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Abstract

A method for the analytical enumeration of circulant graphs with p? vertices, p a prime, is proposed
and described in detail. It is based on the use of S-rings and Pdlya’s enumeration technique. Two
different approaches, “structural” and “multiplier”, are developed and compared. As a result we get
counting formulae and generating functions (by valency) for non-isomorphic p?-vertex directed and
undirected circulant graphs as well as for some natural subclasses of them such as tournaments and
self-complementary graphs. These are the first general enumerative results for circulant graphs for
which the so-called Addm (single-multiplier) isomorphism condition does not hold. Some numerical
data and interrelations between formulae are also obtained. The first expository part of the paper
may serve as a self-contained introduction to the use of Schur rings for enumeration.

1 Introduction

1.1. Circulant (cyclic) graphs, or, briefly, circulants, are Cayley graphs over a cyclic group,
that is graphs which are invariant with respect to the action of a regular cyclic group on the
vertices. During recent years, interest to circulant graphs has been growing dramatically, in
particular, due to their applications in theoretical computer science, extremal graph theory,
design of experiments, etc. In this paper we are interested in the enumeration of circulants.

Following I. A. Faradzev (cf. [Far78]) we distinguish two modes of exact enumeration:
constructive and analytical. Constructive enumeration means getting a transversal of the set
of isomorphism classes of combinatorial objects under consideration. Analytical enumeration
is nowadays a rather traditional part of mathematics, see, e.g. [HarP73]. Of course, analytical
enumeration might be viewed as an easy consequence of constructive enumeration. Usually,
however, the two approaches are rather independent and supplement each other. The most
“respectable” methods of analytical enumeration are based on the use of generating functions,
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Foundation for Scientific Research and Development.
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aimed at getting (whenever possible) “closed” counting formulae and they are preferably
oriented on infinite classes of graphs (e.g. parametrized by the number of vertices). On the
contrary, the most significant results of constructive enumeration are achieved with the aid
of computers based on the exhaustion of only a finite number of objects.

It is worthwhile to stress that enumerative combinatorics is one of the oldest and in some
sense classical parts of combinatorics. Enumeration of elementary combinatorial objects such
as permutations, combinations, arrangements, etc. is now commonly regarded as an obligatory
part of mathematical education already at the sophomore-junior level, see, e.g. [Gri94]. Wider
frames of modern enumerative combinatorics can be traced out, e.g. from [Sta86]. Here,
however, we restricted ourselves only to the enumeration of such combinatorial objects as
graphs, both directed and undirected.

1.2. If some combinatorial objects are natural and interesting for study, their enumeration
is also a natural and interesting task for a better understanding of their intrinsic essence and
how to master them. This is just the case for circulants. Numerous papers devoted to the
analytical enumeration of circulants have been published over the last three decades. In the
references, the reader will find a sufficiently representative (though not exhaustive) list of
publications.

Practically all published papers rely on the use of the (one-multiplier) equivalence of
circulant graphs: two circulant graphs I'; and I's are called equivalent if there exists an auto-
morphism of the cyclic group Z,, which transforms I'1 to I's (Z, serves as the set of vertices
for both graphs). Equivalent circulant graphs are certainly isomorphic. It was A. Adém
who conjectured (see [Ad467]) that the converse claim is also valid. In spite of numerous
counter-examples, Addm’s conjecture played a very stimulating role in the investigation of
circulants, in particular stressing the essential features of that language which is convenient
for describing isomorphism conditions of circulant graphs.

1.3. Our approach to the enumeration of circulants is based on necessary and sufficient
conditions for two circulant graphs to be isomorphic. Such conditions were developed in the
framework of S-ring theory.

The notion of S-ring goes back to a classical paper of I. Schur [Sch33]. Explicitly, this
notion was pointed out by H. Wielandt. During several decades S-rings were regarded as a
rather sophisticated tool for purely group-theoretical purposes, known and used only by a very
restricted number of experts. However, starting with the paper [K1iP78], promising applica-
tions of S-rings in combinatorics were elaborated. Nowadays S-rings have been recognized
as an important part of Algebraic Combinatorics. One of the prominent results on circulant
graphs — the description of all values n for which Adam’s conjecture is true — has been recently
obtained by M. Muzychuk on the base of S-ring theory, see [Muz95] and [Muz9x|. However,
a wider use of S-rings in graph theory and enumerative combinatorics is still restricted by
the absence of friendly introductional papers on this subject.

1.4. One more general methodological background of our paper is the approach to the
enumeration of combinatorial objects (“patterns”) with a prescribed automorphism group
which is based on the use of the so-called Burnside marks. This approach was used, evidently
for the first time, in [K1i70]. Its modern frames were outlined in [FarKM94], see also [Ker91].
Here we use this approach in a very simplified manner due to special features of the lattice
of automorphism groups of circulant graphs.
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1.5. Our paper may be considered as a part of new activities in the theory of circulant
graphs, cf. [KIIMW9x], [K1iP9x] and [LisP9x]. Our goal in this series of papers is to deliver
a unified approach to the investigation of symmetry properties of circulant graphs based on
a systematically developed S-ring theory.

In particular, the present paper is designed as a self-contained introduction to the analy-
tical enumeration of circulants. This is why the reader will find in the text a rather detailed
account of the whole terminology and a large number of concrete examples and methodolo-
gical explanations which follow each step in our exposition.

1.6. The paper consists of eight sections. In Section 2 we deliver a brief glossary of all
necessary notions related to permutation groups, circulant graphs, Addm’s conjecture, S-
rings, etc.

Sections 3 and 4 play the role of an expository part of the presentation. In Section 3 we
describe the “structural” approach to the enumeration of n-vertex circulant graphs which is
based on the knowledge of the lattice of all S-rings over the cyclic group Z,.

On the basis of this approach we describe in Section 4:

e the main features of the enumeration procedure of p-vertex circulant graphs, p a prime;
e a brief outline of the enumeration of p?-vertex circulants;

e the main ideas of an alternative multiplier approach to the enumeration of circulant
graphs.

Roughly speaking, the structural approach allows one to find the number of circulants with
every possible automorphism group and, thus, requires rather redundant structural informa-
tion about S-rings and permutation groups. The multiplier approach is based exclusively on
the direct use of the isomorphism criterion, while the information about S-rings is in the end
ignored.

The constructive enumeration of circulants is also briefly discussed in Section 4.

New results related to the enumeration of p?-vertex circulant graphs are presented in
Sections 5—7: this part is written on a more rigorous level assuming a knowledge of common
enumerative methods (generating functions, Pélya’s theorem, etc.). In Section 5 we deliver
all necessary information about cycle indices. Section 6 deals with the Pélya enumeration
technique applied to circulant graphs in the framework of S-rings. Our main results about
the count of p?-vertex circulants are formulated and proved in Section 7. Here we count,
simultaneously and uniformly, circulants of several natural subclasses such as tournaments
and self-complementary graphs. From the formulae obtained we derive some interesting
interrelations between the numbers of circulants of various types.

Finally, in Section 8 we discuss further possibilities for the new enumerative methodology
presented in the current paper. Generalizations of our methods and wider applications are
postponed to subsequent publications. Our first goal will be the enumeration of p™-vertex
circulants, p a prime, m > 3.

2 Basic definitions and preliminary results

2.1. Groups and group actions. As usual, Z stands for the ring of integers. Let n be a
positive integer, Z, := {0,1,2,...,n — 1} and Z), := Z, \ {0}. We denote by Z} the set
of numbers in Z,, relatively prime to n, so that |Z;| = ¢(n) where ¢(n) is the Euler totient
function.

In the sequel, all arithmetic operations are regarded modulo n unless otherwise stated.
It is often convenient to represent a residue class modulo n by an appropriate member, not
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necessarily the least one. Elements of Z,, are also meant as the corresponding residue classes
rather than simply integers.

Z, forms a ring with respect to addition and multiplication. In particular, Z, is an
additive cyclic group of order n and Z;, is a multiplicative abelian group, which is referred
to as the prime residue class group (modulo n).

Given a group G and an action of it on a set U, we denote this as (G, U) where the action,
i.e. the corresponding homomorphism from G to the symmetric group S(U) is implicit. (G, U)
is a permutation group if and only if this action is faithful. Sometimes, in order to emphasize
the difference between G as an abstract group and as a group with an action, we denote the
former as G and the latter as G = (G, U). Usually, however, when the sense is clear from
the context and no ambiguity arises, we shall not make a difference in the designations.

Z(n) denotes a regular cyclic permutation group of order (and degree) n, i.e. generated by
an n-cycle. Usually we take (0,1,2,...,n—1) as such a cycle. Up to similarity of permutation
groups, this is the regular presentation of Z,,, i.e. Z(n) = (Zy,Zy,).

D(n) denotes the transitive dihedral permutation group of degree n and order 2n.

The action of g € G on u € U will be denoted as u9.

(G,U) is called semi-regular if no non-identity element of G fixes an element of U.

2.2. Cycle index. The polynomial of degree n = |U]|
1

Ig = Iigu) = Ia(x) = Ig(n; 21,29, . . ., p) = el Z H a;;”(g)
|G geGi>1
in the variables 1, z9, ..., z, denotes the cycle indez of a group G = (G, U) with an action

on a finite set U where a;(g) = a;(g,U) stands for the number of disjoint cycles of length 4
in g. This is one of the main enumerative tools.

2.3. Direct sum and join of groups. Given two groups G and H acting on disjoint sets U
and V, we define their direct sum G @ H acting on the (disjoint) union UUV. As an abstract
group, it is the direct product G x H. An element (g,h) € G® H acts by the following rule:

u(gvh) = ug’ lu(g7h) = ’Uh'

forany u €e U andv € V.
Given two groups with actions G; = (G,U) and G2 = (G,V) with the same abstract
group G and disjoint sets U and V, the join

G =G VG, = (G, UUYV)

means the group action combining these two actions of G:

wI _:{ug for w=ueU,
) v9 for w=vevV
for any w € UUV and g € G.
G is the “diagonal” subgroup of the direct sum G @ Go. This natural operation (going
back to Burnside) is characteristic for combinatorial enumeration though we could not find
an explicit description of it in literature (cf., however, [Dre71, p. 2]).

2.4. Semi-direct and wreath products. The semi-direct product of the group Z, with
some subgroup H < Z; will be denoted by Z,, x H; it consists of all permutations of the
form Z, > Z, : z+— az+bfor be Z, and a € H.
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Given two permutation groups G and H acting on sets U and V respectively, their wreath
product GUH is the permutation group of order |G|-|H|!Y! which acts on U x V and is defined
as follows: G H consists of all permutations, symbolized by f = [g, h(u)] (where g € G and
h(u) € H for every u € U), acting on the pairs (u,v) € U x V by the rule

(u,0) = (u, "W).

2.5. Graphs. Throughout, we shall use the terms graph and undirected graph, so that by
graph it is understood that we referring to one that is directed. In any case all graphs
(directed or undirected) are without loops and multiple edges. Accordingly, we speak about
edges (i.e. ordered pairs of vertices) and undirected edges (unordered pairs). We recall some
graph theoretical notions and notations.

