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Abstract. We prove q-analogues of two determinant identities of a previous paper

of the author. These determinant identities are related to the enumeration of totally
symmetric self-complementary plane partitions.

1. Introduction. Enumeration of plane partitions almost always leads to the prob-
lem of evaluating some determinant, see [1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 16, 17, 18, 19, 21,
22, 23, 24]. In a recent paper [13], we evaluated three determinants in order to prove
a conjecture of Robbins and Zeilberger [26, Conjecture C’=B’] which generalizes the
enumeration of totally symmetric self-complementary plane partitions. Two of these
three determinant evaluations [13, Theorems 8 and 10] read as follows, using the usual
notation (a)k := a(a+ 1) · · · (a+ k − 1), k ≥ 1, (a)0 := 1, for shifted factorials:

For any nonnegative integer n there hold

det
0≤i,j≤n−1

(
(x+ y + i+ j − 1)!

(x+ 2i− j)! (y + 2j − i)!

)
=
n−1∏
i=0

i! (x+ y + i− 1)! (2x+ y + 2i)i (x+ 2y + 2i)i
(x+ 2i)! (y + 2i)!

(1.1)
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and

det
0≤i,j≤n−1

(
(x+ y + i+ j − 1)! (y − x+ 3j − 3i)

(x+ 2i− j + 1)! (y + 2j − i+ 1)!

)
=
n−1∏
i=0

(
i! (x+ y + i− 1)! (2x+ y + 2i+ 1)i (x+ 2y + 2i+ 1)i

(x+ 2i+ 1)! (y + 2i+ 1)!

)

·
n∑
k=0

(−1)k
(
n

k

)
(x)k (y)n−k. (1.2)

The purpose of this paper is to provide q-analogues for these two determinant
evaluations. In the statements of our q-analogues we use the standard “q-notations”
(a; q)∞ :=

∏∞
i=0(1 − aqi) and (a; q)β := (a; q)∞/(aqβ ; q)∞ for shifted q-factorials, so

that in particular for any nonnegative integer we have (a; q)n = (1−a)(1−aq) · · · (1−
aqn−1), and [

n
k

]
q

:=
(1− qn)(1− qn−1) · · · (1− qn−k+1)

(1− qk)(1− qk−1) · · · (1− q)

for the q-binomials.
Our q-analogue of (1.1) reads as follows.

Theorem 1. For any nonnegative integer there holds

det
0≤i,j≤n−1

(
(q; q)x+y+i+j−1

(q; q)x+2i−j (q; q)y+2j−i

q−2ij

(−qx+y+1; q)i+j

)
=
n−1∏
i=0

q−2i2 (q2; q2)i (q; q)x+y+i−1 (q2x+y+2i; q)i (qx+2y+2i; q)i
(q; q)x+2i (q; q)y+2i (−qx+y+1; q)n−1+i

. (1.3)

Our q-analogue of (1.2) is the following.

Theorem 2. For any nonnegative integer n there holds

det
0≤i,j≤n−1

(
(q; q)x+y+i+j−1 (1− qy+2j−i − qy+2j−i+1 + qx+y+i+j+1)

(q; q)x+2i−j+1 (q; q)y+2j−i+1

· q−2ij

(−qx+y+2; q)i+j

)
=
n−1∏
i=0

(
q−2i2 (q2; q2)i (q; q)x+y+i−1 (q2x+y+2i+1; q)i (qx+2y+2i+1; q)i

(q; q)x+2i+1 (q; q)y+2i+1 (−qx+y+2; q)n−1+i

)

×
n∑
k=0

(−1)kqnk
[
n

k

]
q

qyk (qx; q)k (qy; q)n−k. (1.4)

We prove the (easier) Theorem 1 in section 2, and subsequently Theorem 2 in
section 3. The method that we use is also applied successfully in [13, 14, 15].
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The reader should observe that the q-analogues (1.3) and (1.4) when specialized to
q = 1 slightly differ from the identities (1.1) respectively (1.2) which they generalize
in that they contain powers of 2 on both sides, which however cancel as is easily seen.
This fact makes it unclear what the combinatorial significance of (1.3) or (1.4) could
be, while there is definitely a combinatorial meaning for (1.1) and (1.2), at least in
special cases, see [13, Theorem 1; 6, sec. 5].

Identity (1.3) is a generalization of a determinant evaluation of Andrews and Stan-
ton [7, Cor. 3] to which it reduces on setting y = 1. The paper [7] contains another
generalization [7, Theorem 8] which is different from ours.

As mentioned at the very beginning, there is a third determinant evaluation in [13,
Theorem 2; cf. Corollary 3]. However, I was not able to find a q-analogue for this
determinant evaluation. Finding such a q-analogue could be a challenging problem.

2. Proof of Theorem 1. First we rewrite the statement (1.3). We take as many
common factors out of the rows and columns of the determinant in (1.3) as possible,
such that the entries become polynomials in qx and qy. To be precise, we take

n−1∏
i=0

(q; q)x+y+i−1

(q; q)x+2i (q; q)y+2n−2 (−qx+y+1; q)n−1+i

out of the i-the row, i = 0, 1, . . . , n − 1, and we take (qy+2j+1; q)2n−2j−2, j =
0, 1, . . . , n− 1, out of the j-th row. Thus the determinant in (1.3) becomes

n−1∏
i=0

(q; q)x+y+i−1

(q; q)x+2i (q; q)y+2i (−qx+y+1; q)n−1+i

× det
0≤i,j≤n−1

(
q−2ij (qx+y+i; q)j (qx+2i−j+1; q)j

· (qy+2j−i+1; q)i (−qx+y+i+j+1; q)n−j−1

)
.

By comparing with (1.3) we see that we have to prove

det
0≤i,j≤n−1

(
q−2ij (qx+y+i; q)j (qx+2i−j+1; q)j

· (qy+2j−i+1; q)i (−qx+y+i+j+1; q)n−j−1

)
=
n−1∏
i=0

(
q−2i2 (q2; q2)i (q2x+y+2i; q)i (qx+2y+2i; q)i

)
,

or, if we replace qx by x and qy by y, equivalently

det
0≤i,j≤n−1

(
q−2ij (xyqi; q)j (xq2i−j+1; q)j (yq2j−i+1; q)i (−xyqi+j+1; q)n−j−1

)
=
n−1∏
i=0

(
q−2i2 (q2; q2)i (x2yq2i; q)i (xy2q2i; q)i

)
. (2.1)
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For convenience, let us denote the determinant on the left-hand side of (2.1) by
D1(x, y;n).

Our proof of (2.1) is divided into four steps. In steps 1 and 2 we show that the
right-hand side of (2.1) divides D1(x, y;n) as a polynomial in x and y. Then, in
Step 3 we show that the (total) degree in x and y of D1(x, y;n) is 6

(
n
2

)
, which is

exactly the degree of the right-hand side, so that D1(x, y;n) is a constant multiple of
the right-hand side. Finally we show in step 4 that this constant equals 1.

Step 1.
∏n−1
i=0 (x2yq2i; q)i is a factor of D1(x, y;n). Let us first concentrate on a

typical factor (1−x2yq2i+l), 0 ≤ i ≤ n−1, 0 ≤ l < i, of the product
∏n−1
i=1 (x2yq2i; q)i.

