 . In this case the

assignment aki+1 := E
(i)
1 applies. By (26a) we have cJ < aki+1 = E

(i)
1 . By

(25) and (14), we have dJ−1 < dJ ≤ E(i+1)
2 ≤ E(i)

2 + 1.
(h) If J = ki+1 we have to prove aI−1 ≤ E

(i+1)
1 − 1. By (24) and (14) we have

aI−1 ≤ E(i)
1 − 1 ≤ E(i+1)

1 − 1.

Obviously the map (27) is weight-preserving with respect to wx,y and reverses the
signs of the associated permutations.

Next we claim that the map (27) is an involution. To establish this claim it suffices
to show that S is also a crossing point of P̄i and P̄i+1, and also maximal in the sense
explained above. Once this is shown it easily seen that an application of our mapping
(27) to (P̄, σ◦(i, i+1)) gives (P, σ) again. Suppose that P̄i = (ā | b̄) = (. . . āk̄i | . . . b̄k̄i)
and P̄i+1 = (c̄ | d̄) = (. . . c̄k̄i+1

| . . . d̄k̄i+1
). Let Ī and J̄ be chosen such that āĪ = aI

and d̄J̄ = dJ (compare with (27)). Then we have b̄Ī−1 = dJ−1 and c̄J̄ = aI−1.
Because of aI−1 < aI and dJ−1 < dJ we conclude c̄J̄ < āĪ and b̄Ī−1 < d̄J̄ . By (23)
this is equivalent to saying that (āĪ , d̄J̄) = (aI , dJ) = S is a crossing point of P̄i and
P̄i+1. (These arguments also hold in the “degenerate” cases I = 1, J = 0, 1, etc.)
That S is also maximal for P̄ follows from the fact that when applying the map (27)
to Pi and Pi+1 nothing was changed to the right of aI , bI , dJ , and cJ+1.

Finally we have to show that, given a pair (P, σ), P = (P1, . . . , Pr), σ 6= id, there
exist neighbouring two-rowed arrays Pi and Pi+1 having a crossing point. If σ 6= id
then there must exist an i with σ(i + 1) < i + 1. Without loss of generality we may
assume that i is minimal with this property. Then we have σ(i) ≥ i. Besides, from
σ(i) ≥ i ≥ σ(i+ 1) it follows that σ(i) > σ(i+ 1). Let Pi = (a | b) = (. . . aki | . . . bki)
and Pi+1 = (c | d) = (. . . cki+1 | . . . dki+1). Because of σ(i)− i ≥ 0 the sequence . . . b0
is empty, hence the assignment b0 := A

(σ(i))
2 applies. Because of σ(i+ 1)− i− 1 < 0

the sequence . . . c0 is empty, hence the assignment c0 := A
(σ(i+1))
1 −1 applies. Because
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of σ(i) > σ(i + 1) and (13) the inequalities c0 = A
(σ(i+1))
1 − 1 ≤ A

(σ(i))
1 < a1 and

b0 = A
(σ(i))
2 ≤ A

(σ(i+1))
2 < d0 hold. By (23) this means that (a1, d0) is a crossing

point of Pi and Pi+1. �

Remark. The operation (24)/(25) → (28)/(29) that is the backbone of the preceding
proof and is an analogue of the Gessel–Viennot involution in the context of two-rowed
arrays is inspired by [10, operation (5.3.6)/(5.3.10)].

Proof of Theorem 5. Again we work with families of two-rowed arrays. This time
we consider triples (P, σ, η), where σ is a permutation in Sr, η ∈ {−1, 1}r, and
P = (P1, . . . , Pr) is a family of two-rowed arrays, with Pi being of type ηiσ(i)− i and
the bounds of Pi being given by

A
(σ(i))
1 ≤ . . . ≤ E(i)

1 − 1
A

(σ(i))
2 + 1 ≤ . . . ≤ E(i)

2

, for η = 1, (30a)

respectively
A

(σ(i))
2 + 1 ≤ . . . ≤ E(i)

1 − 1
A

(σ(i))
1 ≤ . . . ≤ E(i)

2

, for η = −1. (30b)

Define sgn η :=
∏r
i=1 ηi. It is easy to see that (17) is the generating function

∑
(P,σ,η)

sgn η sgnσ wx,x(P) (31)

where the sum is over all triples which were described above.
We adopt the notion of “crossing of neighbouring arrays” from the previous proof.