If T is a graph, we write ' = I'(V, E) where V = V(I') and E = E(T') C V x V are the
sets of its vertices and edges, respectively.

Graphs T' and IV are called isomorphic (denoted by ' = T”) if there is a bijection g
between V(T') and V(I'") which induces a bijection between E(T") and E(I”). In case T =T,
the permutation g is called an automorphism of T, and T is called invariant with respect
to g. All such g form the automorphism group Aut(T'). By definition, it is considered as a
permutation group on V(I'). In particular, Z(n) is the automorphism group of a complete
directed n-cycle and D(n) is the automorphism group of an undirected n-cycle.

An n-graph means a graph of order n, i.e. having n vertices. Usually, for definiteness, the
set of vertices of an n-graph is taken to be Z,.

As usual, an edge (u,v) is depicted by an arrow from the vertex u (its beginning) to
the vertex v (its end). This edge is said to be out-incident (or simply incident) to u and
in-incident to v. Accordingly, v is called (out-)adjacent to u. An undirected edge (u,v) ' of
an undirected graph is depicted by a line segment between vertices u and v. It is incident to
u and v.

The out-valency (or simply valency) of a vertex means the number of edges out-incident
to it. The in-valency is defined analogously.

A regular graph (of valency r) is a graph with coinciding out- and in-valencies (equal to
r) for all vertices.

The complete n-graph is the graph containing all possible edges between its vertices. It
is the only regular graph of valency n — 1. It is symmetric and can thus be regarded as an
undirected graph. The null graph is the n-graph with no edges.

2.6. Circulants. A circulant graph, or simply a circulant, means a graph I' on Z,, which is
invariant with respect to the cyclic permutation (0,1,2,...,n — 1), i.e.

(u,v) € ET) = (u+ 1,v+1) € E(T).
Sometimes it is useful to mean by a circulant graph, instead, an n-graph which is invari-
ant with respect to an arbitrary complete n-cyclic permutation. But up to isomorphism,

both definitions are equivalent. In the literature, circulants are sometimes called cyclic or
rotation(al) graphs.

The connection set of a circulant I is the set
X=XT)={ve Z'n | (0,v) € E(I)}

of all vertices adjacent to the vertex 0.

'To be precise, one should take the set {(u,v), (v,u)} as definition of an undirected edge.
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A circulant I" is completely specified by its connection set X. In fact,
E() ={(u,v) |u,v € Z,, v—ue XT)}.

Accordingly, we write I' = T'(Z,,, X), in short, I' = T'(X). Obviously, I'(X) is a regular graph
of valency | X|. In algebraic terms, I'(X) is simply the Cayley graph of the cyclic group Z,
with respect to X. The sets X = () and X = Z,, represent the null and the complete graphs,
respectively.

2.7. Undirected circulants. Suppose v € X(T'), i.e. (0,v) is an edge of the circulant
I'. Applying the permutation (0,1,2,...,n — 1)"™?, we see that I' contains also the edge
(n—wv,0). Therefore the connection set X of an undirected circulant n-graph I is symmetric,
which means v € X if and only if n — v € X for any v € Z/,, or simply —X = X where
—X :={-v|ve X}

Given a connection set X of a circulant graph, X*™ := X U(—X) denotes its symmetrized
connection set of the corresponding undirected circulant graph.

On the the other hand, let X be a symmetric connection set. Then X4 = X N Z/,_, for

2
odd n and X™4 = X N Z'% for even n will denote the reduced (“halved”) connection set. It is
clear that an undirected circulant n-graph I'(X) is completely defined by X", and different
undirected circulant graphs possess different reduced connection sets.

The following simple result plays the key role in the theory of circulants.

2.8. Lemma. For an arbitrary n, let X and X' be two connection sets such that
mX = X' 2 (M)

for some integer m prime to n. Then the n-circulants T'(X) and T'(X') are isomorphic.

PrOOF. In fact, the mapping a,, : v = mwv, Yv € Z,, is an isomorphism. It is a bijection
from Z,, onto itself since m € Z; is invertible. Let (u,v) be an edge of I'(X), then, by
definition, v — u € X. Now (u,v)*™ = (mu,mv) is an edge of T'(X') since mv — mu =
m(v —u) € mX = X'. Thus, '(mX) = T'(X). O
Note that the equality (M) just describes the induced action of the multiplicative group Z;,
on connection sets, i.e. on subsets of Z,,.

2.9. Remark. For undirected circulant graphs, Lemma 2.8 is clearly also valid in terms of
their reduced connection sets. Note that Lemma 2.8 may be formulated in a more general
context, namely, for any Cayley object of Z,, ([Bab77], [P4l87]), i.e. for a relational structure
on the set Z,, such that all (right) translations are automorphisms of the structure.

2.10. One-multiplier equivalence. Two connection sets X and X' satisfying the condi-
tion (M) are called equivalent (more exactly, one-multiplier equivalent with respect to the
multiplier m).

2.11. Addm’s Conjecture. Sometimes, (M) is also referred to as Addm’s condition
(though Lemma 2.8 was known long ago). A. Addm in [Ad467] conjectured the opposite
assertion, namely,

A(n) : The connection sets of isomorphic circulant n-graphs are equivalent.

*mX = {mv |ve X}
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In such a general setting this conjecture is false even for the class of undirected circulants. As
we shall see in Section 4, the conjecture A (n) is valid for prime n = p and is false for n = p?
(except for n = 4 and for undirected circulants with n = 9). In general, according to [Muz95]
and [Muz9y], A(n) is true for n = epipy - - - pr where pi1,po,- -, py are pairwise distinct odd
prime numbers and ¢ € {1,2,4}), and it is false for all other numbers greater 18 [P4l87].

2.12. Layers. In view of Lemma 2.8 it is natural to partition the elements of X = X (T")
according to their divisors common to n: the layers so obtained are invariant with respect to
the (multiplicative) action of Z}.

For n = p?, two layers arise in accordance with the divisibility of the elements of X by p:

X = X)UX().- (2.12.1)

Here the 0-layer X(g) is a subset of Z, and the 1-layer X(;) is a subset of pZ,. Such a
partition can be naturally generalized to n = p* for any k.

2.13. Residue generators of ZZQ . The investigation of p-circulants and their isomorphisms
is based also on several number-theoretic properties of the prime residue class group.

Let p be an odd prime. As well known, Z;g is a (multiplicative) cyclic group of order
#(p?) = p(p —1). Following [Has64, p. 80], we shall make use of representing this cyclic
group in the form of the direct product of two cyclic groups of orders p and p—1, respectively
(these considerations can be generalized to p¥ as well). The first group is generated by the
element 1+ p (which is of order p modulo p?). The second group is generated by an element
w = w(p,2) where w is a primitive root modulo p (i.e. (w) = Z, (mod p)) satisfying the
congruence wP? ! =1 (mod p?). Such an element w exists: if W is a primitive root modulo
p?, then one can simply take w = WP. Thus, the following assertion is valid.

2.14. Lemma. Given w as defined in 2.13, every element m € Z;z has a unique represen-

tation

m =m; ;= w'(1+p)? (mod p?) (2.14.1)
for some i € {0,1,...,p—2} and j € {0,1,...,p—1}. In other words, all different elements
of Z, fit in the (p— 1) x (p) matriz M(p,2,w) := (m;;). O

The choice of w = w(p, 2) is immaterial for the sequel; let some value be selected.

2.15. Group ring Z[Z,). In the following we introduce and explain some basic definitions
and facts about S-rings over the additive cyclic group Z,, (for a more general exposition we
refer to, e.g., [Wie64]).

The group ring® (Z[Z,];+,-) of Z, over Z consists of all formal sums Y. azh with

heZ,
ap € Z, h € Z,, together with addition
> apht 3 Brhi= 3 (an+ Bk (2.15.1)
heZ, heZ, heZy
and formal multiplication
(X aph)- (X Bk) = X (anBp)h+k)= 3 (X anibe)h (2.15.2)
heZ, keZ, h,keZ, heZ,, keZ,
Z[Z,) is also a Z-module with scalar multiplication
al Y aph) = Y (aap)h (2.15.3)

heZ, heZy,

3Instead of Z, other rings or fields can be used, e.g. real or complex numbers.
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fora e Z.
The Z-submodule of Z[Z,) generated by elements 7y, ...,n, € Z[Z,] will be denoted by

{(m,...,nr)z or simply (n1,...,nr) .

Elements of the form

T:=) h

heT
for T C Z,, are called simple quantities in Z[Z,) (i.e. T = Y. aph withap =1iff h €T,
heZ,
and aj = 0 otherwise). For T' = {t1,...,t,} we write
tlyesty

instead of {t1,...,%4}.

An element h (resp a subset U C Z,,) is said to belong to (resp., to be contained in)
> aph € Z[Z,)], if ap # 0 (resp., Vh € U : ap #0).
heZ,

We introduce further operations. The Schur-Hadamard product o of elements of Z[Z,,] is
defined by

(2 anh)o( X Buh) =3 (anfh)h- (2.15.4)
heZ, heZ,
Note, e.g., that To T = TNT' for T, 7" C Z,, while T - T' = Y aph where o) =
heZ,
|{k € T"|h — k € T}|. The transposed element of n = > ayh € Z[Z,) is given by
heZ,
nTi= Y on(=h). (2.15.5)
heZ,

2.16. S-rings and automorphisms. An S-ring* & over the group Z,, of rank r is a subring
of the group ring Z[Z,,] which is generated as Z-module by simple quantities

&= (Ty,Ts,...,Tr_1)z (2.16.1)

r—1
where Ty = {0}, {To,Th,...,Tr—1} is a partition of Z,, (thus, ) T; = Z,) and

i=0
Vidj: (-T;) =Tj (thus, T, = Tj).

The simple quantities 7; are called basis elements of 6 and their corresponding sets T; will
be called basis sets of &. A sub-S-ring &' of an S-ring & over Z,, is an S-ring for which every
basis element is a sum of basis elements of &.

Every z € Z,, belongs to a unique basis set, which sometimes will be denoted by 7(;) or
Tg). Due to (2.16.1), every element of an S-ring & is the sum of basis elements. In parti-

cular, the S-ring multiplication - is completely given by the structure constants (”intersection
numbers”) pfj € Z defined by

T
LT, = Eng (2.16.2)

Note that for a given partition {Ty,T1,...,Tr—1}, the property of (2.16.1) being a subring
can be checked by the validity of (2.16.2) for suitable pf]

48 stands for I. Schur.
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The structure constants pfj of an S-ring & have a natural graph theoretical interpretation
for the circulants I'; := I'(Z,, T;). In fact, for (u,v) € E(Ty),

plj = {w| (u,w) € E(Ty) A (w,v) € E(T;)}]

is the number of paths u — w — v of length 2 connecting the ends of a fixed edge
(u,v) € E(T) along an edge (u,w) of E(I';) and an edge (w,v) € E(T;). It turns out (via
S-ring properties) that this number is independent of the concrete choice of (u,v) € E(T'y).