We claim that for each such factor there is a linear combination of the rows that
vanishes if the factor vanishes. More precisely, we claim that for any i, l with 0 ≤ i ≤
n− 1, 0 ≤ l < i there holds
b(i+l)/2c∑
s=l

q
(s−l)(5s+3l+3)

2 −(i−l)(2i+2l+1)x2(s−i) (1− q2i−3s+l)
(1− qi−s)

(qi−2s+l+1; q)s−l
(q; q)s−l

· (xq2s+1; q)2i−2s

(q−2i−l+s/x; q)i−s
(−q−2i−l+n+s/x; q)i−s

(−q; q)i−s
· (row s of D1(x, q−2i−l/x2;n))

= (row i of D1(x, q−2i−l/x2;n)). (2.2)

Restricting to the j-th column, it is seen that this means to check
b(i+l)/2c∑
s=l

q
(s−l)(5s+3l+3)

2 −(i−l)(2i+2l+1)x2(s−i) (1− q2i−3s+l)
(1− qi−s)

(qi−2s+l+1; q)s−l
(q; q)s−l

· (xq2s+1; q)2i−2s

(q−2i−l+s/x; q)i−s
(−q−2i−l+n+s/x; q)i−s

(−q; q)i−s
· q−2sj (q−2i−l+s/x; q)j (xq2s−j+1; q)j

· (q−2i−l+2j−s+1/x2; q)s (−q1−2i+j−l+s/x; q)n−j−1

= q−2ij (q−i−l/x; q)j (xq2i−j+1; q)j

× (q−3i−l+2j+1/x2; q)i (−q1−i+j−l/x; q)n−j−1. (2.3)

Of course, this identity can be proven routinely by means of the q-version of Zeil-
berger’s algorithm (see the description in [10]; see also [25]). However, it is certainly
more interesting to find which basic hypergeometric identity is “behind” (2.3). Mizan
Rahman has kindly informed me that it is in fact a special case of a transformation
formula of his [20, (3.12); 8, (3.8.13)]. Namely, the left-hand side of (2.3) can be
rewritten in the form

q−2jl (q1−2i+2j−2l/x2; q)l (−q1−2i+j/x; q)−1+i−j−l+n

× (q−i−l/x; q)−i+j+l(q1−j+2lx; q)2i+j−2l

×
b(i−l)/2c∑
k=0

(1− q3k−2i+2l)
(1− q−2i+2l)

(−q−i+l; q)k (q2i−2j+2lx2; q)k (q−2i+j/x; q)k
(q; q)k (q1−i+l; q)k (−q1−2i+j/x; q)k

· (q−i+l; q2)k (q1−i+l; q2)k
(q1−j+2lx; q2)k (q2−j+2lx; q2)k

qk,
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and so can be summed by using Lemma A1 with n = i − l, b = q2i−2j+2lx2, and
c = q−2i+j/x. Lemma A1 indeed follows from the aforementioned transformation
formula of Rahman, as is shown in the Appendix.

This establishes the claim that the determinant D1(x, y;n) vanishes if a factor
(1 − x2yq2i+l), 0 ≤ i ≤ n − 1, 0 ≤ l < i, vanishes. Since for equal factors the
corresponding linear combinations of the rows are linearly independent, the complete
product

∏n−1
i=0 (x2yq2i; q)i must divide the determinant D1(x, y;n).

Step 2.
∏n−1
i=0 (xy2q2i; q)i is a factor of D1(x, y;n). The reasoning that∏n−1

i=0 (xy2q2i)i is a factor of D1(x, y;n) is similar. Also here, let us concentrate
on a typical factor (1 − xy2q2j+l), 0 ≤ j ≤ n − 1, 0 ≤ l < j. This time we claim
that for each such factor there is a linear combination of the columns that vanishes
if the factor vanishes. More precisely, we claim that for any j, l with 0 ≤ j ≤ n − 1,
0 ≤ l < j there holds

b(j+l)/2c∑
s=l

q
(s−l)(5s+3l+3)

2 −(j−l)(2j+2l+1)y2(s−j) (1− q2j−3s+l)
(1− qj−s)

(qj−2s+l+1; q)s−l
(q; q)s−l

· (yq2s+1; q)2j−2s

(−q; q)j−s
· (column s of D1(q−2j−l/y2, y;n))

= (column j of D1(q−2j−l/y2, y;n)).

Restricting to the i-th row, we see that this means to check

b(j+l)/2c∑
s=l

q
(s−l)(5s+3l+3)

2 −(j−l)(2j+2l+1)y2(s−j) (1− q2j−3s+l)
(1− qj−s)

(qj−2s+l+1; q)s−l
(q; q)s−l

· (yq2s+1; q)2j−2s

(−q; q)j−s
· q−2is (q−2j−l+i/y; q)s (q−2j−l+2i−s+1/y2; q)s

· (yq2s−i+1; q)i(−q1+i−2j−l+s/y; q)n−s−1

= q−2ij (q−2j−l+i/y; q)j (q−3j−l+2i+1/y2; q)j

· (yq2j−i+1; q)i (−q1+i−j−l/y; q)n−j−1.

The observation that this summation is equivalent to (2.3) with x replaced by y and
with i and j interchanged establishes the claim. Similarly to as before, this shows
that the complete product

∏n−1
i=0 (xy2q2i; q)i divides D1(x, y;n).

Altogether, this implies that
∏n−1
i=0

(
(x2yq2i; q)i (xy2q2i; q)i

)
, and hence the right-

hand side of (2.1), divides D1(x, y;n), as desired.
Step 3. D1(x, y;n) is a polynomial in x and y of degree 6

(
n
2

)
. This is because each

term in the defining expansion of the determinant D1(x, y;n) (the determinant on
the left-hand side of (2.1)) has degree 6

(
n
2

)
as a polynomial in x and y. Since the

right-hand side of (2.1), which by steps 1 and 2 divides D1(x, y;n) as a polynomial in
x and y, also has degree 6

(
n
2

)
, D1(x, y;n) and the right-hand side of (2.1) differ only

by a multiplicative constant.
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Step 4. The evaluation of the multiplicative constant. To show that the multiplica-
tive constant, which according to step 3 is between D1(x, y;n) (the left-hand side of
(2.1)) and the right-hand side of (2.1), is indeed 1, we compare the constant coefficient
on both sides of (2.1).

The constant term of D1(x, y;n) equals det0≤i,j,≤n−1(q−2ij). This is a Vander-
monde determinant and hence equals∏

1≤i<j≤n

(q−2j − q−2i) = q
∑n
j=1(−2j2)

∏
1≤i<j≤n

(1− q2j−2i) = q
∑n
j=1(−2j2)

n−1∏
i=0

(q2; q2)i.

This is exactly the constant term of the right-hand side of (2.1). So indeed, the
left-hand and right-hand side of (2.1) are equal, which completes the proof of the
Theorem. �

3. Proof of Theorem 2. Proving Theorem 2 is more difficult. The reader may take
the fact that the determinant in (1.4) does not factor completely into “cyclotomic”
factors (unlike the determinant in (1.3)) as an indication why this is the case.

