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In this paper, we describe a study into the explicit construction of irreducible
representations of the Hecke algebra Hn(q) of type An−1 in the non-generic case where
q is a root of unity. The approach is via the Specht modules of Hn(q) which are
irreducible in the generic case, and possess a natural basis indexed by Young tableaux.
The general framework in which the irreducible non-generic Hn(q)-modules are to
be constructed is set up and exploited in the case of two-part partitions. For such
partitions, we obtain the composition series of the Specht modules, describe a basis
for each irreducible module in terms of a subset of the set of standard tableaux, and
detail an algorithm by which their explicit matrix representations may be calculated.
Plentiful examples are given. Full proofs will be given elsewhere.

1 Introduction and notation

The Hecke algebra Hn(q) (of type An−1) is the unital associative algebra over
C , generated by hi, i = 1, 2, . . . , n− 1, subject to the relations:

hihi+1hi = hi+1hihi+1;
hihj = hjhi for |i− j| > 1;
h2
i = (q − 1)hi + q.

(1)
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The parameter q ∈ C will be permitted to take any non-zero value. It is
said to be generic if q = 1 or qp 6= 1 for p = 2, 3, 4, . . .. Otherwise, if q is a
primitive pth root of unity for p ≥ 2, it is said to be non-generic. In this latter
case, [p]q = 0 where we define [x]q = 1 + q + q2 + · · ·+ qx−1. In addition, define
[x]q! = [x]q[x− 1]q · · · [2]q.

When q = 1, Hn(q) may be identified with the group algebra CSn of the
symmetric group on n symbols, through identifying each hi with the simple
transposition si = (i, i+ 1) ∈ Sn.

If w = si1si2 · · · sik and w ∈ Sn cannot be expressed as a shorter product of
the generators si, then si1si2 · · · sik is said to be a reduced expression for w and
the value of k is the length l(w) of w. Thereupon, the relations (1) imply that
the map h : CSn → Hn(q) for which h(si) = hi and h(ww′) = h(w)h(w′) for
w,w′ ∈ Sn satisfying l(ww′) = l(w)+ l(w′), and extended linearly, is well defined.
It follows that if l(w) = k and w = si1si2 · · · sik , then h(w) = hi1hi2 · · ·hik .
Furthermore, a basis of Hn(q) is provided by {h(w) : w ∈ Sn}.

It may be shown that if q is generic then Hn(q) is isomorphic to CSn [DJ86,
Wn88] and the representation theory of Hn(q) is much the same as that of Sn.
In particular, the inequivalent irreducible representations of Hn(q) are indexed
by partitions λ of n. That is, by finite integer sequences λ = (λ1, λ2, . . . , λr) for
which λ1 + λ2 + · · ·+ λr = n and λ1 ≥ λ2 ≥ · · · ≥ λr > 0. A partition for which
no part λi is repeated more than p−1 times is said to be p-regular. In Section 2,
an explicit construction of the irreducible modules of Hn(q) with q generic will
be described. This generalisation of the well known Specht module construction
(see [JK81]) was first described in [KWy92], and is based on the use of Young
diagrams, Young tableaux and q-analogues of Young symmetrisers. The Young
diagram F λ associated with the partition λ = (λ1, λ2, . . . , λr) is a left-adjusted,
top-adjusted array of square boxes such that the ith row (counting from the top)
contains λi boxes. For instance, if λ = (5, 3, 2, 2), then

F λ = . (2)

Filling (or replacing) each of the n boxes of F λ with elements of {1, 2, . . . , n}
so that no element appears more than once, yields what is known as a Young
tableau. Of the possible n! tableaux of a given shape, those for which the entries
are increasing across each row and down each column are known as standard
tableaux. Examples may be found at (16), (30) and (31). That particular stan-
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dard tableau of shape λ for which the entries increase down first the leftmost
column and then down successive columns taken left to right is denoted tλ−. For
example,

t
(5,3,2,2)
− =

1 5 9 1112
2 6 10
3 7
4 8

. (3)

The total number of standard tableaux of shape λ is equal to fλ, the dimension
of the irreducible representation of Sn (and Hn(q) with q generic) labelled by
λ (see [JK81]). In fact, the Specht module construction enables a basis to be
identified naturally with the set of standard tableaux.

2 The Specht modules

If λ is a partition of n, the Specht module Sλ of Hn(q) is defined to be the
linear span of the vectors vtλ , indexed by Young tableaux tλ and subject to
certain relations (which will be defined below). The natural action of Hn(q) on
these vectors is defined in the following way. We say that the entry i precedes
j in tλ if i occurs before j on reading the entries of tλ down the first and then
successive columns. If xλ is identical to tλ apart from the transposition of i and
i+ 1, then hi acts on vtλ as follows:

hivtλ =

{
vxλ if i precedes i+ 1 in tλ;
qvxλ + (q − 1)vtλ if i+ 1 precedes i in tλ.