A permutation g : Z,, — Z,, is called an automorphism of an S-ring & if it is an automor-
phism of every graph I';.

r—1
Aut & := ) AutT (2.16.3)
i=0
is the automorphism group of &. Equivalently, g € Aut & iff u — v € T implies w9 —v9 € T
for every basis set T' of &.
The S-ring generated by a circulant graph I'(Z,,, X) is the smallest S-ring & over Z,, such
that X belongs to &.

2.17. Transitivity modules of groups. Let (G,Z,) be a permutation group contain-
ing the cyclic group (Z,,Z,). Consider the stabilizer Gy and its orbits 1-Orb(Go, Z,,) =
{Tp,...,T,—1} where again we put Tp := {0}. Then

G(G, Zn) = <E, PP ;Tr—1>Z

is called the transitivity module of (G, Z,). A celebrated result of I. Schur [Sch33] shows that
6(G,Z,) is an S-ring. Moreover, &(G, Z,,) is closed with respect to the Schur-Hadamard
product (2.15.4).

An S-ring & is called Schurian [P6s74] if it is the transitivity module of some overgroup
(G, Z,) of (Zy,Z,). By the well-known properties of Galois correspondence (cf. e.g. [Aig79])
we have

Aut(G(Aut 6,Z,)) = Aut& and G(Aut(6(G,Z,)) = 6(G, Zy,).

A permutation group (G,U) is called 2-closed if it is the automorphism group of a coloured
graph (that means a set of graphs), i.e. if it is of the form as the right side of (2.16.3). Then
we have

S(Aut6,Z,) =6 and Aut&(G,Z,) =G

for every Schurian S-ring & and every 2-closed permutation group G containing Z,,.

3 Enumeration of circulants: structural approach based on
S-rings

3.1. Conditions. We start with a general scheme of a constructive and analytical enume-
ration of n-vertex circulant graphs. This will work in any case where we can obtain a complete
description of the lattice £(n) of all S-rings over Z,,. (How to succeed at this will be discussed
later.) Moreover, we suppose the following conditions to be satisfied:

e Condition (S) for n:
each S-ring from £(n) is Schurian (cf. 2.17), i.e. it is a transitivity module of a suitable
overgroup (G, Z,,) of the regular group (Z,,,Z,);

e Condition (U) for n:
all S-rings from L(n) are pairwise non-isomorphic.



10 M. Klin, V. Liskovets and R. Poschel

It turns out that condition (U) is satisfied for all values of n. This crucial property of
S-rings over Z,, was proved by M. Muzychuk in [Muz94].

Condition (S) also seems to be valid for all values n. In particular, it is true for n =
p™, m > 1, p a prime (this follows from the fact that a p-group is Schurian (i.e. satisfies (S))
if and only if it is cyclic [P6s74]), and in the case of square-free n, see [Muz9y]. We believe
that the validity of condition (S) will be proved rather soon on the basis of recent significant
progress in understanding the structure of S-rings over Z,,.

3.2. Scheme. With the above assumptions, the following enumeration scheme may be used
(see [KIi70] and [FarKM94] for details).

Let us write the set £ of all S-rings as a sequence £ = (61,83, ...,8;) in such an order
that 6; C &; implies j < i (if we use other indices, this means that &; appears to the left of
&; in the ordered sequence L). Let

dtir = |{T(m) € 6; | z#0 and |T($)| = ’I"}l

be the number of r-element basis sets of the S-ring &; different from the basis set Tp = {0}.
Further, let
dir = I | @ #0 and (T2 =1}
be the number of r-element symmetrized basis sets of &; (cf. 2.7) different from Tj.
Let us define the generating functions

Filt) = s frtr = H 14 1)

=1

,_.

fi(t) = () irt" = H (1+1¢") dir

Note that the graph which corresponds to T' € &; is of valency r if T has r elements.
Symmetrized sets correspond to undirected circulant graphs. One can show without difficulty
that f;(¢) and f;(t) enumerate (with respect to valencies) all labelled undirected and directed
circulant graphs, respectively, which belong to the S-ring &;. In particular, fz(l) is the
number of all labelled circulant graphs in &;.

3.3. Lemma. Let G; = Aut(&;), let N(G;) = Ng, (G;) be the normalizer of the group G; in
Sn, and let ' be a circulant graph belonging to &;. Then
(a) Aut(T') = G; < T generates &;.
(b) If Aut(T') = G; then there are ezxactly [N(G;) : G;] distinct circulant graphs which are
isomorphic to I.

The PROOF easily follows from the definitions and conditions (S) and (U). O
3.4. Definition. Let

n—1 n—1
= Z girtr and §, (t) = Z §i,«tr
r=0 r=0

be the generating functions for the number of pairwise non-isomorphic undirected and di-
rected circulant graphs, respectively, with automorphism group G;. Let

g9(t) = g(n,t) and g(t) = g(n,?)

be the generating functions for the number of all pairwise non-isomorphic undirected and
directed circulant graphs, respectively, with n vertices. We emphasize that here all generating
functions are specified by valencies. Note moreover that g(1) and g(1) are just the numbers
of all non-isomorphic undirected and directed circulant graphs, respectively, with n vertices.
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3.5. Theorem.

P < PPN IN(Gy)|
~ Gil 7y _ [N(G))|
o) =Y e, 30 =50

=1 =1

PROOF. Let us prove, for example, the formula for g;(¢). At first we fix r and consider all
undirected circulant graphs invariant with respect to G; and having valency r. There are

fir such graphs. These graphs have automorphism groups G; > G; (dually, this corresponds

to the inclusion 6; C &;). According to Lemma 3.3, there exist exactly | ‘é, |) |g]r labelled

undirected circulant graphs with automorphism group G;. Subtracting from f;. the obtained
quantity for each group G; such that G; > G;, we get the number of labelled undirected
graphs with the group G;. Then again Lemma 3.3 is used. This reasoning is valid for all
r, 0 < r < mn—1. Therefore the formula for g;(¢) is proved. The proof for g;(¢) is similar.
The formulae for g(t) and g(t) are evident. a

3.6. Remark. The above proof is in fact based on the use of the classical principle of inclusion
and exclusion. In a more advanced version of this principle (see [K1i70] and [FarKM94]) so-
called Burnside marks are used. However, because of conditions (S) and (U) of 3.1 we
can reasonably simplify the approach, moreover we have to take into account only 2-closed
permutation groups.

3.7. Example. Let n = 6. We start with the list £ = (&1,...,6¢) of all S-rings over Zg:
61 = <91152135415>5
62 = <Qa172a475’§>7
63 = <Qa173a5a274)7
64 = <Qa155,2a4’§>a
65 = <Qa173a5a2’4>7
66 = <Qala gaﬁaéaé)'
According to 3.2 we get
fi(t) = Aty =1+,
fa(t) = R(t) = (1+1)(1+14),
f3(t) = f(t) = 1 +)(A +1%),
fat) = fa(t) = (L4 8)(1+82),
f5(8) = L+ )1+, fs(t) = 1+ L+,

folt) = L+ )1 +12)2, fo(t) = (1+1)°.

According to Theorem 3.5 we need some information about the groups and their respective
normalizers. We have

Gi1 =5 N(G1) = Gy,
Gy = 53159, N(G3) = Go,
Gz = 52153, N(G3) = (3,
G4 = Dg , N(G4) = Gy,
]
]

Gs = S9 1 Z3, [N(G5) : Gs] = 2,
Ge =Zs , [N(Ge):Ge] =2
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Now we can apply Theorem 3.5 to get

g1(t) = f1(?) =1+,
go(t) = fa(t) — g1(t) =1+t
g3(t) = f3(t) — g1(t) =12 413,
94(t) = fa(t) — f1(t) — fo(t) — f3(2) =12 413,
g5(t) = 3(f5(t) — g1(t) — g3(2)) =0,
g96(t) = 5(fo(t) — g1(t) — g2(t) — g3(t) — ga(t) — 2g5(¢)) = O,

g(t) = 1+t +2t2 + 283 + t* + 15,

In a similar manner, one obtains the functions g;(¢) and g(¢). In particular,

g(t) = 14 3t + 612 + 61> + 3t* + 15

3.8. Example. Let n = 8. We start with the list £ = (&1,...,81¢) of all S-rings over Zg.

61 =1(0,1,2,3,4,5,6,7),

&9 =(0,1,2,3,5,6,7,4),

63 = (Qa15375’7’w>7

6, =(0,1,3,5,7,2,6,4),

&5 = (0,1,3,5,7,2,6,4),

&6 = (0,1,5,3,7,2,6,4),

67 =(0,1,5,3,7,2,6,4),

&g =(0,1,3,5,7,2,6,4),

&9 = (0,1,7,3,5,2,6,4),

G110 = (0,1,2,3,4,5,6,7).

According to 3.2 we get

fu(t) = filt) = (1447),
f2(t) = fo(t) = (L +1) (1 +1%),
falt) = falt) = (1+8)(1+ 1),
fa(t) = fa(t) = (L+1) (1 + ) (1 + 1Y),
fs(t) = A +)A+ )1+, fs(t) = 1 +)>(1+1),
fot) = L+)A+) (A +1), folt) = 1 +)(1+17),
frt) = A+ )@+ )X +1), fr(t) = Q1 +1)°(1+¢%)?,
fs(t) = A+)A+2) A +1Y), fe(t) = (1+1)(1+12)°,
folt) = folt) = (L+1)(1+%)%,
fro(t) = @ +1)A +%)2, frot) = (1 +1)".

In order to apply Theorem 3.5 we need some information about the orders of the auto-
morphism groups and their normalizers (we shall not go into details here and therefore will
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not present the groups themselves):

|G1| =8, [N(G1):Gi] =1,
|Go| = 412, [N(G3):Gq] =1,
Gs| = 2(4)%,  [N(G3):G3] =1,
|G4| = 2-82, [N(G4):G4] =1,
Gs| =2-4*,  [N(Gs):Gs] = 2,
|G6| = 4-24 , [N(G(;) : Gg] = 2,
|G7| =16 , [N(G7):G7] =4,
|Gs| =16, [N(Gs): Gs] = 2,
|Go| =16 ,  [N(Go): Go] = 2,
|G1()| = 8 , [N(Glo) . GIO] = 4

From Theorem 3.5 we now conclude

g1(t) = fi(t) =1+,
g2(t) = 1-(fa(t) — 1- g1 (t)) =t + 5,

gr(t) - 1(f7(t) — g1(t) — g2(t) — g3(t) — ga(t) — 2g5(t) — 2g6(t)),

9t) = g1(8) + o) + - + gr0(t).