We begin by manipulating the determinant on the left-hand side of (1.4), quite
analogously as at the beginning of the proof of (1.3). Namely, we take

n−1∏
i=0

(q; q)x+y+i−1

(q; q)x+2i+1 (q; q)y+2n−1 (−qx+y+2; q)n−1+i

out of the i-th row, i = 0, 1, . . . , n−1, and we take (qy+2j+2; q)2n−2j−2 out of the j-th
column, j = 0, 1, . . . , n− 1. Thus the determinant in (1.4) becomes

n−1∏
i=0

(q; q)x+y+i−1

(q; q)x+2i+1 (q; q)y+2i+1 (−qx+y+2; q)n−1+i

× det
0≤i,j≤n−1

(
q−2ij (qx+y+i; q)j (qx+2i−j+2; q)j (qy+2j−i+2; q)i (−qx+y+i+j+2; q)n−j−1

· (1− qy+2j−i − qy+2j−i+1 + qx+y+i+j+1)
)
.

By comparing with (1.4), and replacing qx by x and qy by y, we see that Theorem 2
is equivalent to the statement:

det
0≤i,j≤n−1

(
q−2ij (xyqi; q)j (xq2i−j+2; q)j (yq2j−i+2; q)i (−xyqi+j+2; q)n−j−1

· (1− yq2j−i − yq2j−i+1 + xyqi+j+1)
)

=
n−1∏
i=0

(
q−2i2 (q2; q2)i (x2yq2i+1; q)i (xy2q2i+1; q)i

)
×

n∑
k=0

(−1)kqnk
[
n

k

]
q

yk (x; q)k (y; q)n−k. (3.1)

For convenience, let us denote the determinant in (3.1) by D2(x, y;n).
In order to be able to finally prove (3.1), we have to go through a sequence of three

Lemmas. As a first approximation, we identify most of the factors of D2(x, y;n).
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Lemma 1. For any nonnegative integer n there holds

D2(x, y;n) = det
0≤i,j≤n−1

(
q−2ij (xyqi; q)j (xq2i−j+2; q)j (yq2j−i+2; q)i

· (−xyqi+j+2; q)n−j−1 (1− yq2j−i − yq2j−i+1 + xyqi+j+1)
)

=
n−1∏
i=0

(
(x2yq2i+1; q)i (xy2q2i+1; q)i

)
· P (x, y;n), (3.2)

where P (x, y;n) is a polynomial in x and y, of degree n in x, and also of degree n in
y.

Proof. What we have to prove is that

n−1∏
i=0

(
(x2yq2i+1; q)i (xy2q2i+1; q)i

)
(3.3)

divides D2(x, y;n) as a polynomial in x and y. Once this is done, it follows immedi-
ately that the remaining factor P (x, y;n) then must have degree n in x and also in y.
For, in the expansion of the determinant D2(x, y;n) each term has degree 3

(
n
2

)
+n in

x, and the same holds for the degree in y. On the other hand, the degree in x of the
product (3.3) is 3

(
n
2

)
, the same being true for the degree in y. Therefore P (x, y;n)

must be a polynomial with degree n in x and degree n in y.

In order to show that indeed the product (3.3) divides D2(x, y;n), we first consider
just one half of this product,

∏n−1
i=0 (x2yq2i+1; q)i. Let us first concentrate on a typical

factor (1 − x2yq2i+l+1), 0 ≤ i ≤ n − 1, 0 ≤ l < i. Analogously to the proof of
Theorem 1, we claim that for each such factor there is a linear combination of the
rows that vanishes if the factor vanishes. More precisely, we claim that for any i, l
with 0 ≤ i ≤ n− 1, 0 ≤ l < i there holds

b(i+l)/2c∑
s=l

q
(s−l)(5s+3l+7)

2 −(i−l)(2i+2l+3)x2(s−i) (1− q2i−3s+l)
(1− qi−s)

(qi−2s+l+1; q)s−l
(q; q)s−l

· (xq2s+2; q)2i−2s

(q−2i−l+s−1/x; q)i−s
(−q−2i−l+n+s/x; q)i−s

(−q; q)i−s
· (row s of D2(x, q−2i−l−1/x2;n))

= (row i of D2(x, q−2i−l−1/x2;n)). (3.4)
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Restricting (3.4) to the j-th column, it is seen that this means to check

b(i+l)/2c∑
s=l

q
(s−l)(5s+3l+7)

2 −(i−l)(2i+2l+3)x2(s−i) (1− q2i−3s+l)
(1− qi−s)

(qi−2s+l+1; q)s−l
(q; q)s−l

· (xq2s+2; q)2i−2s

(q−2i−l+s−1/x; q)i−s
(−q−2i−l+n+s/x; q)i−s

(−q; q)i−s
· q−2sj (q−2i−l+s−1/x; q)j (xq2s−j+2; q)j

· (q−2i−l+2j−s+1/x2; q)s (−qs+j+1−2i−l/x; q)n−j−1

·
(

1− q2j−s−2i−l−1

x2
− q2j−s−2i−l

x2
+
qs+j−2i−l

x

)
= q−2ij (q−i−l−1/x; q)j (q2i−j+2x; q)j (q−3i+2j−l+1/x2; q)i

× (−q1−i+j−l/x; q)n−j−1

(
1− q−3i+2j−l−1

x2
− q−3i+2j−l

x2
+
q−i+j−l

x

)
. (3.5)

We may rewrite the left-hand side sum as

− q2l2−2i2−2jl+2j−5i+l−1x2l−2i−2

(−q; q)i−l−1
(q1−2i+2j−2l/x2; q)l (−q1−2i+j/x; q)n+i−j−l−1

× (q−1−i−l/x; q)−i+j+l (q2−j+2lx; q)2i+j−2l

×
b(i−l)/2c∑
k=0

(1 + q − q1−j+2l+2kx− q1+2i+2l−2j+kx2)
(1− q3k−2i+2l)
(1− q−2i+2l)

· (−q−i+l; q)k (q2i−2j+2lx2; q)k (q−1−2i+j/x; q)k
(−q1−2i+j/x; q)k (q1−i+l; q)k (q; q)k

(q−i+l; q2)k (q1−i+l; q2)k
(q2−j+2lx; q2)k (q3−j+2lx; q2)k

q2k.

The series can be summed by Lemma A2 with n = i− l and B = xq2l−j . After some
manipulation one arrives at the right-hand side of (3.5).

This establishes the claim that the determinant D2(x, y;n) vanishes if a factor
(1−x2yq2i+l+1), 0 ≤ i ≤ n− 1, 0 ≤ l < i, vanishes. Again, since for equal factors the
corresponding linear combinations of the rows are linearly independent, the complete
product

∏n−1
i=0 (x2yq2i+1; q)i divides D2(x, y;n).