(4)

It is possible to express every vzλ in terms of standard tableaux, by means of
the following two types of relation:

1. Column relations. Entries within a column may be transposed, if the
corresponding vector is multiplied by −1. Thus if xλ differs from zλ only in
that a single pair of entries within a column are transposed then:

vzλ = −vxλ . (5)

For example (denoting vtλ by tλ for typographical reasons),

1 8 5 10 4 12
6 11 3
9 2 7
13

= −
1 8 5 10 4 12
6 2 3
9 11 7
13

= −
1 2 3 10 4 12
6 8 5
9 11 7
13

. (6)
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2. Garnir relations. Assume that zλ is such that its entries increase down
each column. If zλ is not standard then an adjacent pair of entries exists
with that on the left greater than that on the right. Consider these two
entries together with all those below the left one and all those above the
right one. For example, we could consider the highlighted entries in:

1 2 3 10 4 12
6 8 5
9 11 7
13

. (7)

Now form all possible tableaux tλ by permuting these entries in all ways
such that the permuted entries are increasing down the portions of each of
the two columns being considered. The Garnir relation is then the following
expression in which the sum is over all such tableaux:

(−q)l(wzλ )
∑
tλ

(−q)−l(wtλ )vtλ = 0, (8)

where wtλ ∈ Sn maps tλ− to tλ. The above example gives the Garnir relation:

1 2 3 10 4 12
6 8 5
9 11 7
13

− q
1 2 3 10 4 12
6 5 8
9 11 7
13

+ q2

1 2 5 10 4 12
6 3 8
9 11 7
13

+q2

1 2 3 10 4 12
6 5 11
9 8 7
13

− q3

1 2 5 10 4 12
6 3 11
9 8 7
13

+ q4

1 2 8 10 4 12
6 3 11
9 5 7
13

= 0.

(9)

As in the example above, these relations do not necessarily immediately ex-
press an arbitrary vtλ in terms of standard tableaux. However, it may be shown
through employing a suitable order on the set of tableaux [JK81], that repeated
application of the column and Garnir relations enables any term to be rendered
in terms of standard tableaux in a finite number of steps. This completes the
construction of the irreducible Specht module Sλ of Hn(q) since the number
of standard tableaux is equal to the dimension of the representation of Hn(q)
indexed by λ and consequently,

{vtλ : tλ is standard} (10)

is a basis for Sλ.
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As an example, consider representing h1 ∈ H5(q) in the Specht module S(3,2),
by acting on each vt(3,2) for which t(3,2) is standard (once more vtλ is written as
tλ):

h1
1 3 5
2 4 = 2 3 5

1 4 = − 1 3 5
2 4 ,

h1
1 2 5
3 4 = 2 1 5

3 4 = q
1 2 5
3 4 − q2 1 3 5

2 4 ,

h1
1 3 4
2 5 = 2 3 4

1 5 = − 1 3 4
2 5 ,

h1
1 2 4
3 5 = 2 1 4

3 5 = q
1 2 4
3 5 − q2 1 3 4

2 5 ,

h1
1 2 3
4 5 = 2 1 3

4 5 = q 1 2 3
4 5 − q2 1 4 3

2 5 = q 1 2 3
4 5 − q3 1 3 4

2 5 + q4 1 3 5
2 4 .

Here, column relations have been used in the first and third calculations, and
Garnir relations have been used in the second, fourth and last (twice), to express
each result in terms of the standard tableaux. Consequently, in the representation
labelled by the partition (3, 2), h1 is mapped to the matrix (where zeros are
denoted by dots): 

−1 −q2 . . q4

. q . . .

. . −1 −q2 −q3

. . . q .

. . . . q

 . (11)

The matrices representing the generators hi of Hn(q) in each irreducible repre-
sentation for n ≤ 5 given in [KWy92] have been produced in a similar way.

3 The Young symmetriser and its annihilators

For each entry a of tλ− which is not at the bottom of a column, define the
column element:

Cλ
a = 1 + ha. (12)

Its action on vtλ− gives rise to a Column relation (cf. (5)):

Cλ
a vtλ− = 0. (13)

The Garnir element Gλ
a is defined for each a which is not at the end of a

row of tλ−, through first letting d be the entry to the right of a, b be the entry
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at the bottom of the column containing a, and c ( = b+ 1) the entry at the top
of the column containing d in tλ−. With Wij the subgroup of Sn permuting only
{i, i+ 1, . . . , j}, let Gλa be a set of left coset representatives for Wab×Wcd in Wad

chosen so that each representative is of minimal length in its coset (it is unique).
Then let [KWy92]:

Gλ
a = ql

∑
d∈Gλa

(−q)−l(d)h(d), (14)

where l is the length of the longest element in Gλa . Its action on vtλ− gives rise to

a Garnir relation (cf. (8)):
Gλ
avtλ− = 0. (15)

It is easily shown that the general column and Garnir relations of Section 2 are
a consequence of (13) and (15). These properties themselves arise by identifying
vtλ− with the q-analogue Y λ(q) of the Young symmetriser. Y λ(q) was originally
defined in [DJ86, Gy86] and cast in a form suitable for the current purposes in
[KWy92, BKW93]. However, as is seen, only its 2n− r− λ1 annihilators Ca and
Ga are required in the construction of the Specht module Sλ. Thus Sλ may be
defined as the free module generated by a non-zero vector (say vtλ−) subject to
(13) and (15). This viewpoint of Sλ will be utilised in what follows.

