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AN EXTREME POINT THEOREM FOR ORDERED
POLYMATROIDS ON CHAIN ORDERS

ULRICH KRUGER

ABSTRACT. We consider Ordered Polymatroids as a generalization of poly-
matroids and extend the extreme point characterization of polymatroids by
the greedy algorithm to the ordered case.

It is proved that a feasible point of an Ordered Polymatroid is a vertex
iff 1t i1s a Greedy-Vector with respect to an appropriate primal Greedy-
Procedure.

1. INTRODUCTION AND NOTATIONS

In [2] Faigle and Kern considered Submodular Linear Programs of the type

(1) max Zcexe

=1
Z r. < f(A) forall Aec A
ecAt
where P = (K, <) is a finite partially ordered set with groundset £ and |F| =
n, ¢c: F — R an objective function and f a submodular function with

respect to a distributive lattice of ideals in P called A. An ideal A of P is a
subset of the groundset which satisfies the property

pi€Aandp; <p = p; €A

Relative to the order P we associate with any element p; € E the ideal gener-
ated by p;

I(pi) :=={p; € E: p; < pi}.
Submodularity of f refers to the property
f(A)+ f(B)> f(AUB)+ f(AnB) forall A, Be A

as usually. The set of maximal elements of an ideal A is denoted by A*. This

notation is used for
(A1) = Z Te.
ec At
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Later we easily write 27(A) instead of z(A™T).
We keep restricted to the special case A = 2F:2) throughout this paper, i.e.
A consists of all ideals with respect to (£, <). Then the polyhedron

P(f)={z €eR": z%(A) < f(A) for all A€ 279}

is called “Extended Ordered Polymatroid”.

Notice that P(f) describes the set of all feasible vectors of (1).

The attribute “extended” will be left if all feasible x are required to be
non-negative, i.e.

Pi(f):=P()NRY

defines an “Ordered Polymatroid” with rank function f. The name “Ordered
Polymatroid” is reasonable because ordinary polymatroids can easily be re-
cognized as a subclass if P is assumed to be the trivial order. The reader is
referred to Chapter 10 of Grotschel, Lovasz, Schrijver [4, pp. 305-329] for an
introduction into Polymatroid-Theory and Submodular Functions.

Faigle and Kern developed a primal-dual greedy algorithm for the optimal
solution of (1) (see [2]). Furthermore they proved total dual-integrality for
pairs of Ordered Polymatroids on rooted forests, see [1]. The characterization
of the extreme points of an Extended Ordered Polymatroid P(f) by primal
Greedy-Vectors already follows from Faigle, Kern’s greedy algorithm. Our
proof method also works for the polytope P, (f). Notice that the face lattice
of the Ordered Polymatroid P(f) especially includes the faces

P4(f) N {z. = 0}

for e € F.

We mainly put our attention to chain orders as a special case of rooted
forests here. The order P = (K, <) is a chain order if it consists of totally
ordered disjoint subsets. The proof of the extreme point characterization can
easily be generalized to rooted forests afterwards. The order P = (£, <) is a
rooted forest if each element has at most one upper neighbour (see [2, p. 202]).

2. FEASIBILITY OF GREEDY-VECTORS

Let us introduce Greedy-Vectors as the main object of our interest. There-
fore let @ = (p1,p2,...,pr) be a linear extension of the induced suborder
P = (F', <) with respect to a subset £/ C E. The cardinality of £’ is denoted
by k, i.e. |E'| = k < n. Then the result of the procedure
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PRIMAL GREEDY :

LTpy = f(pl)
Tpy, = f({Pl,Pz})—$+(P1\](P2))

tp = fU{prpe- o) =2 ({prp2s o peea b\ 1 (pr)
z, := 0 forall p; € E\F

J

is called Greedy-Vector with respect to P,(f).

We recall a basic result of Faigle, Kern [2, Theorem 4.1, Seite 202] concerning
feasibility of Greedy-Vectors and adapt the proof to the special case of chain
orders.

Lemma 1. The procedure PRIMAL GREEDY yields a feasible vector x with
respect to P(f) for the choice E' = F.

Tpit1

FiGure 1. Illustration for the Proof.

Proof. We argue by induction on | £ | and assume that
Y a. < f(A) forall A€ 2 and A C A;,
e€At

where

Ai = A{p1,-..,pi}-
Now, let A be an ideal with A C A;4; and p;3; € AT. Furthermore, the set
A\ A{piz1} = AN A; is denoted by B.
We get
f(A) J(ANA) + [(AUA;) — [(A)
F(B) + f(Aix1) — f(A)
by submodularity of f and

f(AH'l) - f(AZ) = Tp;p1 — Tpzas

AVARAY]
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where the index p; corresponds to the lower neighbour of p;, if it exists and

z5 = 0 otherwise, by the procedure PRIMAL GREEDY.
Finally, we get

f(A) > 2™(B) + Tpigr = Tpig1 = z*(A)
by f(B) > x*(B) which holds by assumption. &
Remark. The Greedy-Vector is feasible in P, (f) for arbitrary £’ C F if f

satisfies monotonicity, i.e.

At C Bt — f(A) < f(B) for A, B € 2(F:9),

Then
2o, = JUprsp2s-pi}) = ({prspas o pica} \ I(ps))
> f({PhPm s 7Pz'}) - f({Pl;PQ, - ,pz’—1} \ ](Pi))
> 0
holds for the i-th component of the Greedy-Vector (¢ =1,... k). &

3. MAIN RESULT

In order to state and prove the main result further notation is necessary to
be introduced. From now on the symbols A;; and Aj; are used to denote the
¢-th line and the j-th column of the matrix A. Furthermore the vector vy, (;
denotes the truncation of the vector v, where all components v; of v with index
J >t are cut off. We have to interpret this as follows: For 1 <5 <1 < k we
write (aj,... ,ax)|w@ = (aj,... ,a;). Now we are ready for

Theorem 1. A feasible vector of an Ordered Polymatroid Py (f) defined by a
monotone rank function f is a vertex if and only if it is a Greedy-Vector for a
certain linear extension © of a suitable suborder P' = (E', <).