The reasoning that
∏n−1
i=0 (xy2q2i+1; q)i is a factor of D2(x, y;n) is similar. Also

here, let us concentrate on a typical factor (1−xy2q2j+l+1), 0 ≤ j ≤ n− 1, 0 ≤ l < j.
This time we claim that for each such factor there is a linear combination of the
columns that vanishes if the factor vanishes. More precisely, we claim that for any
j, l with 0 ≤ j ≤ n− 1, 0 ≤ l < j there holds

b(j+l)/2c∑
s=l

q(s−l)(5s+3l+3)/2−((j−l)(2j+2l+1))y2(s−j)
(
1− q2j+l−3s

)
(1− qj−s)

(q1+j+l−2s; q)s−l
(−q; q)j−s (q; q)s−l

· (yq2s+2; q)2j−2s · (column s of D2(q−2j−l−1/y2, y;n))

= (column j of D2(q−2j−l−1/y2, y;n)). (3.6)
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Restricting to the i-th row, we see that this means to check

b(j+l)/2c∑
s=l

q(s−l)(5s+3l+3)/2−((j−l)(2j+2l+1))y2(s−j)
(
1− q2j+l−3s

)
(1− qj−s)

(q1+j+l−2s; q)s−l
(−q; q)j−s (q; q)s−l

· (yq2s+2; q)2j−2s · q−2is(q−1+i−2j−l/y; q)s (q1+2i−2j−l−s/y2; q)s

· (yq2s−i+2; q)i (−q1+i−2j−l+s/y; q)n−s−1

(
1− yq2s−i − yq2s−i+1 +

qi−2j−l+s

y

)
= q−2ij (q−1+i−2j−l/y; q)j(q1+2i−3j−l/y2; q)j (yq2j−i+2; q)i

× (−q1+i−j−l/y; q)n−j−1

(
1− yq2j−i − yq2j−i+1 +

qi−j−l

y

)
. (3.7)

Again, we rewrite the left-hand side series,

− q1+2j−i−2ijy

(−q; q)j−l−1
(q1+2i−2j−2l/y2; q)l (q−1−2j/y; q)i+2j−2l (−q1+i−2j/y; q)n−l−1

× (q−1+i−2j−l/y; q)l−i (q2−i+2jy; q)i

×
b(j−l)/2c∑
k=0

(
1 +

1
q
− q2i−2j−2l−k−1

y2
− qi−2l−2k−1

y

)
(1− q−3k+2j−2l)

(1− q2j−2l)

· (−qj−l; q−1)k (q2i−2j−2l/y2; q−1)k (q2j−i+1y; q−1)k
(−q−1−i+2jy; q−1)k (q−1+j−l; q−1)k (q−1; q−1)k

· (qj−l; q−2)k (q−1+j−l; q−2)k
(q−2+i−2l/y; q−2)k (q−3+i−2l/y; q−2)k

q−2k.

The series can be summed by Lemma A2 with q replaced by 1/q, n = j − l, B =
q−2l+i/y. Similarly to as before, this eventually shows that the complete product∏n−1
i=0 (xy2q2i+1; q)i divides D2(x, y;n).
Altogether, this implies that

∏n−1
i=0

(
(x2yq2i+1; q)i (xy2q2i+1; q)i

)
divides

D2(x, y;n), as desired. This completes the proof of Lemma 1. �

Next, we locates several zeros of the polynomial factor P (x, y;n) of D2(x, y;n)
(recall (3.2) for the definition of P (x, y;n) and D2(x, y;n)).

Lemma 2. If u, v are nonnegative integers with u + v ≤ n − 1, then
P (q−u, q−v;n) = 0, with P (x, y;n) the polynomial in (3.2).

Proof. Let u, v be nonnegative integers with u+v ≤ n−1. The polynomial P (x, y;n)
is defined by (3.2),

D2(x, y;n) =
n−1∏
i=0

(
(x2yq2i+1; q)i (xy2q2i+1; q)i

)
· P (x, y;n), (3.8)

where D2(x, y;n) is the determinant in (3.1), respectively (3.2). What we would like
to do is to set x = q−u and y = q−v in (3.8), prove that D2(q−u, q−v;n) equals
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0, that the product on the right-hand side of (3.8) is nonzero, and conclude that
therefore P (q−u, q−v;n) must be 0. However, the product on the right-hand side of
(3.8) unfortunately (usually) is 0 for x = q−u and y = q−v. Therefore we have to find
a way around this difficulty.

To begin with, we set y = q−v in (3.8). Before setting x = q−u, we have to cancel
all factors of the form (1 − xqu) that occur in the product on the right-hand side
of (3.8). To accomplish this, we have to “generate” these factors on the left-hand
side. This is done by reading through the proof of Lemma 1 with y = q−v. To make
this more precise, observe that (1 − xqu) divides a typical factor 1 − x2q−v+2i+l+1,
0 ≤ i ≤ n − 1, 0 ≤ l < i, of the first half of the product in (3.8) if and only if
2u = −v + 2i+ l + 1. Therefore, if we recall (3.4), for each solution (i, l) of

2u = −v + 2i+ l + 1, with 0 ≤ i ≤ n− 1, 0 ≤ l < i, (3.9)

we subtract the linear combination

b(i+l)/2c∑
s=l

q
(s−l)(5s+3l+7)

2 −(i−l)(2i+2l+3)x2(s−i) (1− q2i−3s+l)
(1− qi−s)

(qi−2s+l+1; q)s−l
(q; q)s−l

· (xq2s+2; q)2i−2s

(q−2i−l+s−1/x; q)i−s
(−q−2i−l+n+s/x; q)i−s

(−q; q)i−s
· (row s of D2(x, q−v;n))

(3.10)

of rows of D2(x, q−v;n) from row i of D2(x, q−v;n). Let us denote the resulting
determinant by D̃2(x, q−v;n). By (3.4), the effect is that (1− x2q−v+2i+l+1) = (1−
x2q2u) (the equality being due to (3.9)), is a factor of each entry of the i-th row of
D̃2(x, q−v;n), for each solution (i, l) of (3.9), in particular (1−xqu) is a factor of each
entry of the i-th row of D̃2(x, q−v;n). For later use we record that the (i, j)-entry of
D̃2(x, q−v;n), (i, l) a solution of (3.9), reads

q−2ij (xq−v+i; q)j (xq2i−j+2; q)j (q−v+2j−i+2; q)i (−xq−v+i+j+2; q)n−j−1

×
(
1− q−v+2j−i − q−v+2j−i+1 + xq−v+i+j+1

)
−
b(i+l)/2c∑
s=l

q
(s−l)(5s+3l+7)

2 −(i−l)(2i+2l+3)x2(s−i) (1− q2i−3s+l)
(1− qi−s)

(qi−2s+l+1; q)s−l
(q; q)s−l

· (xq2s+2; q)2i−2s

(q−2i−l+s−1/x; q)i−s
(−q−2i−l+n+s/x; q)i−s

(−q; q)i−s
· q−2sj (xq−v+s; q)j (xq2s−j+2; q)j (q−v+2j−s+2; q)s

· (−xq−v+s+j+2; q)n−j−1 (1− q−v+2j−s − q−v+2j−s+1 + xq−v+s+j+1). (3.11)

Similar considerations concern the second half of the product in (3.8). Omitting the
details, for each solution (j, l) of

u = −2v + 2j + l + 1, with 0 ≤ j ≤ n− 1, 0 ≤ l < j, (3.12)
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we subtract the linear combination

b(j+l)/2c∑
s=l

q(s−l)(5s+3l+3)/2−((j−l)(2j+2l+1))q−2v(s−j)

·
(
1− q2j+l−3s

)
(1− qj−s)

(q1+j+l−2s; q)s−l
(−q; q)j−s (q; q)s−l

(q−v+2s+2; q)2j−2s · (column s of D̃2(x, q−v;n))

of columns of D̃2(x, q−v;n) (we definitely mean D̃2(x, q−v;n), and not D2(x, q−v;n))
from column j of D̃2(x, q−v;n). By (3.6), each entry of the j-th column of the new
determinant will have (1−xqu) as a factor. We remark that entries that were changed
by a row and column operations will now have (1 − xqu)2 as a factor. Now we take
(1 − xqu) out of the i-th row, for each solution (i, l) of (3.9), and we take (1 − xqu)
out of the j-th column, for each solution (j, l) of (3.12). We denote the resulting
determinant by D2(x, q−v;n). Thus, we have

D2(x, q−v;n) = (1− xqu)#(solutions (i,l) of (3.9))+#(solutions (j,l) of (3.12))D2(x, q−v;n).