In addition, we have to consider crossings of P1 with the line x = y. Let P1 = (a | b),
or with bounds included

L1 ≤ . . . . . . . . aI aI+1 . . . ak1 ≤ E(1)
1 − 1

L2 ≤ . . . bI−1 bI . . . . . . . . bk1 ≤ E(1)
2

. (32)

Recall that L1 and L2 are A(σ(1))
1 + 1 and A(σ(1))

2 or the other way round, depending
on whether η1 = 1 or η = −1. Let us, by convention, set a0 := L1 − 1. We say
that (bI , bI) is a crossing point of P1 and x = y if I ≥ 0 and aI < bI . Again it is
understood that this inequality only holds if both aI and bI are defined. In particular,
this means that in case I = 0 the inequality only makes sense if the sequence . . . a0

is empty (in which case the assignment a0 := L1 − 1 applies). We say that a family
P = (P1, . . . , Pr) is a crossing family if either their is a crossing of neighbouring arrays
or their is a crossing of P1 and x = y.

Similarly to the proof of Theorem 4 we shall show that in the sum (31) all contribu-
tions corresponding to triples (P, σ, η) where P is a crossing family of two-rowed ar-
rays cancel by constructing a weight-preserving (with respect to wx,x), sign-reversing
(with respect to sgn η sgnσ) involution on those triples. Finally we show that in a
triple (P, σ, η) with (σ, η) 6= (id, (1, 1, . . . , 1)) the family P must be crossing. This
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establishes that only triples (P, id, (1, 1, . . . , 1)) where P is a non-crossing family of
two-rowed arrays contribute to the sum (31). But these triples exactly correspond
to the families of non-crossing paths under consideration, hence Theorem 5 would be
proved.

Let (P, σ, η) be a triple where P = (P1, . . . , Pr) is a crossing family of two-rowed
arrays. Consider all crossing points of neighbouring arrays and all crossing points of
P1 and x = y. Among these points choose those with maximal x-coordinate, and
among all those choose the crossing point with maximal y-coordinate. Denote this
crossing point by S. If S is a crossing point of neighbouring arrays let i be minimal
such that S is a crossing point of Pi and Pi+1. Map (P, σ, η) to (P̄, σ◦(i, i+1), η(i,i+1)),
where η(i,i+1) = (η1, . . . , ηi+1, ηi, . . . , ηr) and P̄ = (. . . , P̄i, P̄i+1, . . . ) with P̄i and P̄i+1

being constructed by (28) and (29), respectively, as in the proof of Theorem 4. Note
that sgn η(i,i+1) sgn

(
σ ◦ (i, i+1)

)
= − sgn η sgnσ so that the map indeed changes the

sign of the corresponding terms in the generating function (31).
If S is no crossing point of neighbouring arrays, then it has to be a crossing point

of P1 and x = y. In this case we map (P, σ, η) to the triple (P̄, σ, η(1)) where η(1) =
(−η1, η2, . . . , ηr) and P̄ = (P̄1, P2, . . . , Pr) with P̄1 being constructed as follows. Let
P1 be given by (32) and let I be the index such that S = (bI , bI). Then P̄1 is defined
by

L2 ≤ . . . . . bI−1 aI+1 . . . ak1 ≤ E(1)
1 − 1

L1 ≤ . . . aI bI . . . . . . . . bk1 ≤ E(1)
2

. (33)

To check that this is well-defined we have to verify bI−1 < aI+1. In fact, if we assume
bI−1 ≥ aI+1, we have aI+1 < bI+1 (because otherwise aI+1 ≥ bI+1 > bI > bI−1, which
is a contradiction to our assumption). But this means that (bI+1, bI+1) is a crossing
point of P1 and x = y with larger coordinates than S = (bI , bI), which contradicts
the “maximality” of S. Also for being well-defined, we have to check L1 ≤ b0 in case
that I = 0 and . . . a0 is empty. But in this case the assignment a0 := L1 − 1 applies.
And, since I = 0 we have a0 < b0. But this is exactly equivalent to L1 ≤ b0.