To illustrate it, consider λ = (6, 3, 3, 1), for which:

tλ− =

1 5 8 11 12 13
2 6 9
3 7 10
4

. (16)

Here we have the seven column elements 1 + h1, 1 + h2, 1 + h3, 1 + h5, 1 + h6,
1 + h8 and 1 + h9, each of which annihilates vtλ . There are nine Garnir elements
Gλ
a for a = 1, 2, 3, 5, 6, 7, 8, 11, 12, each of which annihilates vtλ . Typically:

Gλ
6 = q4 − q3h7 + q2h6h7 + q2h8h7 − qh6h8h7 + h7h6h8h7;

Gλ
8 = q3 − q2h10 + qh9h10 − h8h9h10;

Gλ
11 = q − h11.

(17)

In fact Gλ
6vtλ− = 0 gives rise to (9).
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4 Decomposing Sλ at roots of unity

In the generic case when q is not a root of unity, each Specht module Sλ

of Hn(q) is irreducible. However, this is no longer so if q is a root of unity,
although Sλ remains well-defined. For q a primitive pth root of unity, let Dλ

p

be the irreducible Hn(q)-module obtained by factoring out the maximal proper
submodule from Sλ. It is shown in [DJ86] that in this case,

{Dλ
p : λ is p−regular} (18)

is a complete and irredundant set of irreducible Hn(q)-modules. Very little is
known about the Dλ

p or the composition series of Sλ in terms of the Dλ
p except

in a few specific cases (see [Jm90] for n ≤ 10, [CK92] for n ≤ 5, and [JM95] for
various results when p = 2).

The viewpoint developed in the previous section provides a means of tackling
these questions in a quite general way. It relies on the fact that within the set
(18), the module Dµ

p is characterised by the presence of a non-zero vector vtµ−
which is annihilated by the set of column and Garnir elements, Cµ

a and Gµ
a defined

above. This follows because, via (4), vtµ− generates the whole of Sµ, and hence vtµ−
cannot be present in any proper submodule of Sµ. Thus, to determine whether
Sλ is reducible, it is sufficient to prove the existence of a non-zero vµ ∈ Sλ having
the same set of annihilators as vtµ− ∈ Sµ for some p-regular partition µ 6= λ of
n. Conversely, the absence of all such vtµ− would prove Sλ to be irreducible. (In
fact, the results of [DJ86] and [DJ87] considerably restrict the set of µ for which
Dµ
p may occur as a composition factor of Sλ.)

As an example, consider λ = (3, 2). We will show that if p = 3 then

vµ = (1 + h4)v
t
(3,2)
−

= 1 3 5
2 4 + 1 3 4

2 5 (19)

is annihilated by the column and Garnir elements of µ = (4, 1), and hence that

S(3,2) has a submodule D
(4,1)
3 . Since t

(4,1)
− = 1 3 4 5

2 , the column and Garnir ele-

ments of µ = (4, 1), are:

i) (1 + h1);
ii) (q2 − qh2 + h1h2);
iii) (q − h3);
iv) (q − h4).

(20)
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Acting on (19) with each of these, using (4) gives:

i) (1 + h1)vµ = 1 3 5
2 4 + 2 3 5

1 4 + 1 3 4
2 5 + 2 3 4

1 5 = 0;

ii) (q2 − qh2 + h1h2)vµ = q2 1 3 5
2 4 − q 1 2 5

3 4 + 2 1 5
3 4

+q2 1 3 4
2 5 − q 1 2 4

3 5 + 2 1 4
3 5 = 0;

iv) (q − h4)vµ = q
1 3 5
2 4 − 1 3 4

2 5 + q
1 3 4
2 5 − q 1 3 5

2 4 − (q − 1)1 3 4
2 5 = 0;

iii) (q − h3)vµ = q
1 3 5
2 4 − 1 4 5

2 3 + q
1 3 4
2 5 − 1 4 3

2 5

= (1 + q)1 3 5
2 4 + q

1 3 4
2 5 − q 1 3 4

2 5 + q2 1 3 5
2 4 = (1 + q + q2)1 3 5

2 4 = 0,

since if p = 3, then 1 + q + q2 = 0. Therefore, D
(4,1)
3 is a submodule of S(3,2).

It may be shown that the 4-dimensional S(4,1) is irreducible when p = 3, so that
D

(4,1)
3 ≡ S(4,1). Hence D

(3,2)
3 is of dimension 5− 4 = 1. It is spanned by v

t
(3,2)
−

.