Plugging this into (3.8), we see that now all factors (1 − xqu) can be cancelled on
both sides, so that we obtain

D2(x, q−v;n) = C(x, q−v;n)P (x, q−v;n),

for some C(x, q−v;n) that does not vanish for x = q−u. Hence, if we are able to prove
that D2(q−u, q−v;n) = 0, it would follow that P (q−u, q−v;n) = 0, which is what we
want to establish.

So we are left with showing that D2(q−u, q−v;n) = 0. This will be implied by the
following two claims: The matrix of which D2(q−u, q−v;n) is the determinant has a
block form (see (3.13)), where

Claim 1. the upper-right block, consisting of the entries that are in one of the rows
0, 1, . . . , u+ v and one of the columns u+ v+ 1, u+ v+ 2, . . . , n− 1, is a zero matrix,
and where

Claim 2. the determinant of the upper-left block, N , consisting of the entries that
are in one of the rows 0, 1, . . . , u + v and one of the columns 0, 1, . . . , u + v, equals
0. (Note that it is at this point that we need the assumption u + v ≤ n − 1 in the
Lemma. It guarantees that the picture (3.13) makes sense, meaning that row u + v
and column u + v are really a row and a column of the matrix; recall that the rows
and columns are numbered from 0 to n− 1.)

N 0

∗ ∗
← i=u+v

j=u+v
↓

(3.13)
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Indeed, Claim 1 and Claim 2 imply D2(q−u, q−v;n) = 0. For, the determinant
of a block matrix of the form (3.13) equals the product of the determinants of the
upper-left block and the lower-right block, the first determinant being equal to 0 by
Claim 2.

Claim 1 is most obvious for all the entries that did not change in the transition from
D2(x, q−v;n) to D2(x, q−v;n). For, the (i, j)-entry of D2(x, q−v;n), by its definition
in (3.1), is

q−2ij (q−u−v+i; q)j (q−u+2i−j+2; q)j (q−v+2j−i+2; q)i (−q−u−v+i+j+2; q)n−j−1

· (1− q−v+2j−i − q−v+2j−i+1 + q−u−v+i+j+1). (3.14)

Clearly, if 0 ≤ i ≤ u + v and u + v + 1 ≤ j ≤ n − 1, we have (q−u−v+i; q)j = 0, and
so the complete expression in (3.14) is 0.

On the other hand, let us consider an (i, j)-entry of D2(x, q−v;n) that changed
in the transition from D2(x, q−v;n) to D2(x, q−v;n). First we want to know, where
such an entry could be located. If it changed under a row operation, then (i, l) is a
solution of (3.9), for some l. By (3.9) we have

−v + 2i+ 1 ≤ −v + 2i+ l + 1 = 2u and 2u = −v + 2i+ l + 1 ≤ −v + 3i,

and so,
2u+ v

3
≤ i ≤ 2u+ v − 1

2
. (3.15)

If the (i, j)-entry changed under a column operation, then (j, l) is a solution of (3.12),
for some l. Similar arguments then give, using (3.12), that

u+ 2v
3

≤ j ≤ u+ 2v − 1
2

. (3.16)

In particular we have j < u + v, so an (i, j)-entry that is located in the upper-right
block, which we are currently interested in, did not change under a column operation.

But it could have changed under a row operation. Such an (i, j)-entry is given by
(3.11) divided by (1− xqu). (Recall that (3.11) was the expression for an (i, j)-entry
that changed under a row operation before we factored (1−xqu) out of the i-th row.)
Thus, it can be written as

(xq−v+i; q)u+v−i+1

(1− xqu)

(
q−2ij (xqu+1; q)i+j−u−v−1 (xq2i−j+2; q)j (q−v+2j−i+2; q)i

× (−xq−v+i+j+2; q)n−j−1

(
1− q−v+2j−i − q−v+2j−i+1 + xq−v+i+j+1

)
−
b(i+l)/2c∑
s=l

q
(s−l)(5s+3l+7)

2 −(i−l)(2i+2l+3)x2(s−i) (1− q2i−3s+l)
(1− qi−s)

(qi−2s+l+1; q)s−l
(q; q)s−l

· (xq2s+2; q)2i−2s

(q−2i−l+s−1/x; q)i−s
(−q−2i−l+n+s/x; q)i−s

(−q; q)i−s
· q−2sj (xq−v+s; q)i−s (xqu+1; q)j+s−u−v−1 (xq2s−j+2; q)j (q−v+2j−s+2; q)s

· (−xq−v+s+j+2; q)n−j−1 (1− q−v+2j−s − q−v+2j−s+1 + xq−v+s+j+1)
)
. (3.17)
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We have to show that (3.17) vanishes for x → q−u. Because of the denominators, it
is not even evident that (3.17) is well-defined when x→ q−u. However, by (3.15) we
have u+ v − i ≥ (v + 1)/2 ≥ 0. Hence,

(xq−v+i)u+v−i+1

(1− xqu)
= (xq−v+i)u+v−i,

and so the first term in (3.17) is well-defined when x → q−u. Furthermore, the
denominator in the sum in (3.17) (neglecting the terms that do not depend on x)
when x→ q−u becomes

(qu−2i−l+s−1; q)i−s = (1− qu−2i−l+s−1) · · · (1− qu−i−l−2). (3.18)

By (3.9) and (3.15) we have u− i− l−2 = −u−v+ i−1 ≤ 1
2 (−v−3) < 0. Therefore,

all the terms in (3.18) are nonzero, which means that the denominator in the sum
in (3.17) is nonzero when x → q−u. Hence, (3.17) is well-defined for x → q−u. To
demonstrate that it actually vanishes for x→ q−u, we show that the second term in
(3.17) (the term in big parentheses) equals 0 for x = q−u.

To see this, set x = q−u, and by (3.9) replace l by 2u+v−2i−1 in the sum (3.17),
and then convert it into hypergeometric notation, to obtain

− q4ij+4j− i
2 + 3i2

2 −u−4iu−4ju+2u2− 5v
2 −5iv−2jv+4uv+ 3v2

2

× (−1; q)−3i+2u+v (q; q)−2−2i+j+u (−q1−2i+j+u; q)3i−j+n−2u−v

× (q3+2i+2j−2u−2v; q)−1−2i+2u+v (q−4i−j+3u+2v; q)2+6i+j−4u−2v

×
b(−2u−v+3i+1)/2c∑

k=0

(+1 + q − q−1−2i−2j+k+2u+2v − q−1−4i−j+2k+3u+2v)

· (1− q1−6i+4u+2v)
(1− q−2−6i+4u+2v)

(−q−1−3i+2u+v; q)k (q−2−2i−2j+2u+2v; q)k (q−1−2i+j+u; q)k
(q−3i+2u+v; q)k − q1−2i+j+u; q)k (q; q)k

· (q−1−3i+2u+v; q2)k (q−3i+2u+v; q2)k
(q−4i−j+3u+2v; q2)k (q1−4i−j+3u+2v; q2)k

q2k. (3.19)

The series can be summed by means of Lemma A2 with n = −2u − v + 3i + 1 and
B = q3u+2v−4i−j−2. Then, after simplification, (3.19) becomes

q−2ij(q; q)i+j−u−v−1 (q−u+2i−j+2; q)j (q−v+2j−i+2; q)i

× (−q−u−v+i+j+2; q)n−j−1

(
1− q−v+2j−i − q−v+2j−i + q−u−v+i+j+1

)
,

which is exactly the first term in big parentheses in (3.17) for x = q−u. Therefore,
the term in big parentheses in (3.17) vanishes for x = q−u. This settles Claim 1.