In order to avoid long computations with polynomials we shall compute here only the
numbers g;(1), gi(1) of all graphs with automorphism group G;. To start, we have

t

fi(1) f(1) 2,

f2(1) = (1) = 4

f3(1) = () = 4

AU = A= s

f5(1) =8, ~5(1) = 16,

fG(l) =8, Ji6(1) = 16,

RO =8 ()= 32,

fs1) =8, fs(1) = 16,

fo(1) Jo(1) = 16,

f10(1) = 16, fio(1) = 128,

Now we proceed according to Theorem 3.5

91 = = 4 gl - = 4,
g2(1) =4 -2 = 2, ()= = 2,
g3(1) =4 -2 =2, g(l)= = 2
9s(1)=8-2-2-2 =2, @)= = 2,

Il
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NN
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) 16-2—2—2—2) =
§-2-2-2-2)
)

Y,
(16-2-2-2-2) =
=7
(

I
SRR

8§—2—-2-2-2

(

(

( 32-2-2-2-2-8-8)=
8-2-2-2-2) =

(

(

16-2—-2-2-2) =

NPT N T TSI SN0 o ST TN
Y
~

MI»—»AI»—‘MI»—\MH—A

o
o0

N R NN NN

16—-2—-2-2-2)
16-8-2-2-2-2)=

Ly
©

Q

]
AN TN AN AN AN AN AN AN N N
e e e e e e e e
e e e e e N e N

ﬂm8—2—2—2—2
—8—-8-8-8—4) =21,
=g(8,1) =47.

Q
=
o

g9(1)=g(8,1)

Il

—_
N
oK
—

—
~



14 M. Klin, V. Liskovets and R. Poschel

3.9. Remark. In what follows, the above outlined approach for the enumeration of circulants
will be called the structural approach. This means that the global information about the
number of all circulants is collected from the detailed information about the number of
circulants with a prescribed group, where the input of each possible group is separately
encountered. The advantage of this structural approach is that for each concrete value of n,
certain information about S-rings and their automorphism groups is sufficient for completing
the enumeration. An alternative multiplier approach will be developed in Sections 5-7 below.
Here our goal will be to get formulae for the count of non-isomorphic circulants without direct
use of the lattice £,, as well as without explicit computation of the functions g;(¢) and g;(?).
Instead, the multiplier approach is based on isomorphism theorems.

4 Enumeration for concrete cases with known S-ring structure

We now apply the structural approach to some cases where all neccessary information about
S-rings is completely known in advance.

(A) Enumeration for n = p

4.1. List of S-rings. For n = p, p a prime number, the S-rings and their automorphism
groups can be described explicitly. Let H = H,; be the subgroup of order d of the multiplica-
tive group Z;. Let HyyoH, ...,y H, | = p%l, be the set of distinct cosets of subgroup H in
Z,. 1t is easy to see that &4 = (0,H,...,yH) is an S-ring over Z,: this is the transitivity
module of the stabilizer of 0 in Z,, x Hg. It turns out that each S-ring over Z, coincides
with &4 for a suitable d|(p — 1). This fact appeared in literature, explicitly or implicitly,
many times; see [P6sK79], [FarIK90] and [DreKM92] for more details. We have the following
theorem (given here without proof):

4.2. Theorem.
(i) Each S-ring over Z, coincides with some Sq (d|(p — 1)).

. _ | ZpyxHg if d<p-1

(ii) Aut(ed)—{sp if d=p—1-

oz acpo

(iii) N(Aut(gd))—{sp if d=p—1"~
p—1

(iV) [N(Aut(Gd)) : Aut(Gd)] = a4

4.3. Corollary. Adam’s conjecture A(n) is valid for all prime numbers n = p.

PROOF. It easily follows from Theorem 4.2 that conditions (S) and (U) of 3.1 are satisfied
for n = p. This implies that if two circulant graphs I' = I'(Z,, X) and I'" = I'(Z,, X') are
isomorphic then X and X’ generate the same S-ring & = &, for some d|(p — 1). Thus, using
Lemma 3.3, we get that X' = X9 for some g € N(Aut(&)). Now we take into account that,
according to 4.2(ii) and 4.2(iii), for each g € N(Aut(&)) there exists an m € Z;, such that
X9 =mX. O
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4.4. Example.Let n = 13. With notations from 4.1, the list of all S-rings over Z, is
L= (6121 665 647 637 625 61) 5

Let us count the numbers ¢g(13,1) and g(13,1) of all pairwise non-isomorphic 13-vertex
undirected and directed circulants. We get

f2() = f2(1) = 21,

fe(1) = fe(1) = 22,

f4(1) = f’:fl(]') = 237

f3(1) = 22’ .71.3(1) = 24;

L) = ) =25

fr(1) =25, f1(1) = 212

Now

g12(1) =12 = 2, gip(l)= = 2,
g6(1) = %(22 —2) =1, gs(1)= = 1,
g94(1) = §(23 —2) =2, gu(l)= = 2
g3(1)=7(2>-2-2) =0, g@()=302"'-2-2) = 3,
g(1)=526-2-2-6-0-54)= 0, G(1)=5(2"2-2—-2—6— 12— 54) =335,
9(1)=g(13,1) =14, g(1)=g(13,1) = 352.

(B) Enumeration for n = p?

The case n = p? (for prime p) is the simplest case in which Adam’s conjecture A(n) is
not generally valid. We follow the general scheme as described in 3.1-3.5 and start with a
description of all S-rings over Z,,.

4.5. Definition. An S-ring & = (Ty,T1,...,T;) over Z, is called wreath decomposable if
there exists a non-trivial proper subgroup K < Z, such that for every basic element T;,
either 7; C K or T; is a union of suitable cosets of Z,/K (i.e. T; = Uyer,(K + 7). In
particular we have K € &. The S-ring & is called wreath indecomposable if it is not wreath
decomposable.

4.6. Example and Definition. Let n = p?, K = Z,. Let
61 = (Qo,Q1,...,Qq) and &3 = (Ry, Ry,..., Ry)
be S-rings over Z,. Let

Tl,z' = {px2|x26Ri}, 0<i<k,
Ty; = {z1 +px2 | 21 € Qj, x2 € Zp}, 1< <d

These sets are basis sets of an S-ring & over Z2,

S = <@,&, ,M,TQJ,... ,T27d>,

which is called the wreath composition of &1 and &, and is denoted by & = &1[&2]. The
S-ring property of & can be easily seen by direct computations using the fact that &; and &9
are S-rings. Moreover, by definition 4.5, & is a wreath decomposable S-ring (take K = pZ,).

®Note here the different numeration — because of 4.1 — of the S-rings (indices do not increase). Nevertheless,
this £ satisfies the property described in 3.2 because G4 C &4 <= d'|d.
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4.7. Remark. The definition of wreath composition and of wreath decomposable S-rings
can be given for arbitrary values of n and, moreover, over arbitrary groups. The construction
of the wreath composition of S-rings is a special case of a wreath product construction for
cellular rings (algebras) (see [Wei76]). In a different context it was discussed in [KalK76],
[K1iP78] and [P6sKT79], see also [KIIMW9x]| and [KIliP9x]. It turns out that each wreath
decomposable S-ring over a group H can be represented as a wreath composition of suitable
S-rings &1 and &y over groups of smaller order (sometimes iterated wreath composition
appears). The notion is motivated by the fact that the automorphism group Aut(&;[63]) is
the wreath product of the automorphism groups of the S-rings &; and &s. In what follows

we shall use these facts for the special case n = p?.

4.8. Theorem ([P6s74], [K1iP78], [P6sK79]). Let & be a non-trivial S-ring over Z,>. Then
we have
(a) Either

(i) & is a wreath composition & = &1[&2] of S-rings &1, &2 over Z,,

(i) 6 =(0,H,y H,...,yH), where H < Z;z, (1+p) ¢ H,yi €Z, for 1 <i<l;

) awie) = { T S T

2
H[N(Aut(@i)) : Aut(6;)] in case (i)
(c) [N(Aut(®)) : Aut(6)] = z'(:pl_ Dy

in case (i)
|H|

4.9. Example. Let n = 9. The list of all S-rings over Zq is L = (&1,...,&7) where

S1 = ( )
&y = ( 3,6)
63 =(0,1,4,7,2,5,8,3,6),
6, =1(0,1,2,4,5,7,8,3,6),
( )
( )
( )

G5 =
Gg =
&7 =

We again give only the briefest necessary information about the automorphism groups of all
S-rings in L:

G =5 , [IN(G1):G1] =1,
Gy = S3183 , [N(GQ) : GQ] =1,
G3 = Z31 853, [N(Gg):G3] = 2,
Gy = S35, [N(G4)G4] = 2,
G5 = Z31Z3, [N(Gs5):Gs] =4,
G6 = Dg , [N(GG) : Gs] == 3,
Gr=Zy , [N(Gr):Gr]=6.

®Here the wreath product acts on Z, via its action on Z, x Z, (cf. 2.4) and the canonical isomorphism
induced by the bijection Z,, x Z, = Z,2 : (z,y) — = + yp.
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Now we are able to use the structural approach (3.2 and 3.5) in order to count the number
of undirected and directed circulants.

L) = hO) =2,

f3(1) = 225 f;?)(l) = 233

fa(1) = 22, fa(1) = 22,

f5(1) = 22’ .11.5(1) = 24;

fo) = fa(1) =24,

fr(1) = 2%, f2(1) = 28.

Therefore

91(1) = - 25 §1(1) = 25
92(1) = 22 —2 = 4 §2(1) = = 27
g3(1) = 5(22 —2-2) =0, gs(1) = 5(2°-2-2) = 2,
g94(1) = 5(22 -2 -2) =0, ga(1)=3(2*-2-2) = 2,
g5(1) = 7(2° —2-2) =0, gs(1) =3(2*—2-2-4-4) = 1,
96(1) = %(24 —-2- 2) - 47 gﬁ(l) = = 4—7
g7(1) = §5(2*—2-2-3-4) =0, gr/(1) =3(22-2-2-4-4-4-12) = 38,

9(1) = g(9,1) =8, g(1) =g(9,1) = 51.

4.10. Remark. The reader can easily see that the conjecture A(9) is valid in the class of
undirected graphs; however, it is not valid in the class of directed circulants. The only S-
ring which is “responsible” for the non-validity of A(9) is the S-ring &5. Namely, e.g., the
circulant graphs T' = I'(Zy, X) and IV = T'(Zy, X') with X = {1,3,4,7} and X' = {1,6,4,7}
are not one-multiplier isomorphic because, evidently, no multiplier transforms X into X'.
Nevertheless, I and I are isomorphic under the isomorphism (0)(1)(2)(3,6)(4, 7)(5,8). These
graphs are depicted in Figure 1 where the arrow — indicates the complete set of edges
connecting all vertices of the two 3-vertex sets in the specified direction (in other words, here
—> denotes 9 usual edges).

For p > 5 one can construct analogous examples of undirected graphs on n = p? vertices for
which the conjecture A(n) is not valid. E.g. the circulant graphs I'(Zs5,Y) and I'(Zys5,Y")
on 25 vertices with the connection sets Y = {1,4,6,9,11,14,16,19,21,24,5,20} and Y' =
{1,4,6,9,11,14,16,19, 21,24, 10,15} yield such an example.