In order to generalise the vµ of the previous example, let λ = (λ1, λ2) and
for 1 ≤ x ≤ λ2, define the standard tableau tλx− as follows. After ignoring the
rightmost x boxes of the bottom row and the rightmost λ1− λ2 boxes of the top
row, fill the diagram as for t

(λ2,λ2−x)
− . Then put the entries {2λ2−x+1, . . . , n} in

increasing order across first the remaining x boxes of the bottom row and then
the remaining λ1 − λ2 boxes of the top row. For example:

t
(4,2)
2− = 1 2 5 6

3 4 , t
(7,4)
3− = 1 3 4 5 9 1011

2 6 7 8 , t
(7,4)
1− = 1 3 5 7 9 1011

2 4 6 8 ,

(21)
where the latter set of entries have been highlighted. In addition, define the
standard tableau tλx+ which also has the entries {1, 2, . . . , 2λ2−x} placed exactly

as for t
(λ2,λ2−x)
− . The entries {2λ−x+1, . . . , n} are then placed in increasing order

across first the remaining λ1 − λ2 boxes of the top row and then the remaining
x boxes of the bottom row. For example:

t
(4,2)
2+ = 1 2 3 4

5 6 , t
(7,4)
3+ = 1 3 4 5 6 7 8

2 9 1011 , t
(7,4)
1+ = 1 3 5 7 8 9 10

2 4 6 11 .

(22)

For a ≤ b ≤ m, let Dba,m be the set of left coset representatives of Wb,m in
Wa,m chosen so that each representative is of minimal length in its coset (once
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more, it is unique). Then define:

v(λ1+x,λ2−x) =
∑

d∈D2λ2+1

λ2+i,n

vdtλx− . (23)

(For each of the tableaux in (21), this sum is over all tableaux in which the
highlighted entries have been permuted such that those in the top row are in
increasing order.)

Theorem 1. For λ = (λ1, λ2) and q a primitive pth root of unity, let x =
p − 1 − (λ1 − λ2) mod p and µ = (λ1 + x, λ2 − x). If 0 < x ≤ λ2 then vµ ∈ Sλ
satisfies:

1. Cµ
a v

µ = 0 for all a not at the bottom of a column of tµ−;
2. Gµ

av
µ = 0 for all a not at the end of a row of tµ−.

Furthermore, if vµ is written in terms of standard tableaux then, subject to
[p]q = 0, each polynomial coefficient has a polynomial factor [x]q!. Moreover the
coefficient of vtλx+

in vµ/[x]q! is 1.

This theorem therefore has the consequence that S(λ1,λ2) has a submodule Dµ
p

where µ is determined by p as in the statement of Theorem 1. It may be further
shown that all submodules of S(λ1,λ2) arise in this way, and this enables the full
composition of Sλ in the case of two-part partitions λ to be determined. The
result is best expressed using the notion of a boundary strip (sometimes called
a rim hook [JK81]) of a Young diagram F λ. It is a continuous strip of boxes
obtained by starting at the rightmost end of a row of F λ and, for a number of
steps, recursively passing to the box below if one exists, otherwise passing to the
box to the left. The strip ends at the bottom of any column to the left of, or in,
the column in which it started. The length of the boundary strip is the number
of boxes that it comprises.

Theorem 2. If λ = (λ1, λ2) and q is a primitive pth root of unity then Sλ

is reducible if and only if for some integer k > 0, F λ has a boundary strip of
length kp having at least one, but not more than p− 1 boxes in the second row
(or equivalently, if there exists an integer k > 0 such that λ1 − λ2 + 2 ≤ kp ≤
min{λ1 + 1, λ1 − λ2 + p}). If so, Sλ has an irreducible submodule corresponding
to the diagram obtained by moving all the boxes of the boundary strip into the
top row. The corresponding quotient module is irreducible. That is:

S(λ1,λ2) = D(µ1,µ2)
p +⊃D(λ1,λ2)

p , (24)
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where

(µ1, µ2) = (λ1 + p− 1− (λ1 − λ2) mod p, λ2 − p+ 1 + (λ1 − λ2) mod p) (25)

This theorem is illustrated by the following table, which for various λ = (λ1, λ2)
and p, displays the Young diagram F λ with the appropriate boundary strip
indicated, says whether Sλ is reducible, and shows its composition series.

λ p F λ Sλ Composition

(5, 4) 3 • •
• reducible S(5,4) = D

(6,3)
3 +⊃D(5,4)

3

(6, 4) 3 irreducible S(6,4) = D
(6,4)
3

(7, 4) 3 • • • •
• • reducible S(7,4) = D

(9,2)
3 +⊃D(7,4)

3

(8, 3) 3 irreducible S(8,3) = D
(8,3)
3

(8, 2) 5 irreducible S(8,2) = D
(8,2)
5

(9, 3) 5 • • • • • • •
• • • reducible S(9,3) = D

(12)
5 +⊃D(9,3)

5

Theorem 2 has the consequence that the character χ̃λp of the irreducible rep-
resentation corresponding to Dλ

p may be expressed as a finite sum over the char-
acters χλ(q) of the generic representations of Hn(q) (which themselves may be
calculated using the methods and formulae of [KWy90, KWy92, Rm91, Vj91]).