Next we turn to Claim 2. We have to prove that the determinant of the matrix N ,
consisting of the entries of D2(q−u, q−v;n) that are in one of the rows 0, 1, . . . , u+ v
and one of the columns 0, 1, . . . , u+ v (recall (3.13)), equals 0. We do this by locating
enough zeros in the matrix N .
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We concentrate on the entries that did not change in the transition from
D2(x, q−v;n) to D2(x, q−v;n). For the location of the various regions in the ma-
trix N that we are going to describe, always consult Figure 1 which gives a rough
sketch.

N =

A
A
A
A
A
A
A
A
A
A
A
A
A

H
HHH

HHHH
HHH

HH

�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

-
i = 0

i =
⌈
u−1

2

⌉
i =

⌈
2u+v

3

⌉
− 2 + χ(u ≡ v(3))

i =
⌊

2u+v−1
2

⌋
+ 1

i = u+ v

0
j =

j =⌈
v−1

2

⌉

⌈
u+2v

3

⌉
− 1

j =

j =⌊
u+2v−1

2

⌋
+ 1

u+ v
j =

i = u+j−2
2

j = v+i−2
2 i+ j = u+ v

I II

IVIII

Figure 1

By earlier considerations, an (i, j)-entry did not change if i is outside the range
(3.15), i.e.,

0 ≤ i ≤
⌈

2u+ v

3

⌉
− 1 or

⌊
2u+ v − 1

2

⌋
+ 1 ≤ i ≤ n− 1, (3.20)

and if j is outside the range (3.16), i.e.,

0 ≤ j ≤
⌈
u+ 2v

3

⌉
− 1 or

⌊
u+ 2v − 1

2

⌋
+ 1 ≤ j ≤ n− 1. (3.21)

As we already noted, such an (i, j)-entry is given by (3.14). The first term in (3.14)
vanishes if and only if

i ≤ u+ v and i+ j > u+ v. (3.22)

The second term in (3.14) vanishes if and only if⌈
u− 1

2

⌉
≤ i ≤ u+ j − 2

2
. (3.23)

The third term in (3.14) vanishes if and only if⌈
v − 1

2

⌉
≤ j ≤ v + i− 2

2
. (3.24)
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Obviously, the fourth term in (3.14) never vanishes. Finally, we need the following
sufficient conditions in order the fifth term to vanish: The fifth term in (3.14) vanishes
if

u− v = 3(i− j) and u+ v − i− j = 0 or 2. (3.25)

Now we claim that in the following four regions of N all the entries are 0, except
for the cases u = 0, v = 1, and u = 1, v = 0, which we treat separately. Again, to get
an idea of the location of these regions, consult Figure 1.

Region I: All (i, j)-entries with⌈
u− 1

2

⌉
≤ i ≤

⌈
2u+ v

3

⌉
− 2 + χ(u ≡ v (mod 3))

and
⌈
v − 1

2

⌉
≤ j ≤

⌈
u+ 2v

3

⌉
− 1, (3.26)

where χ(A)=1 if A is true and χ(A)=0 otherwise.
Region II: All (i, j)-entries with⌈
u− 1

2

⌉
≤ i ≤

⌈
2u+ v

3

⌉
− 2 + χ(u ≡ v (mod 3))

and
⌊
u+ 2v − 1

2

⌋
+ 1 ≤ j ≤ u+ v. (3.27)

Region III: All (i, j)-entries with⌊
2u+ v − 1

2

⌋
+ 1 ≤ i ≤ u+ v and

⌈
v − 1

2

⌉
≤ j ≤

⌈
u+ 2v

3

⌉
− 1. (3.28)

Region IV: All (i, j)-entries with⌊
2u+ v − 1

2

⌋
+ 1 ≤ i ≤ u+ v and

⌊
u+ 2v − 1

2

⌋
+ 1 ≤ j ≤ u+ v. (3.29)

Instantly we observe that all four regions satisfy (3.20) and (3.21). So, all the
entries in these regions are given by (3.14). Hence, to verify that all these entries are
0 we have to show that for each entry one of (3.22)–(3.25) is true. Of course, we treat
the four regions separately.

ad Region I. First let i ≤ d(2u+ v)/3e− 2. In case that i ≤ j + (u− v)/3, we have

i ≤
i+ j + u−v

3

2
≤
⌈

2u+v
3

⌉
− 2 + j + u−v

3

2

≤
2u+v

3 + 2
3 − 2 + j + u−v

3

2
=
u+ j − 2

2
+

1
3
.
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Combined with (3.26), this implies that (3.23) is satisfied. On the other hand, in case
that i > j + (u− v)/3, or equivalently,

i ≥ j +
u− v

3
+

1
3
, (3.30)

we have, using the last inequality in (3.26),

j ≤
i+ j − u−v

3 −
1
3

2
≤
i+
⌈
u+2v

3

⌉
− 1− u−v

3 −
1
3

2

≤
i+ u+2v

3 + 2
3 − 1− u−v

3 −
1
3

2
=
v + i− 2

2
+

2
3
.

Combined with (3.26), this implies that (3.24) is satisfied, unless j = (v + i − 1)/2.
But if we plug this into (3.30), we obtain i ≥ (2u+ v)/3− 1/3, a contradiction to our
assumption i ≤ d(2u+ v)/3e − 2.

Collecting our results so far, we have seen that if u − v ≡ 1, 2 (mod 3), then
each (i, j)-entry in region I satisfies (3.23) or (3.24). If u ≡ v (mod 3), region I also
contains entries from row i = (2u+ v)/3− 1. First let j ≤ (u+ 2v)/3− 2. Then it is
immediate that (3.24) is satisfied. If j = (u+ 2v)/3− 1, then (3.25) is satisfied. This
shows that if u ≡ v (mod 3) then an (i, j)-entry in region I satisfies (3.23), (3.24), or
(3.25).

ad Region II. Here, by (3.27), we have

i+ j ≥
⌈
u− 1

2

⌉
+
⌊
u+ 2v − 1

2

⌋
+ 1 = u+ v.

Hence, (3.22) is satisfied, except when i = d(u− 1)/2e and j = b(u+ 2v − 1)/2c+ 1.
But in that case there holds (3.23), apart from a few exceptional cases. For, if u 6= 0, 2
then ⌈

u− 1
2

⌉
≤
u+

⌊
u−1

2

⌋
− 1

2
.