4.11. Constructive enumeration. In this and the previous section we have outlined the
methodology of the analytical enumeration of circulant graphs based on the systematical use
of the lattice £ of all S-rings over Z,,. This can be naturally extended to the description of
a constructive enumeration procedure for circulants: for each S-ring & from £ we describe
the set C(&) of all circulants I'(Z,,, X) such that X generates &. Then we find the orbits
of the action of N(Aut(&))/Aut(6) on C(&). Each transversal 7(6) of this set of orbits
represents (up to isomorphism) all circulants with automorphism group Aut(&). The union
T = Ugers T(6) gives a constructive representation of all n-vertex circulants. Sometimes
it is rather natural to consider the canonical transversal Tcagn which consists of all minimal
(maximal) representatives of the orbits with respect to a certain lexicographical ordering of
the connection sets. Let us illustrate this scheme on a simple example. In more detail, this
scheme will be presented in [FieK9x].

4.12. Example. Let n = 9. We want to enumerate constructively all circulants of valency 2.
We have altogether (g) = 28 2-element connection sets. We list C(&;) and 97can(S;) (the
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6 6 3
2/ \1 2/ \1
A‘ A‘A
8 5 7 4 8 5 7 4
F1 FZ

Figure 1: Isomorphic but not one-multiplier isomorphic circulants

left subscript represents the valency under consideration, the numeration of S-rings is the
same as in Example 4.9).

2C(61) = 0,
2C(62) = {{3,6}}, 2Tcan(62) = {{3,6}},
20(63) = Q)a
20(64) =0,
20(66) = {{1,8},{2,7},{3,6}}, 27;38,11(66) = {{178}}a

9C(67) consists of 24 representatives, on which the cyclic group Zg of order 6 acts semi-
regularly. Therefore we easily get that

27'can(66) = {{17 2}7 {17 3}7 {17 4-}3 {1’ 6}}

Finally, we get a canonical transversal 97can(Zg) of all circulants of valency 2:

2Tcan(Z9) = 2Tcan(62) U 2Tcan(Gs) U 2Tcan(67).

(C) From structural to multiplier approach

We would now like to outline the multiplier approach (which will be given in more detail and
greater rigour in the three subsequent sections). Our goal will be to obtain the generating
functions g(n,z) and g(n,z) without direct use of the lattice £,, as well as without explicit
computation of the functions g;(x) and g;(x) for all elements &; € L,,. It turns out that the
complexity of such an approach will heavily depend on the “multiplicative complexity” of n:
for example, the simplest description will be available for prime numbers.

The multiplier approach is based on the use of necessary and sufficient conditions for
the isomorphism of two circulant graphs. These conditions are formulated in terms of the
action of multiplier groups on the connection sets of circulants. The action (M;) defined
in Lemma 2.8, and justified by Corollary 4.3, is the simplest (and most well-known) case in
which the multiplier approach is most efficient.
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4.13. Example. Let n = 13 (cf. Example 4.4). We know that for n = 13 the conjecture
A (13) is valid, i.e. we are able to use the (single-)multiplier approach. This means that the
number of non-isomorphic circulants is equal to the number of orbits of the action of Z7; on
the set of all connection sets. Hence it is enough to find the cycle index Iz:, (x) of the group

13 in its regular action and then to apply the ordinary Pélya enumeration theorem. Thus
we get

1
Iz;,(x) = E(:tc%2 + 25 4 225 + 223 + 22 + 4a10)

and therefore

1
5(13,1):12;3(2):ﬁ(212+26+2-24+2-23+2-22+4-2):352.

In the same manner we use
1
Iz:(x) = E(m? + 23 + 222 + 214)
and obtain

1
g(13,1):6(26+23+2-22+2-2):14.

We strongly encourage the reader to compare the results of the structural and multiplier
approach (cf. Example 4.4).

4.14. Explanation. We may distinguish two different manners of substantiation for the
multiplier approach in the case n = p, p a prime.

The first manner is directly based on Corollary 4.3. In our exposition we derived it as
a consequence of S-ring theory. But, in principle, one could give another proof which is
absolutely independent of S-ring theory, see, e.g., [Djo70].

The other manner may be called “explanation”. Namely, based on S-ring theory, we get
a complete list of the automorphism groups of circulant graphs with p vertices. The lattice
of all these groups is isomorphic to the lattice of all subgroups in the group Z,,. For each
group G in the former lattice, its index in the normalizer Ngs,(G) coincides with the index
of the corresponding normalizer in the latter lattice. Thus, according to Theorem 3.5, the
enumeration of circulant graphs with p vertices will correspond to the enumeration of subsets
of Z; with respect to the group action (Z,,,Z,). In this case, the procedure described in
Theorem 3.5 is equivalent to the method of Mébius inversion applied to the group (Z), Z},).
Thus, the structural approach here serves as a tool for “explaining” the multiplier approach.

However, in the general case in which A(n) is true (see 2.11), we are still not able to
deliver a similar simple structural “explanation” of the multiplier approach — even in spite of
the fact that all S-rings over Z,, where n is a square-free number, are completely classified
(see [Muz9x]).

For n = p?, as shown above, A(n) is no longer valid. However, we shall see in this case
that the main idea of the multiplier approach will again have an unambiguous advantage
over the structural approach. On the other hand, the multiplier approach is based on the
corresponding isomorphism theorem, which, in turn, can be obtained by S-ring theory as was
done above in the case n = p (see 4.3).

The result we need is the following;:
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4.15. Isomorphism Theorem for p?-circulants. Two circulant graphs T = I'(X) and
I" = T(X') with n = p? vertices are isomorphic if and only if their respective layers (as
defined in 2.12) are multiplicatively equivalent, i.e.

X{O) = moX (), Xfl) =my X (), (Ma)
for a pair of multipliers mqg, my € Z;z. Moreover, in the above, one must have
mo =my, (E)
whenever
(1+p) X # X(0)- (R)

This theorem was obtained for the first time in [K1iP78] in a slightly more detailed form
that specifies additional exceptional cases when both multipliers can be chosen to be equal
(a sufficient condition) independent of the relation (R). But for the purpose of enumeration,
these cases need not be considered separately.

4.16. Remark. In (M3) above we may assume mg € Z,. The multiplier 1 + p leaves fixed
any multiple of p because (1 + p)pr = pr (mod p?) for any . Hence the 1-layer X (1) of any
p?-circulant is (1 + p)-invariant (i.e. invariant under the multiplicative action of (1 + p)).

4.17. Examples. The following two simple examples of pairs of p?-vertex circulants for p = 3
illustrate the sufficiency and necessity of the Isomorphism Theorem 4.15.

Take, e.g., the circulants of order 9 from Fig. 1 with the connection sets X = {1,3,4,7}
and X' ={1,6,4,7}. As mentioned in 4.10, no multiplier transforms X into X'. Here we
have Xy = {1,4,7} = Xéo)’ X1y = {3} and Xél) = {6}. Condition (R) does not hold
since (1 +3)X(g) = X(0)- So by Theorem 4.15 we may use two arbitrary multipliers in (My).
In fact, the pair mg = 1 and m; = 2 yields the required equivalence of the layers, so that
I'(X') 2T(X), in agreement with 4.10.

On the other hand, let n = 9, X = {1,3} and X’ = {1,6}. Here again the pair my = 1 and
m1 = 2 yield a multiplicative layer-wise equivalence. But this pair violates the requirement
of Theorem 4.15 because (1 + 3)X () # X(g). For no m does the equality mX’ = X hold;
thus, the circulants IV = T'(X') and T' = T'(X) are not isomorphic. This can be seen directly
because, e.g., IV contains directed 4-cycles, for example, (0,1, 2,3) (see Fig. 2) but I possesses
no such cycle. (Indeed, observe the latter claim “visually” or try to find a solution of equation
1+ T2 +x3 + x4 =0 in Zg where z; € {1,3}.)

4.18. 9-Circulants. Finally, let us try to outline, only for the concrete case n = 9, the
multiplier approach in terms of our previous knowledge (in more general frames, the example
will be reconsidered in Section 7).

The multiplicative group (Zg, Zy) is generated by permutation hy = (0)(1,2,4,8,7,5)(3, 6).
This group acts intransitively on the set = Z{ with two orbits Qo = {1,2,4,5,7,8} and
Q; = {3,6}. Counting orbits of the induced action of (Z§, Z}) on the set 2* of all subsets of
Q we get the number of one-multiplier equivalent directed circulants. This number may be
obtained by the application of Pélya’s method to the cyclic index A = Iiz: -

However, we know that the result of enumeration will include more than the desired num-
ber of isomorphism classes. Therefore let us subtract from this result the number of all
classes which correspond to the “abnormal” (cf. 4.10) S-ring &5. These classes are exactly
those which are invariant with respect to the cyclic group H = (h) generated by the permu-
tation h = hZ = (1,4,7)(2,8,5)(3)(6). Finally, on these classes we have to consider the action
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r T

Figure 2: Non-isomorphic circulant 9-graphs of valency 2

of the more “strong” (non-faithful) group Zg x Zg where each copy of Z§ acts independently
on the sets Qy and Q; (a two-multiplier action).

The number of classes being “subtracted” can be obtained via the cycle index B = Iz, o)
where Z5 acts semi-regularly on the four-element set O of orbits of H. The final “addition”
of the number of classes can be obtained via the cyclic index D = I(z,xz,,0) Where Z3 X Z5
acts intransitively on the same set O.

Hence we get

1
A = Z(a% + 25 + 22222 + 2z0x5),

6
1
1
D= Z(z‘f + 22229 + 2).

Therefore

5(9, 1) = A'{mi:ZZ}i:Lz - B‘{IHZQ}@':I,Z,... + D'{xi:zz}izl,l---

1 1 1
= 6(28+24+2'24+2'22)_5(24+22)+Z(24+2'23+22)
=52 1049 =51.

So, we obtain the same number as in Example 4.9.

We would like to stress that this example shows only the main features of the multiplier
approach. Numerous technical difficulties related to its complete realization will be overcome
in Section 7 where, in particular, we will return once more to the same case n = 9.
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5 The multiplier approach: additional definitions

The multiplier approach for counting circulant graphs is based on the isomorphism theorems
(see 4.3 and 4.15) and on the ordinary Pélya enumeration technique (see, e.g. [K1iPR88, Ch. 2]
and [Ker91, Ch. 1 and 2]). It results in closed formulae expressed in terms of cycle indices of
the appropriate group actions. Due to the use of multivariable polynomials, these counting
formulae can be presented in technically different forms and can be obtained simultaneously
and uniformly (with only a few additional efforts) for several natural classes of circulant
graphs. For this reason, it is convenient to introduce new unified notations different from
ones used in the preceding sections.

The formulae obtained will enable us to reveal some interesting interrelations between
the numbers of circulants of various types. In particular, we shall analyse the behaviour of
the difference between the actual number of non-isomorphic undirected p?-circulants and the
number of them considered up to the equivalence under the action of the regular cyclic group
(i.e. the number obtained under the Addm condition). This difference turns out to vanish
for the majority of vertex valencies.