Theorem 3. If S(λ1,λ2) is reducible then, using the notation of Theorem 2,

χ̃λp =
[λ2/p]∑
j=0

χ(λ1+jp,λ2−jp)(q)−
[µ2/p]∑
j=0

χ(µ1+jp,µ2−jp)(q), (26)

where [x] is the largest integer less than or equal to x.

Of course, this Theorem may be used to give the dimension of Dλ
p in terms of

the dimensions f ν of the irreducible representations of Sn. For example,

dimD
(4,2)
4 = f (4,2) − f (5,1) = 9− 5 = 4;

dimD
(4,2)
2 = f (4,2) + f (6,0) − f (5,1) = 9 + 1− 5 = 5;

dimD
(6,5)
3 = f (6,5) + f (9,2) − f (7,4) − f (10,1) = 132 + 44− 165− 10 = 1.

(27)

In fact, D
(6,5)
3
∼= S(111) (note that (111) is not a 3-regular partition).
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5 The root-standard basis

When q is a primitive pth root of unity, the irreducible Hn(q)-module D(λ1,λ2)
p

may be constructed along lines similar to the construction of the Specht modules.
A basis for D(λ1,λ2)

p may be defined in terms of a certain subset of the set of
standard tableaux. In order to specify this set, let

T (λ1,λ2) = a1 a2 a3 · · · · · aλ1

b1 b2 b3 · · bλ2

, (28)

and say that T λ is s-strip standard at the ith position if:

bi < ai+s−2 (29)

(or if i > λ1 − s+ 2, when of course ai+s−2 is undefined).

Definition 1. If λ = (λ1, λ2) and the positive integers p and k are such that
λ1−λ2 +2 ≤ kp ≤ min{λ1 +1, λ1−λ2 +p}, then T λ is said to be p-root standard
if T λ is standard and either:

1. T λ is kp-strip standard at positions 1, 2, . . . , λ2;

or 2. to the right of the rightmost position of a non-standard kp-strip, there is
a position at which T λ is ((k − 1)p+ 2)-strip standard.

Note that in the important case of k = 1, the second condition here can never
be satisfied because standardness denies 2-strip standardness. In this case, the
tableaux are identical to those defined in [Wn88] for the corresponding represen-
tations.

As an example, consider λ = (7, 4) and p = 3 (so that k = 2). In this case,
the following are 3-root standard:

1 2 3 4 6 8 10
5 7 9 11 ,

1 3 4 5 6 7 11
2 8 9 10 ,

1 2 3 4 5 9 10
6 7 8 11 ; (30)

whereas the following are not 3-root standard:

1 3 5 6 7 8 9
2 4 1011 , 1 3 4 5 6 7 10

2 8 9 11 , 1 2 3 4 5 8 10
6 7 9 11 ; (31)

with the highlighted entries indicating the offending 6-strip.
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Theorem 4. If λ = (λ1, λ2), the dimension of Dλ
p is equal to the number of

p-root standard tableaux of shape λ.

Let dλp denote the dimension of Dλ
p . In the case p = 2, we immediately deduce

from Theorem 1 that if n = λ1 + λ2 is odd then dλ2 = fλ. Furthermore, if n is
even (so that λ1 − λ2 is even and positive), then Definition 1 forces the entry n
to be in the final box of the top row. The other entries are then restricted only
to be in a standard configuration. Thus if λ is 2-regular:

d
(λ1,λ2)
2 =

{
f (λ1,λ2) if n is odd;
f (λ1−1,λ2) if n is even.

(32)

This result was obtained in [JM95] by considering the restriction of the Hn(−1)-
module Dλ

2 to Hn−1(−1). In fact, either of these arguments may be generalised
to yield:

d(λ1,λ2)
p = d(λ1−1,λ2)

p if (λ1 − λ2 + 2) mod p ≡ 0. (33)

6 Explicit D(λ1,λ2)
p

As indicated above, the non-generic Hn(q)-module Dλ
p may be explicitly con-

structed with basis:
{vtλ : tλ is p−root standard}. (34)

As for the Specht module, the explicit construction process relies on being able
to express terms indexed by arbitrary tableaux in terms of those that are in
the basis. For the explicit construction of Dλ

p , the column and Garnir relations
are retained and are supplemented by additional relations. These relations are
described here.

By using the column and Garnir relations, any term may be expressed in
terms of standard tableaux. The rewriting of vtλ with tλ standard in terms of
p-root standard tableaux involves vµ (as defined in (23)) and similar expressions.
So assume that tλ is standard and that i is the largest number such that tλ is
not kp-strip standard at the ith position. Three cases need to be considered.