Next we note that the type of P̄1 is −η1σ(1) + 1− 2 = −η1σ(1)− 1 = η
(1)
1 σ(1)− 1.

Trivially, sgn η(1) = − sgn η so also this mapping changes the sign of the corresponding
terms in the generating function (31). Therefore (P̄, σ, η(1)) is indeed again a triple
under consideration for the generating function (31).

That (bI , bI) is also a crossing point of P̄1 is obvious. It is also maximal in the
sense explained above since the entries to the right of aI+1 and bI were not changed.
Therefore, applying the map again to the triple (P̄, σ, η(1)) gives (P, σ, η).

Finally we have to show that if (σ, η) 6= (id, (1, 1, . . . , 1)) in the triple (P, σ, η) the
family P must be a crossing family. Let η 6= (1, 1, . . . , 1). Let i be minimal with
ηi = −1. If i = 1 then either there is an I ≥ 1 with aI < bI , i.e. a crossing of
P1 and x = y. Or for all I ≥ 1 there holds aI ≥ bI . By (13) and (16) we have
b0 ≥ L2 + σ(1) = A

(σ(1))
1 + σ(1) ≥ A

(1)
1 + 1 > A

(1)
2 ≥ A

(σ(1))
2 = L1 − 1 = a0. Hence

(b0, b0) is a crossing of P1 and x = y. (Note that b−1 and b0 exist since for η1 = −1
the type of P1 is −σ(1)− 1 ≤ −2.) Now suppose that i ≥ 2. In addition assume that
there is no crossing point of neighbouring arrays. We claim that again there must be
a crossing point of P1 and x = y. Because of ηi = −1, Pi is of the type −σ(i)− i. Let
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Pi−1 = (a | b) and Pi be given by

A
(σ(i))
2 + 1 ≤ c1 . . . cki ≤ E(i)

1 − 1
A

(σ(i))
1 ≤ . . . d0 d1 . . . dki ≤ E(i)

2

.

By assumption Pi and Pi−1 are non-crossing. Because . . . c0 is empty the assignment
c0 := A

(σ(i))
2 applies. By (13) there hold the inequalities d0 ≥ A(σ(i))

1 + σ(i) + i− 1 ≥
A

(1)
1 + 1 + i − 1 > A

(1)
2 ≥ A

(σ(i))
2 = c0. Now let j be maximal with aj ≤ c0. Then

there holds c0 < aj+1. If bj < d0 then (aj+1, d0) would be a crossing point of Pi−1

and Pi which contradicts our assumptions. Hence we have aj ≤ c0 < d0 ≤ bj . The
same argument is repeated with Pi−2 and Pi−1, etc., until we arrive at P1. Obviously,
this gives us a crossing point of P1 and x = y, as was claimed.

If σ 6= id and η = (1, 1, . . . , 1), the same arguments as in the proof of Theorem 4
apply to establish that there must be a crossing of neighbouring arrays. �

Remark. The operation (32) → (33) that is an analogue of the reflection principle
(see e.g. [3, p. 22]) for two-rowed arrays is inspired by [13, (2.12); 10, (5.2.4)].

Sketch of Proof of Theorem 6. Here we encode paths by their EN-turns. For example
the two-rowed array representation of the path in Figure 1 would be

2 5 6
1 3 4 ,

or with bounds included,
2 ≤ 2 5 6 ≤ 6
−1 ≤ 1 3 4 ≤ 5 .

For the combinatorial interpretation of the determinant (20) we consider triples
(P, σ, η), where σ is a permutation in Sr, η ∈ {−1, 1}r, and P = (P1, . . . , Pr) is
a family of two-rowed arrays, with Pi being of type ηiσ(i)− i+ 1− ηi and the bounds
of Pi being given by

A
(σ(i))
1 + 1 ≤ . . . ≤ E(i)

1

A
(σ(i))
2 ≤ . . . ≤ E(i)

2 − 1
, for η = 1, (34a)

respectively
A

(σ(i))
2 ≤ . . . ≤ E(i)

1

A
(σ(i))
1 + 1 ≤ . . . ≤ E(i)