5.1. Faithful action. Let G = (G,U) be a group with an action, and G = (G,U) the
corresponding faithful permutation group: ie. G = G/K where K = {k € G |Vu € U :

k' = 4} and the action of G on U is induced from that of G on U via u9 = u? for § = Kg.
Then we have:

5.2. Lemma. Ig= I

PROOF. I =1k 3 I 249 = & 1 =9
geGi>1 k€K geg i>1
_ 1 ai(9) _ 1 ai(g) _
—@Z > H% =1G Z_|K|sz =I5 O
geGkEK 1 >1 9€G i>1

Thus, in spite of the perceived differences in the numbers of terms by definition, both
polynomials in fact coincide. Therefore the conversion to the faithful action provides no
analytical and computational advantages. This implicitly well-known and useful property
will be sometimes referred to as the Indifference Lemma.

5.3. Cycle indices of cyclic groups. For the regular cyclic group Z(n) = (Z,,Z,) it is
easy to see that

Z(n) = me (5.3.1)

where (i,n) and [7,n] denote the g.c.d. and l.c.m., respectively. It follows (cf. [Ker91, p. 72])
that

Z P(r)zn (5.3.2)
r\n
since ¢(r) enumerates the exponents i, i < n, with (i,n) = n/r.
Denote for brevity

In particular for n = p prime, Izx = Z,_ 1(x) = =5 > o(r)zr (p=1)/
rlp—1
Given s|n, the cyclic group Z; is a subgroup of Z,, and we may consider Z,, as acting (ad-

ditively mod s) on Z,. Let Z(n,s) denote this group action. In particular, Z(n,n) = Z(n).
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Then by the Indifference Lemma 5.2,
Iz(n,s) = Iz(5), s[m. (5.3.4)

For the dihedral permutation group D(n) with odd n we have (see [Ker91, p. 72]):
Ipm) = 2Tz + m2d ™). (5.3.5)

5.4. Operations with cycle indices. Working with cycle indices of groups acting on sets
of complicated objects it is sometimes very convenient to use variables of several different
types (cf. [Rob81]). In particular, we shall use cycle indices not only in variables x but also
in y and even in xy where x (resp., y) is the generic notation for the sequences of variables
X1,%2, ...,y (T€SP., Y1,Y2,---,Yn) and xy denotes all pairwise products z1y1, T2Yy2, - - - , TnYn-

For our aims, only actions of cyclic groups and groups built from them by means of the
operations defined in 2.3 are necessary. The corresponding cycle indices are built according
to the following lemma.

5.5. Lemma. Let groups G, H, G1 and G5 be as considered in 2.3, then

Iegn = Ig - In (5.5.1)
and
I, (%,y) = I, (x)VIg,(y) (5.5.2)
where
IGI( )VIG2 . Z H xm gq,U a¢ gyv) (5.5.3)
gEG i>1

PROOF. The first formula is well known, see [Ker91, p. 74]. Formula (5.5.2) is evident by
definition. 0

5.6. Remark. The operation “V” for cycle indices as defined by (5.5.3) depends not only on
the polynomials by themselves but also on the underlying group G (cf. 2.3), namely on the
correspondence of terms in both cycle indices to the same element g € G. For cyclic groups
the result can be obtained in almost straightforward fasion based on (5.3.1). In general, the
cycle index of an action of an arbitrary cyclic group is calculated by the cyclic structure of
the generating permutation, though the formula can look combersome. Here is a particular
case, used subsequently. Let n = ps, p prime, (p,s) = 1. Then taking into account (5.3.4)
we get

. 1
Lz(ps,0) (V1 2o () = — (D (0 = D)/ mysl” + 3 plr)a/my2*/"). (5.6.1)

S
p r|s r|s

5.7. Tournaments and self-complementary graphs. A tournament means a complete
anti-symmetric graph, i.e. a directed graph in which for any pair of different vertices u,v
there is exactly one edge connecting them: (u,v) or (v, u).

Two graphs on the same set of vertices are called complements of each other if they
contain no edge in common but every possible edge belongs to one of them. In particular,
the complete and null graphs are complements of one another.

The converse of a graph I' means the graph defined on the same set of vertices and
counsisting of edges (v,u) such that (u,v) € E(T).
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A self-complementary graph means a graph isomorphic to its complement.

A self-converse graph means a graph isomorphic to its converse. In particular, all undi-
rected graphs are examples of self-converse graphs (with respect to the identity isomorphism).
For tournaments this notion coincides with that of self-complementary tournament.

Self-complementary and self-converse graphs possess additional symmetries and are there-
fore interesting for consideration and enumeration (cf. [Sri70], [Rob81] and [PalR84]).

The connection set X of any circulant n-tournament satisfies the conditions X N (=X) =0
and X U (—X) = Z|,. Conversely, any X that meets these two conditions represents a
circulant n-tournament.

The complement of a circulant T'(X) is the circulant I'(Z), \ X), and its converse is the
circulant I'(—X).

It is clear that a circulant n-tournament can exist only for odd n, in which case it is a
regular anti-symmetric graph of valency r = |X| = (n — 1)/2. Self-complementary graphs
also exist only for odd n and are of valency » = (n — 1)/2. Moreover, undirected self-
complementary n-graphs can exist only if 4|(n — 1) since they contain n(n — 1)/4 edges.
Note, finally, that an undirected regular graph of valency r contains rn/2 edges, so that r
and n cannot be odd simultaneously.

5.8. Proposition. Any circulant graph is self-converse. In particular, any circulant tour-
nament is self-complementary.

PRrROOF. This is simply the case m = —1 in the condition (M) of Lemma 2.8. O

5.9. Numbers of circulants: new notations. We are interested in counting several types
of circulant graphs. For convenience, the type will be designated in the subscript. Henceforth:

C4(n) denotes the number of non-isomorphic (directed) circulant n-graphs;
Cy(n) denotes the number of non-isomorphic undirected circulant n-graphs;
Ci(n) denotes the number of non-isomorphic circulant n-tournaments;

Csa(n) and Cgy(n) denote the numbers of non-isomorphic self-complementary directed
and undirected circulant graphs respectively;

Cq(n,r) and Cy(n,r) denote the corresponding numbers of (regular) circulants of valency
r and cq(n,t) and cy(n,t) are their ordinary generating functions (polynomials in the
variable t):

cq(n,t) := ZC’d(n,r)tr and cy(n,t) = Z Cyu(n,r)t".

r>0 r>0

Clearly C4(n) = c4(n,1) and Cy(n) = c¢y(n,1). The functions ¢q and ¢, can also be
extended to multigraphs (cf. [Zha90]).

6 Enumeration based on isomorphism theorems

As a preliminary step we provide here enumerative formulae for all the classes of circulant
graphs of prime order. These results are not new but seem to have never been presented in
such a unified and simplified manner.

Lemma 2.8 and the validity of Addm’s conjecture for this case imply important conse-
quences for our enumeration.

6.1. Corollary. If the conjecture A (n) is valid for a given order n and a given set of n-
circulants, then the number of non-isomorphic circulants under consideration is equal to the
number of orbits of the group Z;, in its induced multiplicative action on the connection sets.

O
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6.2. Orbit enumeration. Counting orbits under group actions in the framework of Pélya’s
theory consists of two principal tasks:

e to describe carefully the group and its action on the objects and to construct its cycle
index;

e to find an appropriate substitution of variables, to execute it and to simplify the result
as much as possible.

In general, the structure of the multiplicative group Z,, is well known and rather simple.
So, it remains only to induce its action on the connection sets and to apply, whenever possible,
ordinary Pélya’s theorem of counting. All enumerative results for circulants that have been
published so far obtained in exactly this way.

We shall not apply here the above corollary in such general form (in principle, this could
be done for all square-free orders) restricting ourselves to the simplest case of prime n = p.

6.3. Count of p-circulants. Once the cycle index I of a group action on a set has been
constructed, it is a simple matter to count the non-isomorphic subsets with respect to the
induced element-wise action on them. This is just our case for directed circulant graphs
according to Corollary 6.1. By Pélya’s theorem (cf. [K1iPR88, 2.2], [Ker91, p. 71] or [PalR84]),
the counting polynomial in ¢ is expressed as IG|{$T::1+tT }o—1.0,... Where r denotes the valency.
The overall number of non-isomorphic sets is obtained by substituting ¢ := 1 or, in other
words, z, := 2 for all . In the latter case we could, instead, reason equally well in terms of
Burnside’s lemma (also called the lemma of Cauchy—Frobenius-Burnside [K1iPR88, 2.1]; see
also [Ker91, p. 11]). For the problem under consideration, this means to count the connection
sets invariant with respect to a multiplier of a given order 7.

Applied to the polynomial Z,_;(x) as defined in (5.3.3), this yields the desired result for
Ca(p,r),ca(p,t) and Cyq(p). Note that the size r = | X| equals the valency of I'(X).

Other desired numbers of directed circulant graphs can be obtained from the same cycle
index through appropriate substitutions. Again, the conventional enumerative technique is
applicable to this end. As we know from 5.7, the self-complementary circulants are described
by the self-complementary connection sets, i.e., by those X for which mX = Z], \ X for some
m. As is well known in general (see [PalR84] or [Ker91, p. 73]), the number of such self-
complementary sets is obtained by substituting zo; := 2 and z9;_1 := 0 for all 4 (or, in other
words, ¢ := —1 in the above substitution). In our case this means that we simply exclude the
monomials containing variables with odd indices. This approach yields, evidently, simpler
explicit expressions than ones appeared in [ChaW82] and [ChiL86].

No tournament possesses an automorphism of even order. This follows from consideration
of edges between the opposite vertices of a cycle ¢ of even order: any c-invariant graph
must contain either all of these in both directions or none. This contradicts the definition of
tournaments. Thus, contrary to the previous case, we must exclude the even-index variables.
Besides, the other members possess only a half degree of freedom. In other words, we put
T9; := 0 and 22, | = 2 (i.e. mp; 1 := v/2) for all i. Due to this, many summands vanish;
cf. [Ast72] and [Ray91] for details.

Undirected circulant graphs can be counted with the help of a different permutation group
than one used for directed circulants (though, in principle, we could use the same group).
This is the dihedral group (cf. formula (5.3.5) for the corresponding cycle index). But
undirected circulant graphs can be encoded by reduced connection sets as described in 2.7
(cf. also Remark 2.9). Therefore there is also another more customary way to use the modified
“halved” permutation group, i.e. the subgroup of index 2 in (Z,,, Z;)) = Z(p—1). It is simply
Z(251) (cf. [Tur67]) with the cycle index Ip%l (x).
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Ordinary Pélya substitutions z, := 1 + 2" for all r applied to Z,-1(x) give rise to c,(p, )
2

while the substitutions z9; := 2 and z9;_1 := 0 (or, equivalently, the subsequent substitution
t? := —1 after Pélya’s one) give rise to Cs,(p) as above. Here 2r in the exponent of ¢ reflects
the fact that any undirected edge consists of two edges and contributes 2 to the valency (and
the valency of T'(X) equals 2| X™*| where X** C Z',_,).