Case 1. i > λ2 − p. Let x = λ2 − i+ 1 which is the number of boxes in the
second row to the right of, and including, the non strip-standard position. Now
let:

v0 =
1

[x]q!

∑
d∈D2λ2+1

λ2+i,λ2+i+kp−2

vdtλx− =
∑

standard zλ

c(zλ)vzλ , (35)
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where the column and Garnir relations have been used to obtain the sum over
standard tableaux, and where each c(tλ) is a polynomial in q. From Theorem 1,
it can be seen that c(tλ∗+) = 1 here where tλ∗+ has {λ2 + i+ kp− 1, . . . , n} in the

last λ1− i− kp+ 2 boxes of the top row but is otherwise identical to t
(i+kp−2,λ2)
x+ .

Then, as may be shown, the quotienting out of the submodule implies that v0 = 0.
Thereby, an expression for vtλ∗+ is obtained in terms of other tableaux. Acting on

the tableaux that index the vectors in this expression with w ∈ Sn defined such
that tλ = wtλ∗+, may be shown to yield an expression for vtλ ∈ Dλ

p :

vtλ = −
∑

standard zλ 6=tλ∗+

c(zλ)vwzλ . (36)

For λ = (4, 2) and p = 4 (so that k = 1), we will consider a number of examples.
First let

tλ1 = 1 3 4 5
2 6 , (37)

for which i = 2 and x = 1, whereupon

tλx− = 1 3 5 6
2 4 , (38)

tλ∗+ = tλ1 , w = 1 and we require D5
4,6 = {1, s4, s5s4} which permutes the high-

lighted entries. Then on setting this particular case of (35) to zero yields:

1 3 4 5
2 6 = − 1 3 4 6

2 5 − 1 3 5 6
2 4 , (39)

an expression which immediately gives vtλ1 in terms of 4-root standard tableaux.
For the tableau

tλ2 = 1 2 3 4
5 6 , (40)

again i = 2, and x = 1, so that tλx− and tλ∗+ are as above, but now w = s4s3s2.
Thus, it is required to act on the tableaux in the expression (39) with s4s3s2,
which gives:

1 2 3 4
5 6 = − 1 2 3 6

5 4 − 1 2 4 6
5 3 . (41)

Here the resulting terms are not 4-root standard and further processing would
be required to render vtλ2 in terms of 4-root standard tableaux.
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For the tableau

tλ3 = 1 2 3 6
4 5 , (42)

i = 1 and x = 2, whereupon

tλx− = 1 2 5 6
3 4 , (43)

tλ∗+ = tλ3 , w = 1 and we require D5
3,5 = {1, s3, s4, s4s3, s3s4, s3s4s3}, Thus, in this

case, (35) yields:

v0 = 1 2 5 6
3 4 + 1 2 5 6

4 3 + 1 2 4 6
3 5 + 1 2 4 6

5 3 + 1 2 3 6
4 5 + 1 2 3 6

5 4 , (44)

which, on standardisation using the column and Garnir relations, results in:

v0 = (1 + q)
(

(q3−q2) 1 3 5 6
2 4 − q2 1 3 4 6

2 5 + 1 2 5 6
3 4 + 1 2 4 6

3 5 + 1 2 3 6
4 5

)
,

(45)
where, in this particular case, it has not been necessary to use [4]q = 0 to enable
the factor [x]q = (1 + q) to be extracted. Setting this expression to zero yields
the requisite expression for vtλ3 :

1 2 3 6
4 5 = (q − 1) 1 3 5 6

2 4 − 1 3 4 6
2 5 − 1 2 5 6

3 4 − 1 2 4 6
3 5 , (46)

where use has been made of q2 = −1.

Case 2. i ≤ λ2−p and k = 1. The relations obtained in this case are similar
to those obtained in Case 1. They may be viewed as those in that case having
been moved leftward through the tableaux. Here let x = p−1 which is again the
number of boxes in the second row over which a symmetrisation process takes
place. Now define tλ∗ to be identical to tλ− in the first i−1 columns and also from
columns i+ p− 1 to the last. The remaining entries {2i− 1, . . . , 2(i+ p)− 4} are
placed in the remaining positions, across first the top row and then across the
bottom row (so that in its first i+ p− 2 columns, tλ∗ is identical to t

(i+p−2,i+p−2)
x− ).

For example if λ = (12, 9), p = 5 and i = 4 then

t(12,9)
∗ =

1 3 5 7 8 9 10 15 17 19 20 21
2 4 6 11121314 16 18 , (47)
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where the partitioning gives an indication as to how the entries have been entered.
Now, in analogy with (35), let:

v0 =
1

[x]q!