2 − 1
, for η = −1. (34b)

It is easy to see that (20) is the generating function

∑
(P,σ,η)

sgn η sgnσ wx,x(P) (35)

where the sum is over all triples which were described above.
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Since now we are considering EN-turns, we have to redefine what we mean by a
crossing of two-rowed arrays and a crossing of a two-rowed array and x = y. Let M1

and M2 be two-rowed arrays, given by

M1 : A1 + 1 ≤ . . . ak ≤ E1

A2 ≤ . . . bk ≤ E2 − 1

and
M2 : B1 + 1 ≤ . . . cl ≤ F1

B2 ≤ . . . dl ≤ F2 − 1 ,

respectively. By definition we set dl+1 := F2, we set c0 := B1 in case that the sequence
. . . c0 is empty, and we set b0 := A2 − 1 in case that the sequence . . . b0 is empty.
We say that (aI , dJ) is a crossing point of M1 and M2 if

cJ−1 < aI (36a)

bI < dJ (36b)

and
0 ≤ I ≤ k, 1 ≤ J ≤ l + 1. (36c)

To define crossings of a two-rowed array M with x = y, let M be given by

L1 ≤ . . . ak1 ≤ U1

L2 ≤ . . . bk1 ≤ U2
.

By convention we set bk1+1 := U2 +1. The point (bI+1, bI+1) is called a crossing point
of M and x = y if 1 ≤ I ≤ k1 + 1 and aI < bI+1. Note that if M1, M2, M correspond
to lattice paths (by the EN-turn encoding) P1, P2, P , respectively, the first definition
exactly is equivalent to P1 and P2 having a crossing, while the second is equivalent
to P and x = y having a crossing.

The arguments are now completely analogous to those in the proof of Theorem 5.
So we shall not give all the details. Again we construct a weight-preserving (with
respect to wx,x), sign-reversing (with respect to sgn η sgnσ) involution on triples
(P, σ, η) where P is a crossing (in the new sense) family. Also here we have to
distinguish between two cases. Either there is a crossing of neighbouring paths, Pi
and Pi+1 say. Or else their is a crossing of P1 and x = y. In the first case assume
that Pi is given by

. . . aI−1 aI . . . . . . .
. . . . . . . . bI bI+1 . . .

, (37a)

and Pi+1 be given by
. . . cJ−1 cJ . . .
. . . dJ−1 dJ . . .

. (37b)

As in the proof of Theorem 5 it is assumed that S = (aI , dJ) is a “maximal” crossing
point, and in particular a crossing point of Pi and Pi+1. Then we map (P, σ, η) to
(P̄, σ ◦ (i, i+ 1), η(i,i+1)) where P = (P1, . . . , P̄i, P̄i+1, . . . , Pr) with P̄i being given by

. . . cJ−1 aI . . . . . . .
. . . . . . . . dJ−1 bI+1 . . .

, (38a)
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and P̄i+1 being given by
. . . aI−1 cJ . . .
. . . bI dJ . . .

. (38b)

In the second case let P1 be given by

. . . aI aI+1 . . .

. . . bI bI+1 . . .
. (39)

Here we assume that S = (bI+1, bI+1) is a “maximal” crossing point of P1 and x = y.
Then we map (P, σ, η) to (P̄, σ, η(1)) where P = (P̄1, P2, . . . , Pr) with P̄1 being given
by

. . . bI aI+1 . . .

. . . aI bI+1 . . .
. (40)

It can be shown that this mapping is a weight-preserving, sign-reversing involution
and that “non-crossing triples” can only occur for (σ, η) = (id, (1, 1, . . . , 1)). These
exactly correspond to the families of non-crossing paths under consideration. �

Remark. The operation (37a)/(37b) → (38a)/(38b) that is another analogue of the
Gessel–Viennot involution in the context of two-rowed arrays is again inspired by
[10, operation (5.3.6)/(5.3.10)]. (In fact, it is a simple translation of the operation
(24)/(25) → (28)/(29)). The operation (39) → (40) that is another analogue of the
reflection principle (see e.g. [3, p. 22]) for two-rowed arrays is inspired by [13, (2.11);
10, (5.2.24)].
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