2

Thus, we have proved the following

6.4. Theorem. For n = p an odd prime,

Cd(pa t) = Ip—l(x)‘{wr::1+t’"}r=1,2,...
cu(p,t) = Ii’%l (X)|{aw:=1+t2r}r=1,2,...

Ci(p) = Ip_l(x)‘{ﬂ?rizo}revena {22:=2}; 0da
Csd(p) = Ipfl(x)|{wr::0}mdd, {zr:=2}r even
Csu(p) = Ip%l (x)|{m::0}, odd> {Zr:=2}reven"

These formulae cover numerous counting results published in [Dav65], [Tur67], [Als70], [Ast72],
[Dav72], [Als73], [ChaW73], [ChiL86], [Zha90] and [Ray91].

6.5. Corollary. If p is a prime number such that ¢ = 2p — 1 is also prime, then

CU(2p - 17t) = Cd(pa t2)
and

Csu(2p — 1) = Csq(p)-
(The first four such primes are p = 3,7,19,31,... with corresponding ¢ = 5,13, 37,61,...)

PrROOF. Indeed, substitute ¢ = 2p — 1 instead of p in the second and last formulae above. O

7 Count of p?-circulants

7.1. Outline. By Isomorphism Theorem 4.15, p?-circulants can be counted in the follow-
ing way. Count first their connection sets up to single-multiplier actions. Let A(p?) denote
the corresponding number. According to the condition (R) (cf. also Remark 4.16), this
count does not accurately reflect the true number of (1 4 p)-invariant connection sets. Let
their number, thus calculated, be equal to B(p?). Instead, here we must use the group
Z;» & Z, with the induced layer-wise action on such connection sets. Let D(p?) denote
the number of its orbits. Let, finally, C((p?) be the required number of non-isomorphic cir-
culants; these are generic designations of all types of circulants under consideration. Then
C(p?) = A(p*) — B(p®) + D(p?) or, specifically,

Ch(p®) = An(p?) — Bn(p?) + Dn(p?) (7.1.1)
where h € {d,t,u,sd,su} (cf. 5.9) and cn(p?,t) = an(p?,t) — bn(p?,t) + dn(p?,t) where
he {d7 11}, Ad(pQ) = ad(p27 t)|t:17 etc.

Aq(p?) and aq(p?,t) can be found in the same way as described in 6.2: the corresponding
group action is the join of two actions of the cyclic group Z;z:

(Z3a, ZL) = (Za, YV (Zoe, T

According to formula (5.6.1) (with s = p — 1), we introduce
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—1

Ay (p X,y) Z B(r xrypr T Z B(r -Tryr o (7.1.2)
Prpa pp rlp—1

and via this, aq(p?,t) is expressed by the “standard” Pélya substitutions:
=141, y:=1+1".

7.2. Remark. As for the numbers B(p?) and D(p?), there is a general approach proposed
by N. G. de Bruijn (cf. [Rob81]) to enumerate the group orbits on elements invariant with
respect to a normal subgroup. On the other hand, the following specific property of cyclic
groups can be taken into account in the case of B(p?). We need to count circulants invariant
with respect to the group (1 + p,m) generated by 1+ p and m, for each multiplier m. But in
our case it is again a certain cyc]ic group generated, say, by m'. This means that B(p?) is the
sum of certain summands of A(p?), which we could simply try to dlstlngmsh and eliminate
from (7.1.2). (By Lemma 2.14, if m = w*(1+p)’, then we may take m’' = w*(1+p).) However,
we need not use these possibilities; so that we shall proceed in a more direct way.

7.3. Enumerative formulae. According to Remark 4.16, any set of p-fold numbers is (1+p)-
invariant. On the other hand, the rows of the matrix M(p,2,w) in Lemma 2.14 represent
minimal (1 4 p)-invariant sets (orbits) of numbers prime to p. As we have seen in 2.13, these
rows are in a natural one-to-one correspondence with the numbers 1,2,...,p—1. Thus, in the
corresponding join, the member (Z,;,Z,) should be replaced by one additional (Z;., Zy).
The only distinction is that each row of the matrix M (p, 2, w) now contributes p edges instead
of 1. (This explains why we used separated variables {z,} and {y,}; so that in the case of
cq(n,t), the substitutions z, := 1+ ¢" and y, := 1 4+ t*" for all r, r|(p — 1), are carried out.)
Thus, for expressing B(p?) we get the cycle index B(p%;x,y) = 1(2*2,11*))(3()\./](2*2,2;)(y) SO
V4 P

that

Bixy) = = 3 $(r)al Dy = T, (xy) (7.3.1)

P

where xy = {z1y1,Z2y2, ...} and Z,_(x) is defined by (5.3.3).

The same considerations are valid for calculating D(p?) with the direct sum @ instead
of the join V. According to formula (5.5.1), the corresponding cycle index D(p?;x,y) is
Iiz:, 2;)(%) - Iz2,,2;)(y) so that

D% %,¥) = Lot ()T (3)- (7.3.2)

Finally, in order to unify the substitutions of variables, let us transform the polynomial

Ai(p%x,y) as follows: in formula (7.1.2), replace all variables y,, by ¥, in the first sum and

all . by z, in the second sum. The polynomial thus obtained will be denoted by A(p?; x, y).
Then

AW?%,y) = 2T, 1 (xPH) + B22T, 4 (xy), (7.3.3)
and the polynomial aq(p?, t) is obtained from A(p?; x, y) by our usual substitutions z, := 1+¢"
and y, := 1+ 1", etc

In accordance with (7.1.1), we introduce
Clp*x,y) = Alp*ix,y) — B*;x,y) + D(p*; %, ).
Then by formulae (7.3.1) — (7.3.3) we obtain after elementary transformations,

C(pQ;x’y) = %Ip_1(xp+1) _ %Ip—l(XY) +Ip_1(x)l'p_1(y). (7.3.4)
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It is easy to see that this, and previous polynomials, are also suitable for the two remaining
classes of directed circulants.
For undirected circulants we need simply to replace Z,_1 by Z,-1, i.e. to take
2

C* (1%, y) = 2Tomt (1) = Lpms (xy) + Tomt ()Tt (). (7.3.5)

It is sometimes useful to count A, B and D separately. For undirected circulants, this
requires the same modifications applied to A, B and D, that is, we introduce

A (0% %,y) = 3 Toct (XPT1) + 22T (xy),
2 2

B*(p%x,y) = oo (xy),
and

D*(p%x,y) := Toa (x)Zp1 (v)-

The appropriate substitutions of variables in all the cases are clear from the above rea-
soning and from the proof of Proposition 6.4. This completes the proof of the following main
result:

7.4. Theorem.

2.

) (r%; Y)|{wr::1+tr, Yri=1+tPT} g o
cu(p’,t) = C*(p*x Y apim14e2r, yrim1 46207}, o
Cip?) = C%%,¥)|{w,:20, 11=0}r cvens {82122, 422}, oaa
Cs (p2) C(p2 X Y)|{z7::0, Yr:=0}r odd> {Zr:=2, yr:=2}r even
Cou(0?) = C* (0% %,¥) 2,120, 4220}, oaar (@r:=2, 1:=2}1 cven
2.

where polynomials C(p?;x,y) and C*(p?;x,y) are defined by (7.3.4), (7.3.5) and (5.3.3). O

As we pointed out above, instead of these formulae, it is possible to make the corresponding
substitutions into A, B and D (or A*, B* and D* for undirected circulants) and then to use
expression (7.1.1).

In fact, we need to make a distinction between z, and y, only in the first two formulae.
Accordingly, the last three formulae can be simplified further (see below). Besides, we could
reduce all expressions to include only the variables z, by replacing {y, := zp, }r=12,... and so
on. However, for the sake of possible generalizations we prefer to use separate variables.

Note also that a p?-vertex circulant graph is disconnected if and only if its leading layer
X(0) is empty. This layer does not meet the condition (R). This enables one to count easily
disconnected (and, thus, connected as well) undirected and directed p2-circulants, e.g., by
some clear modification of the first two formulae of the Theorem.

When counting only by the number of vertices, it is possible to represent these results via
an explicit uniform formula without using cycle indices.

7.5. Corollary. Let h e {d,t,u, sd,su}. Then

) = ity Lot (0 o) 4 (S

Z¢ Qﬁhr)

where ag = g = agq = 1, oy = sy = 2, fg = Bsa = 1, By = Bu = Bsu = 2 and the
summation is taken over r, r|(p — 1), satisfying the restriction Fy, defined as follows:
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Fy4: r arbitrary;

Fi: rodd;

Fyq: reven;

Fy: ’%1 even;

Fy, : rand p%l even. O

Here evidently Fy = Fy V Fyq, Fy, = F; V Fy,.

7.6. Corollary.
1. If 4 f(p—1), then

Csu(pQ) - 07

Ci(p®) = Caa(p?),
Au(p®) = 24u(p?),
By(p®) = 2Bu(p?),
Du(p2) - 4Dsd(p )

2. For any prime p

3. If p and 2p — 1 are both prime (cf. Corollary 6.5), then

bu((2p —1)%,1) = ba(p,1%),
du(( p — )2’t) = dd(p2at2)a
Bsu((2p —1)?) = Bu(p?),
Dsu((2p )2) = Dsd(pQ)'

PrOOF. Straightforward by Theorem 7.4 and Proposition 6.4.

7.7. Examples. 1) n = 9.

1
Tr(x) = 5(90% + x2)
so that
C(%x,y) = %Iz(XLL) — 1To(xy) + To(x)T2(y)
= 6(3521; + z3) — %(w%y% + zoy0) + %(ﬂ”% + 22) (Y7 + y2)
whence
ca(9,t) = 1+ 2t 4+ 6t2 + 10t3 + 13¢* + 10£° + 6% 4+ 2¢7 + 8.
Likewise
, 1, 2
C*(9;x,y) = 771 + ST1y1
3 3
and

cu(9,1) = 1+ 2% + 2t 4 25 4 ¢5.
2) n = 25. We get

C(25;x,y) = 21—0(3C + z3% + 228) — 30 (371?/1 + 23y3 + 274Y4)
+ (2t + 23 + 234) (v + ¥3 + 2u4).

29
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Then
ca(25,t) = 1+ 2t + 16t% + 102¢3 + 536¢* + 2126t5 + 6741t% + 17306¢"

+ 36800t8 + 653761° + 98104¢1° + 124808¢!! + 13525812
+ 124808¢13 + 98104¢14 + 65376¢° + 36800t + 1730617

+ 6741118 4 2126t + 536120 + 1022 + 16¢%2 + 2¢23 + ¢24.