∑
d∈W2i+p−2,2(i+p−2)

vdtλ∗ =
∑

standard zλ

c(zλ)vzλ , (48)

where again the column and Garnir relations have been used to obtain the sum
over standard tableaux. As before, c(tλ∗) = 1. This v0 also lies in the submodule
and thus setting v0 = 0 results in an expression for vtλ∗ ∈ Dλ

p . To obtain an
expression for vtλ , it is again valid to act on each standard tableau with w ∈ Sn
for which wtλ∗ = tλ:

vtλ = −
∑

standard zλ 6=tλ∗

c(zλ)vwzλ . (49)

To illustrate this case, let λ = (4, 4), p = 4 (so that k = 1) and

tλ4 = 1 2 3 6
4 5 7 8 , (50)

for which i = 1 and x = 3, whereupon

tλ∗ = 1 2 3 7
4 5 6 8 , (51)

and w = s6. Then using W4,6 = {1, s4, s5, s5s4, s4s5, s4s5s4}, in accordance with
(48),

[3]q!v0 = 1 2 3 7
4 5 6 8 + 1 2 3 7

5 4 6 8 + 1 2 3 7
4 6 5 8 + 1 2 3 7

6 4 5 8 + 1 2 3 7
5 6 4 8 + 1 2 3 7

6 5 4 8

= q4(1 + q)2 1 3 5 7
2 4 6 8 − q

3(1 + q)
(

1 3 4 7
2 5 6 8 + 1 2 5 7

3 4 6 8 + 1 2 4 7
3 5 6 8

)
+(1 + q)(1 + q + q2) 1 2 3 7

4 5 6 8 ,

(52)
for which the [3]q! factor on the right is made manifest on using [4]q = 0 in the
form q3 = −1− q − q2. This results in:

v0 = −q(1 + q) 1 3 5 7
2 4 6 8 + 1 3 4 7

2 5 6 8 + 1 2 5 7
3 4 6 8 + 1 2 4 7

3 5 6 8 + 1 2 3 7
4 5 6 8 , (53)

whence, on setting v0 = 0, q2 = −1, and acting on each tableau with w = s6, we
get the requisite expression for vtλ4 :

1 2 3 6
4 5 7 8 = (q − 1) 1 3 5 6

2 4 7 8 −
1 3 4 6
2 5 7 8 −

1 2 5 6
3 4 7 8 −

1 2 4 6
3 5 7 8 . (54)
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Note the similarity to (46). This is because essentially the same symmetrisation
process has taken place.

Case 3. i ≤ λ2 − p and k > 1. The final case may also be viewed as the
symmetrisation process moved leftward. However, the situation here is not so
straightforward in that the entries to the right of the symmetrised section are not
constant across the analogue of (35) and (48). For the first part of the following
algorithm, these entries are ignored. Again let x = p − 1 and consider just tνx−
where ν = (kp+ i− 2, p+ i− 2). This tableau is used exactly as in (35) to give:

vig
0 =

1

[x]q!

∑
d∈D2ν2+1

ν2+i,ν2+i+kp−2

vdtνx− =
∑

standard zν
c(zν)vzν , (55)

the Garnir and column relations having been used as for tableaux of shape ν.
Now for each standard tableau zν in the sum here, form the tableau zλaug by
first appending the entries {2i+ (k + 1)p− 3, . . . , 2λ2 + (k− 1)p} one at a time,
alternately onto the bottom row and onto the top row. The remaining entries
{2λ2 + (k − 1)p + 1, . . . , n} (if any), are used to complete the top row. For
example, if λ = (17, 9), p = 5, (so that k = 2) and i = 3, then each zλaug will be
a standard tableau of the form:

z(17,9)
aug =

1 3 • • • • • • • • • 19 21 23 24 25 26
2 4 • • • • 18 20 22 , (56)

where each • represents an entry from {5, 6, . . . , 17}. Now from vig
0 , form the

sum:

vaug
0 =

1

[x]q!

∏
i∈E2λ2+(k−1)p−1

2i+(k+1)p−3

(hi − q)
∑

standard zν
c(zν)vzλaug

, (57)

where Eba = {a, a + 2, a + 4, . . . , b}. In fact, the action of each hi here may be
accomplished (as may be seen from (4)) directly through the action of si on the
tableau: hivzλaug

= vsizλaug
. In this sum, the term vtλ∗ has coefficient 1 where tλ∗ is

defined as tνx+ augmented with the entries {2i+ (k+ 1)p− 3, . . . , 2λ2 + (k− 1)p}
placed one at a time, alternately onto the top row and onto the bottom row.
Again, the remaining entries {2λ2 + (k − 1)p + 1, . . . , n} (if any), are used to
complete the top row. For the example λ = (17, 9), p = 5, i = 3 considered
above:

t(17,9)
∗ =

1 3 5 6 7 8 9 10 11 12 13 18 20 22 24 25 26
2 4 14 15 16 17 19 21 23 . (58)
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Now let w be such that tλ = wtλ∗ . Unfortunately, in this case, the action of w on
vaug

0 , given by (57), must take place through the Hecke algebra action of h(w).
Nonetheless, in the standardised expression for h(w)vaug