Since v is nonnegative it follows that⌈
u− 1

2

⌉
≤
u+

(⌊
u+2v−1

2

⌋
+ 1
)
− 2

2
, (3.31)

which is nothing but (3.23) with the current choices of i and j. Thus, (3.23) is
satisfied except when u = 0 or u = 2. But (3.31), and hence (3.23), holds in more
cases. Namely, by inspection, if u = 0, then (3.31) holds for v ≥ 2, and if u = 2, then
(3.31) holds for v ≥ 1. So the only cases in which (3.31) is not true are u = v = 0,
u = 0 and v = 1, u = 2 and v = 0. Starting from the back, the case u = 2, v = 0 does
not bother us, since in that case region II is empty (there is no i satisfying (3.27)). The
case u = 0, v = 1 is one of the exceptional cases that are treated separately. Finally,
in case u = v = 0 we have i = d(u− 1)/2e = 0 and j = b(u+ 2v − 1)/2c + 1 = 0.
Hence, (3.25) is satisfied.
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ad Region III. We argue as in the considerations concerning region II. In fact, the
arguments given there can be used word by word, with i and j interchanged, and with
u and v interchanged.

ad Region IV. By (3.29) we have

i+ j ≥
⌊

2u+ v − 1
2

⌋
+ 1 +

⌊
u+ 2v − 1

2

⌋
+ 1 ≥ 3u+ 3v

2
+ 1 > u+ v.

Hence, (3.22) is satisfied.
Consequently, if we are not in one of the cases u = 0, v = 1, or u = 1, v = 0, then

the rows d(u− 1)/2e , . . . , d(2u+ v)/3e − 2 + χ(u ≡ v (mod 3)), b(2u+ v − 1)/2c +
1, . . . , u + v are rows with zeros in columns d(v − 1)/2e , . . . , d(u+ 2v)/3e − 1,
b(u+ 2v − 1)/2c+ 1, . . . , u+ v. These are⌈

2u+ v

3

⌉
− 1 + χ(u ≡ v (mod 3))−

⌈
u− 1

2

⌉
+ u+ v −

⌊
2u+ v − 1

2

⌋
(3.32)

rows, containing possibly nontrivial entries in only⌈
v − 1

2

⌉
+
⌊
u+ 2v − 1

2

⌋
−
⌈
u+ 2v

3

⌉
+ 1 (3.33)

columns. By simple algebra, the difference between (3.32) and (3.33) equals

u− v +
⌈
v − u

3

⌉
+
⌈

2v − 2u
3

⌉
+ χ(u ≡ v (mod 3)). (3.34)

As is easily verified, the expression (3.34) equals 1 always. So we have found N + 1
rows (with N the expression in (3.33)) that actually live in RN (R denoting the set
of real numbers). Hence, they must be linearly dependent. This implies that the
determinant of N must be 0.

Finally we settle the cases u = 0, v = 1, and u = 1, v = 0. If u = 0 and v = 1 then
the matrix N is a 2× 2 matrix (cf. Figure 1) in which row 1 vanishes. For, i = 1 and
j = 0 satisfy (3.20), (3.21), and (3.24), while i = 1 and j = 1 satisfy (3.20), (3.21),
and (3.22). Hence, det(N ) = 0. Similarly, if u = 1 and v = 0 then the matrix N is a
2× 2 matrix in which column 1 vanishes. For, i = 0 and j = 1 satisfy (3.20), (3.21),
and (3.23), while i = 1 and j = 1 satisfy (3.20), (3.21), and (3.22). Hence again,
det(N ) = 0.

Altogether, this implies that P (q−u, q−v;n) = 0, as we observed earlier. And this
is what we wanted to prove. �

As last lemma we prove a characterization theorem for the “big factor” on the right-
hand side of (1.4) (more precisely, on the right-hand side of (3.1)), which we wish to
identify as P (x, y;n). We shall eventually show that P (x, y;n) has all the properties
(1)–(4) that are stated below and thus be able to finish the proof of Theorem 2.
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Lemma 3. The polynomial

Q(x, y;n) =
n−1∏
i=0

(
q−2i2(q2; q2)i

) n∑
k=0

(−1)kqnk
[
n

k

]
q

yk(x; q)k(y; q)n−k (3.35)

satisfies the following four properties:
(1) Q(x, y;n) is a polynomial in x and y, of degree n in x, and also of degree n

in y.
(2) Q(q−u, q−v;n) = 0 for all nonnegative integers u and v with u+ v ≤ n− 1.
(3) Q(x/y, y;n) is a polynomial in x and y.

(4) Q(−q−n/y, y;n) = (−1)nq(
n
2)(−q; q)n

n−1∏
i=0

(
q−2i2(q2; q2)i

)
yn, for any nonneg-

ative integer n.
Moreover, the conditions (1)–(4) determine a polynomial in x and y uniquely.

Proof. ad (1). This is obvious from the definition (3.35).
ad (2). We have (q−u; q)k = 0 for k > u. Hence, if k > u the corresponding

summand in the sum in (3.35) vanishes for x = q−u and y = q−v. Now let k ≤ u.
Because of u + v ≤ n − 1 it follows that k < n − v, or equivalently, n − k > v. But
this implies (q−v; q)n−k = 0. Therefore also any summand with k ≤ u vanishes for
x = q−u and y = q−v. Thus, Q(q−u, q−v;n) = 0, as desired.

ad (3). This is obvious from the definition (3.35).
ad (4). Setting x = −q−n/y in (3.35), we get

Q(−q−n/y, y;n)∏n−1
i=0

(
q−2i2(q2; q2)i

) =
n∑
k=0

(−1)kqnk
[
n

k

]
q

yk(−q−n/y; q)k(y; q)n−k,

or after little manipulation,

Q(−q−n/y, y;n)∏n−1
i=0

(
q−2i2(q2; q2)i

) = (y; q)n
n∑
k=0

(−q−n/y; q)k (q−n; q)k
(q1−n/y; q)k (q; q)k

(
−qn+1

)k
.

The sum on the right-hand side can be summed by means of the q-Vandermonde
summation [8, (1.5.2); Appendix (II.7)],

n∑
k=0

(a; q)k (q−n; q)k
(c; q)k (q; q)k

(
cqn

a

)k
=

(c/a; q)n
(c; q)n

,

where n is a nonnegative integer. Thus we obtain

Q(−q−n/y, y;n)∏n−1
i=0

(
q−2i2(q2; q2)i

) = (−1)nq(
n
2)(−q; q)n yn,
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as desired.
Finally we have to confirm that indeed the properties (1)–(4) determine a polyno-

mial in x and y uniquely.
Let H(x, y) be a polynomial in x and y satisfying conditions (1)–(4). Because of

(1), H(x, y) can be written in the form

H(x, y) =
∑

0≤i,j≤n

aij y
n−j (x; q)i (y; q)j , (3.36)

with uniquely determined coefficients aij . Now, in (3.36) we set x = 1 and y = q−v,
0 ≤ v ≤ n − 1. Because of (2), we obtain 0 =

∑v
j=0 a0j q

−v(n−j)(q−v; q)j . From this
system of equations we get a0j = 0 for 0 ≤ j ≤ n − 1. Similarly, by using (2) with
x = q−1, q−2, . . . , q−(n−1), we get aij = 0 whenever i+ j ≤ n− 1.

Thus, H(x, y) can be written in the form

H(x, y) =
∑
i,j≥0

i+j≥n

aij y
n−j (x; q)i (y; q)j .

Next, property (3) comes into effect. According to that property, we have that

H(x/y, y;n) =
∑
i,j≥0

i+j≥n

aij y
n−i−j (y − x)(y − qx) · · · (y − qi−1x) (y; q)j (3.37)

is a polynomial in x and y. Let (i, j) be a pair with aij 6= 0, where i+ j is maximal,
and if there are several such pairs then choose one with maximal i. Then there occurs
a term yn−i−jxi in the corresponding summand in (3.37) which does not cancel. If
i+ j > n then the exponent of y is negative. However, this would contradict (3).