. 1 1 1
C*(25;x,y) = — (21 + 28) — —=(z1y] + z212) + — (2] + 2) (¥] + ¥2)
10 10 4

and
cu(25,t) = 1+ 2t + 8t* + 225 + 5148 + 8010 + 95¢12

+ 80t!% + 5116 4+ 22418 4 8420 4 2422 4 424

7.8. Table. Values contributed by the separate terms of formula (7.1.1) and the resulting
numbers of p?-circulants are provided in Table 1 (cf. Corollary 7.6). The relative magnitudes
of these values show spectacularly that, in comformity with Theorem 4.15, —B + D is only a
slight correction term to the main contribution A. Missing entries are too large to be included

in the table.

According to Table 1, By(9) = Dy(9). This confirms once more that 9 is an exceptional
values of n for which the conjecture A(n) holds for undirected circulants (though it does
not hold for all circulants). Also, entries of the table confirm the repetitions predicted by

Corollary 7.6.

P
Funct. 3 5 7 11 13 17 19
Cqa(p?) || 51 | 839094 | 6701785562464 - - - -
Aq(p?) || 52 | 839128 | 6701785562968 - - - -
Ba(p?) || 10 70 700 | 104968 1398500 - -
Dy || 9 36 196 | 11664 123904 - -
Cu(®) || 8 423 798952 - - - -
Au(p?) || 8 424 798960 - - - -
Bu(p?) || 4 10 24 208 700 | 8230 | 29144
Dy(p?) || 4 9 16 64 196 | 1296 | 3600

Csu(@®) || 0 7 0 0 | 56385212104 - 0

Asu(@?) || 0 8 0 0 | 56385212112 - 0

Bau(p®) || © 2 0 0 12 38 0

D (p?) || 0 1 0 0 4 16 0

Csa(p®) || 3 214 399472 - - - -

Aqq(p?) || 4 216 399480 - - - -

Bga(p?) || 2 6 12 104 356 | 4134 | 14572

Dy(p?) || 1 4 4 16 64 | 441 900
Ci(») || 3 205 399472 - - - -
A(p?) || 4 208 399480 - - - -
Bi(p?) | 2 4 12 104 344 | 4096 | 14572
Di(p?) || 1 1 4 16 36 | 256 | 900

Table 1: Numbers of circulant p?-graphs and contributing terms, p prime




Analytical Enumeration of Circulant Graphs with Prime-Squared Number of Vertices 31

7.9. ClI-valencies. Let us return to the questions mentioned in 2.10. There are somewhat
unexpected qualitative implications of Theorem 7.4 that concern circulants specified by va-
lencies.

In the well-known terminology introduced by L. Babai [Bab77], the falsity of conjec-
ture A(n) for certain n means that the cyclic group Z, is not generally a G-CI-group and
not a G-Cl-group where CI stands for Cayley isomorphism and G (resp., Q’) denotes the set
of all undirected (resp., directed) graphs.

Therefore it is reasonable to narrow the set of graphs and to consider the restricted ana-
logue:

Conjecture Ap(n). Given n and a property P of graphs, isomorphic circulant n-graphs
possessing the property P are equivalent.

__ Let us denote the sets of undirected and directed graphs possessing property P by Gp and
Gp, respectively.

Now the general question becomes: For which “interesting” properties P is conjecture A p(n)
valid?

If the answer is affirmative, we call such P a Cl-property of circulant n-graphs. In other
words, P is a CI-property of undirected (resp., directed) circulant n-graphs if and only if Z,
is a Gp-Cl-group (resp., Gp-Cl-group).

Let (r) and [r] (r > 1) denote the properties of being a regular undirected or directed
graph of valency r, respectively.

For n = p?, the answer to the above question for properties (r) and [r] can be presented in
terms of the lacunarity for the difference of polynomials considered above (cf. formula (7.1.1)),
namely:

Conjecture A (p?) (resp., A[,](pz)) is valid if and only if the coefficient of t"
in the polynomial by (p?,t) — dy(p?,t) (resp., in the polynomial by(p?,t) — daq(p?,t))
vanishes.

Thus, Theorem 7.4 contains implicit answers in both cases. As for an explicit description
of such valencies r, we restrict ourselves to partial observations. The problem for undirected
graphs is little more tractable (moreover, for the primes stipulated in Corollary 7.6(3) directed
graphs are reduced to undirected ones), so it is this problem that will be considered. In other
words, we ask:

Which valencies of undirected p*-circulants are responsible for “non-Addm” behaviour?

The exponents r with zero coefficients in by(p?,t) — dy(p?,t) will be called p2-vanishing (for
undirected circulant graphs), or simply vanishing. Due to the above criterion, these are just
ClI-valencies, i.e. valencies r for which (r) is a CI-property of undirected circulant p?-graphs.

We distinguish simpler cases when coefficients of ¢" are equal to 0 in both b, and d,. Such
vanishing exponents r will be called trivial.

According to 7.3,

b (p2 t) = ngl (xy)|{mr::1+t2Tg yr::1+t2pr}7=1,2,...
du(p®,1)

Ty el ( )IP 1( )|{$T::1+t27‘,yT::l—}—tzW}r:l,z,“_

Note that by, dy and b, — dy are polynomials with non-negative coefficients.

Now some numerical results:
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(1) p=T7. Ip1(x) = %(w? + 2z3), whence
2

bu(7%,1) = 1+ %+t +1° + 1 + 310 4 3418 4 ¢

+ 128 4 3670 + 3872 4 31 4472 1M 100 41,
du(T%,t) = 1+ 82 + 11 + 15 + ¢ + 410 + 18 4 ¢

+ 128 4 30 432 3 412 gt 4 10 g8

and
ba(7%,1) — du(7%,t) = 2¢16 4 2418 1 2430 4 2432,

Lacunary intervals: [0,14], [20,28], [34,48].
Non-trivial vanishing exponents below 24: 0,2,4, 6,14, 20.

(2) p=11. We get similarly

ba(112,1) — dy(112,1) = 4t + 826 4 812 + 440
+ 8¢%6 + 16¢*8 + 16¢°° + 8¢%2 + ...

(we drop the symmetrical members with exponents greater than 60).
Lacunary intervals: [0,22], [32,44], [54,64],....
Non-trivial vanishing exponents below 60: 0,2,4, 6,8, 10, 22, 32,44, 54.

(3) p=13.

ba(132,1) — dy(13%,¢) = 5t2 + 12630 + 1632 + 1243
+ 5¢36 + 12¢%* + 30¢56 + 38¢58 + 30150
+ 1252 + 16180 + 38482 4+ 52434 + ...

(Again, the coefficients for greater exponents are determined by symmetry.)
Lacunary intervals: [0,26], [38,52], [64,78],....

Non-trivial vanishing exponents below 84: 0,2,4,6,8,10, 12,26, 38,52, 64, 78.
Note also that b, (13%,t) — d,(132,t) = bg(7?,t2) — dq(7?,1%) in this case.

Evidently, the first non-zero member in by, (p?,t) — dy(p?,t) equals ’%3752(1’“). This expo-
nent is much greater than the known general lower bound 6 of non-ClI-valencies valid for all
n (see [Sun88] and [Li95]) and shows that for various sets of graph orders, one can expect
much better bounds.

Studying the polynomials b, (p?,t) leads easily to the following

7.10. Triviality test. 2r is a trivial p>-vanishing exponent for undirected circulants if and
only if r is not representable in the form r = i + pj where ¢ and j are non-negative integer

not exceeding 7%1 .

Note that the non-trivial vanishing exponents between p — 1 and p? — p are, evidently, 2ip
and (2i—1)p—1,i=1,2,..., p%l. We may conclude in general that the majority of valencies
are Cl-valencies of undirected circulant graphs of order p?.
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8 Discussion

8.1. One of the main purposes of this paper is to introduce and compare two different
approaches for the enumeration of circulant graphs. In general, capabilities of the structural
approach are strongly limited by the exponential growth of the number of S-rings over Z,, for
many values of n. In spite of this limitation we are sure that this approach will create a nice
background for understanding the essence of the problem and developing effective strategies
for its solution. Moreover, it also serves as a bridge between techniques of S-rings and Pélya’s
enumeration theory.

8.2. The information required for the structural approach consists of the list of all S-rings over
Z,, their automorphism groups, and the normalizers in S,, of these automorphism groups.
In many cases such information is available at the theoretical level, e.g., for n = p, pq, p*.

Another possibility is created by the use of computers, especially by the use of the pack-
age COCO for computations on coherent configurations. In our case of circulant graphs,
the only necessary input in the “main technological chain” of this package consists of the
permutation (1,2,...,n —1), which generates the standard regular representation of Z,, (for
details see [FarK91] and [FarKM94]). Many interesting experimental results obtained with
the help of COCO and its predecessors (cf. [FieK9x]) still are await a convenient theoretical
generalization.

8.3. For composite n of a rather high “multiplicative complexity,” the multiplier approach is
of course the only possible way to elaborate the enumeration of circulant graphs. A striking
example arises in the case of square-free n, that is n = pi---ps where p1,p2,...,ps are
pairwise different primes. As follows from [Gol85] and [Muz94], in this case the problem
of the enumeration of so-called rational S-rings over Z,, is equivalent to the enumeration of
finite topologies with s points. The latter problem is regarded as one of the most difficult
problems in modern enumerative combinatorics, see, e.g., [Sta86]. Thus, the realization of the
structural approach for the square-free case looks rather hopeless (even in spite of the recent
classification of all S-rings over Z,,, n square-free, achieved in [Muz9y]). At the same time for
square-free n, the conjecture A(n) is valid. Therefore the enumeration via the one-multiplier
approach definitely will be successful (though with certain purely technical difficulties, and
probably in a rather cumbersome form).

8.4. The case n = p'™, p a prime, can be considered as a promising subject for combining both
approaches. In [KIliP80], two of the present authors proved a general Isomorphism Theorem
for p™-circulants. It is worthwhile to mention that the proof was based only on certain general
properties of S-rings over Z,» and not on the detailed structure of their automorphism
groups and the respective normalizers. (In fact, for many years, only limited knowledge
of the structure of these groups has been achieved. This is remedied in the forthcoming
paper [KliP9x].)

In principle, the aforementioned Isomorphism Theorem is sufficient for developing a similar
multiplier enumeration approach as elaborated in Section 7 for n = p?. But the constraints
imposed by this theorem on multipliers are rather subtle and their complexity grows quickly
with m.

It turns out that the count of p™-circulants can be reduced to a certain number (namely,
Cat(m), the Catalan number) of well specified independent Pélya-type counting problems
with respect to some subgroups of the direct product of m cyclic groups. Thus, in this case,
one may really speak of a joint use of the two methodologies: each Pdlya-type problem may
be solved via the multiplier approach while the general reduction of the initial problem is
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the subject of the structural approach. First “reductive” results related to the general case
n =p™, m > 3, will be published elsewhere [LisP9x].

In a more general setting, the enumeration of circulants still remains a challenging problem
on the boundary between algebraic and enumerative combinatorics. We believe that a more
deep use of S-rings will help in the future to achieve significant progress in this problem.
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