0 , the term vtλ appears
with a coefficient of 1, whereupon, on setting h(w)vaug

0 to zero (it also lies in the
submodule), an expression for vtλ ∈ Dλ

p is obtained.
Due to the large number of terms involved in instances of this case, working

a full example is impractical. So we will outline the example λ = (9, 5), p = 4
(so that k = 2) and

tλ5 = 1 2 3 4 5 6 7 10 13
8 9 11 12 14 , (59)

which is not 4-root standard with i = 1. So in this case we consider ν = (7, 3)
and

tνx− = 1 2 3 7 8 9 10
4 5 6 . (60)

Then (55) produces a sum over all 75 standard tableaux of shape ν. Augmenting
each of these with the entries {11, 12, 13, 14} as indicated, results in a sum over
75 tableaux each of the form:

• • • • • • • 12 14
• • • 11 13 . (61)

The action of (h11 − q)(h13 − q) then results in a sum over 300 terms. Amongst
them appears

tλ∗ = 1 2 3 4 5 6 7 11 13
8 9 10 12 14 (62)

with a coefficient 1. Acting on this sum with h(w) where w = s10, and setting
the result to zero, then yields the requisite expression for vtλ5 in terms of 299
other tableaux.

In each of the three cases considered above, the resulting expression for vtλ
may include terms that are not p-root standard (indeed this was the situation
in the previous example, as it was also in (41)). If an expression solely in terms
of p-root standard tableaux is required then the above relations together with
the column and Garnir relations would have to recursively applied in order to
obtain such an expression. This is guaranteed eventually since, as in Section 3,
the ordering on the tableaux shows that an improvement takes place with each
invocation.
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7 Final example

For λ = (4, 2), the Specht module Sλ is 9-dimensional. When p = 4, the
corresponding irreducible module Dλ

4 is 4-dimensional, as was given in (27). The
methods of Section 2 enable the action of each hi on each of the four vectors
indexed by the 4-root standard tableaux

1 3 5 6
2 4 , 1 2 5 6

3 4 , 1 3 4 6
2 5 , 1 2 4 6

3 5 , (63)

to be written in terms of standard tableaux. Those terms which are then not
4-root standard may be expressed in terms of such using (39), (46), and the
immediate result of the action of s2 on the tableaux of (39).

Consider the action of h3 on the terms indexed by the tableaux (63) above:

h3
1 3 5 6
2 4 = 1 4 5 6

2 3 = − 1 3 5 6
2 4 ,

h3
1 2 5 6
3 4 = 1 2 5 6

4 3 = q
1 2 5 6
3 4 − q2 1 3 5 6

2 4 ,

h3
1 3 4 6
2 5 = 1 4 3 6

2 5 = q
1 3 4 6
2 5 − q2 1 3 5 6

2 4 ,

h3
1 2 4 6
3 5 = 1 2 3 6

4 5 = (q − 1) 1 3 5 6
2 4 − 1 3 4 6

2 5 − 1 2 5 6
3 4 − 1 2 4 6

3 5 ,

where the methods of Section 2 were sufficient in all but the last calculation,
where (46) was used. Thus Dλ

4 gives rise to the following representation matrix
for h3: 

−1 1 1 q − 1
. q . −1
. . q −1
. . . −1

 , (64)

where q2 = −1 has been used. The representation matrices for the other gener-
ators of H6(q) may be calculated in a similar manner.

It is interesting to note that for λ = (4, 2) and p = 2, the calculation proceeds
in an almost identical manner. However, an extra basis vector is present since,
by (27), Dλ

2 is 5-dimensional. This vector is indexed by the tableau on the left
of (46). That (46) cannot be used in this p = 2 case may be traced to the
appearance of the [2]q factor in its derivation.
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8 Footnote

The algorithms which have been described in this paper have been imple-
mented in the computer algebra package SYMMETRICA. In the generic and the
two-rowed non-generic cases, they enable representation matrices to be readily
obtained for any element of Hn(q). Further routines can check that the matrices
so produced indeed provide a representation in that they respect (1). These have
been used to check the algorithms presented in this paper in a large number of
cases. In addition, in either the generic or two-rowed non-generic case, routines
are available to generate and enumerate the appropriate standard tableaux, and
to render an arbitrary tableau in terms of the appropriate standard tableaux.
Calculations in Hn(q) itself may also be undertaken.

SYMMETRICA has been developed at Bayreuth University, and is an ex-
tensive package of routines concerned with the symmetric and related groups,
together with their representations and combinatorics. For more information
about SYMMETRICA, access the WorldWideWeb page http://btm2xd.mat.uni-
bayreuth.de or email sym@btm2x2.mat.uni-bayreuth.de. The full SYMMETRICA
package, with documentation, is available from the above WorldWideWeb site
or via FTP from ftp://btm2x7.mat.uni-bayreuth.de/dist/SYM.tar.Z.
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