Therefore, H(x, y) can be written in the form

H(x, y;n) =
n∑
k=0

bk y
k (x; q)k (y; q)n−k,

where we set bk := ak,n−k.
Now we apply (4). We have

(−1)nq(
n
2)(−q; q)n

n−1∏
i=0

(
q−2i2(q2; q2)i

)
yn = H(−q−n/y, y;n)

=
n∑
k=0

bk y
k (−q−n/y; q)k (y; q)n−k

=
n∑
k=0

bk q
(k2)−nk (−yqn−k+1; q)k (y; q)n−k.

(3.38)
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It is straight-forward to see that the polynomials

(−yqn−k+1; q)k (y; q)n−k, k = 0, 1, . . . , n,

are linearly independent. Hence, by comparison of coefficients, equation (3.38) de-
termines the coefficients bk, k = 0, 1, . . . , n, uniquely, which implies that H(x, y) is
uniquely determined.

This completes the proof of the Lemma. �

Finally we are in the position to finalize the proof of Theorem 2.

Proof of Theorem 2. We verify that P (x, y;n) has properties (1)–(4) in Lemma 3.
Once this is done, it follows from Lemma 3 that P (x, y;n) equals the polynomial
Q(x, y;n) in (3.35), which is exactly what we want to show. This would complete the
proof of Theorem 2.

Now, P (x, y;n) satisfies property (1) because of Lemma 1, and it satisfies property
(2) because of Lemma 2.

To check property (3), replace x by x/y in (3.2) and then multiply both sides by
y(n2). Thus we obtain

det
0≤i,j≤n−1

(
q−2ij (xqi; q)j (y − xq2i−j+2) · · · (y − xq2i+1) (yq2j−i+2; q)i

· (−xqi+j+2; q)n−j−1 (1− yq2j−i − yq2j−i+1 + xqi+j+1)
)

=
n−1∏
i=0

(
(y − x2q2i+1) · · · (y − x2q3i) (xyq2i+1; q)i

)
· P (x/y, y;n).

The left-hand side and the product on the right-hand side are polynomial. Besides, we
know that the product on the right-hand side divides the left-hand side. So evidently,
P (x/y, y;n) is a polynomial in x and y.

Finally, regarding property (4), set x = −q−n/y in (3.2). Then, in the matrix on
the left-hand side, the term (q−n+i+j+2)n−j−1 appears. This term vanishes whenever
i + j ≤ n − 2. Hence, the matrix has triangular form. So the determinant is easily
calculated. Property (4) then follows after simplification. �

Appendix: Some basic hypergeometric identities

Here we prove the basic hypergeometric identities that are needed in the text. We
start with the summation needed in the proof of Theorem 1.

Lemma A1. Let n be a positive integer. Then

bn/2c∑
k=0

(
1− q3k−2n

)
(1− q−2n)

(−q−n; q)k (b; q)k (c; q)k (q1−2n/bc; q)k (q−n; q2)k (q1−n; q2)k
(q; q)k (q1−n; q)k (q2−2n/b; q2)k (q2−2n/c; q2)k (bcq; q2)k

qk

=
(b; q)n (c; q)n (bcqn; q)n (−q; q)n−1

(b; q2)n (c; q2)n (bcq; q2)n
. (A.1)
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Proof. We start with Rahman’s transformation formula [20, (3.12); 8, (3.8.13)]

∞∑
k=0

(
1− aq3k

)
1− a

(b; q)k (c; q)k (aq/bc; q)k
(q; q)k (aq/d; q)k (d; q)k

(a; q2)k (d; q2)k (aq/d; q2)k
(aq2/b; q2)k (aq2/c; q2) (bcq; q2)k

qk

=
(aq2; q2)∞ (bq; q2)∞ (cq; q2)∞ (aq2/bc; q2)∞
(q; q2)∞ (aq2/b; q2)∞ (aq2/c; q2)∞ (bcq; q2)∞

×
∞∑
k=0

(b; q2)k (c; q2)k (aq/bc; q2)k
(q2; q2)k (dq; q2)k (aq2/d; q2)k

q2k. (A.2)

Setting a = q−2n in this transformation formula, with n integral and n ≥ 1, we obtain
a summation for a terminating series,

n∑
k=0

(
1− q3k−2n

)
(1− q−2n)

(b; q)k (c; q)k (q1−2n/bc; q)k
(q; q)k (q1−2n/d; q)k (d; q)k

· (q−2n; q2)k (d; q2)k (q1−2n/d; q2)k
(q2−2n/b; q2)k (q2−2n/c; q2)k (bcq; q2)k

qk = 0. (A.3)

Now we let d tend to q−n. The effect is that all terms with n/2 < k < n vanish.
Hence, only the terms with 0 ≤ k ≤ n/2 and the one with k = n remain. Thus, if
we simplify the resulting (k = n)-term and put it on the right-hand side, we obtain
exactly (A.1). �

Finally we prove the summation which is needed in the proof of Theorem 2.

Lemma A2. Let n be a positive integer. Then

bn/2c∑
k=0

(
1 + q −B2q1+2n+k −Bq1+2k

) (1− q3k−2n)
(1− q−2n)

· (−q−n; q)k (B2q2n; q)k (q−1−2n/B; q)k
(−q1−2n/B; q)k (q1−n; q)k (q; q)k

(q−n; q2)k (q1−n; q2)k
(Bq2; q2)k (Bq3; q2)k

q2k

= q−(n2)
(
1 + q −Bq1+2n −B2q1+3n

) (−q; q)n−1

(−Bqn; q)n
(B2q2n; q)n
(Bq2; q)n

. (A.4)
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Proof. For the left-hand side of (A.4) we have

bn/2c∑
k=0

(
1 + q −B2q1+2n+k −Bq1+2k

) (1− q3k−2n)
(1− q−2n)

· (−q−n; q)k (B2q2n; q)k (q−1−2n/B; q)k
(−q1−2n/B; q)k (q1−n; q)k (q; q)k

(q−n; q2)k (q1−n; q2)k
(Bq2; q2)k (Bq3; q2)k

q2k

= q

(
1 +Bq2n

) (
1−B2q2n

) (
1−B2q1+2n

)
(1−B3q1+4n)

bn/2c∑
k=0

(1− q3k−2n)
(1− q−2n)

· (−q−n; q)k (B2q2+2n; q)k (q−1−2n/B; q)k
(−1/Bq2n; q)k (q1−n; q)k (q; q)k

(q−n; q2)k (q1−n; q2)k
(Bq2; q2)k (Bq3; q2)k

qk

+
(1−Bq)

(
1−Bq1+2n

)
(1−B3q1+4n)

bn/2c∑
k=0

(1− q3k−2n)
(1− q−2n)

(−q−n; q)k (B2q2n; q)k (1/Bq2n; q)k
(−q1−2n/B; q)k (q1−n; q)k (q; q)k

· (q−n; q2)k (q1−n; q2)k
(Bq; q2)k (Bq2; q2)k

qk.

Each of the series on the right-hand side of this identity can be summed by means of
Lemma A1. After little manipulation we arrive at (A.4). �
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