Proof. Only the case £/ = F is outlined here. For £’ C FE see the remark in
the end of the proof.

It is a well-known fact from Linear-Programming-Theory that there exists a
linear function ¢’z for each vertex z* of a polyhedron P such that the maximal
value of cI'z subject to x € P is achieved by z*.

With any linear extension 7 = (p1,pa,...,ps) of P = (F, =) we associate
reduced weight coeflicients ¢;,,¢,,, ... ,¢cp,. The reduced weight coefficients
are defined by the recursion

cpn = Cp

(2) Cpi = Cpy — Z cp, for i=n-—1,...,2/1
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where
*(5) = n+1 if p; is maximalin K
"W index of the upper neighbour of p; otherwise.
Now the linear extension 7 is chosen such that
Cpn = min{cy : p, € BT}
;)i = . i ;9]' ; i+l 5 Pn
c min{c &, 0 pi € (E\{p Pa})"}
Z’*(Z'I)>]'>Z'/
fore=n—1,...,2,1. Using the reduced weight coefficients we set

B ¢ it A={p1,p2,... ,pi} for some v € {1,... ,n}
ya = 0 otherwise.

and obtain a feasible solution y of the dual problem of (1) which is given by
Z f(A)ya — min

Ae2(E.X)
(3) dowa = g
A+9p]
ya > 0.

Notice that the indices of the components of y are ideals of the poset
P=(FE,<).
For simplicity we write f(p;) instead of f({p1,p2,...,pi}). We show

(4) Y I fe— Y 4=
=1 (1) >5>1
> e [J) =2 ({pr i I\ ()]
i=1
which is equivalent to
G) 2T D =D  {p o pea V().
=1 2*(2)>]>2 =1
Assume (4) holds, i.e. = and y have the same values with respect to the
objective functions of (1) and it’s dual. Thus z and y are optimal solutions of
(1) and (3), respectively. Especially, we have z = 2*. Since z* is arbitrary we
know that each vertex of P(f) is a Greedy-Vector.
In order to prove (4) the vectors j(p;) € R"™* and ¢(p;) € R' are intro-
duced for each index p; € {p1,p2,...,pn-1}. Both vectors 3(p;) and p(p;) only
consist of 0 and 1-components. The coordinates of j(p;) correspond to the
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elements p;41, pit2, ..., pn of the groundset £ and the coordinates of p(p;) to
the elements p1, p2, ..., pi. The vector j(p;) is defined as

J(pi)=(1,1,...,1,0,...,0),
such that the first 0 corresponds to the index :*(¢). The vector p(p;) is defined
by
p(pi); =1 <= p;is maximal in the ideal {p1,p2,... ,pit1}.

Similarly let (p;,...,pi—1)T be the 1-0-vector such that the 1-entries cor-
respond to those elements of the set {p;,...,p;—1} which are maximal in the
ideal {p1,... .pi1,p:i}-

Using this notation (4) equivalently can be written as

Cp; f(pl)

(6) (f(pl)’f(p2)7 tee 7f(pn))M1 6%92 = (Cplvcp27 ce ,Cpn)Mn f(pQ)

A

Cpn f(pn)

where the matrices Mn and M, are defined by the following recursions:

M, = 1; M, =1;
0 L —j(pj) - Mj4a
A . 0
9 M, : _
Mi — 7 M =
+1 0 J : M
—p(pi) - M; 1 0

i=1,....n—1. J=n—-1,...,1

Obviously, equation (6) holds if M, = M,T, which is shown by induction
now. We proceed on the subdiagonals of Mn and M,T.

First notice that both matrices are lower triangle matrices which consist
of l-entries in their diagonals. Considering the elements m;; = (Mn)” and
mi; = (MlT)Z']- we assume that the first ¢ — j — 1 subdiagonals of M, and M,T
are equal to each other. Then we get

A

My = _39(Pi—1)'(Mi—1)1,]‘
R ™
= —(pir---spic1)" mj:+17j = (i) | Y
mi—l,j mi—1,;

(use induction hypothesis)
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1
0
= _(pjapj-}-la"' 7pi—1)+' .
0
+(pja1s Pjazs - s pic1)t
1
mj+2’j+1 1 . 0
= 2(Pi)lr(i-1)
mi—1;41 "T-1,42 1
= (pjapj+17pj+27 s 7pi—1)+
0 0 0 0
1 0 0 0
Mjt2,j+1 1 0 0 '](pj)|tr(i)
mi_141 "—1,42 10

_(07 07 s 707 1) ’ ](p])|tr(z)

= _(mi7]+17 mg 42, .- 7mii) : .](p])|t7‘(2)
—(M]1)ir - 9(py)

= my;

by the recursive definitions of Mn and M;T.

For E' C E just start the recursion (2) with ¢;, = ¢, and set ¢,, = 0 for

p, € B\ F. &

Theorem 1 and its proof were motivated by the Greedy-Algorithm-Charac-
terization of ordinary polymatroids due to Edmonds (for example see Satz

1.3.1 Girlich/Kowaljow [3, Seite 39] or Schrijver [5, pp. 27-28, Theorem 2]).
The paper is finished with an important consequence of Theorem 1.

Corollary 1. All vertices of an Ordered Polymatroid P.(f) with respect to a
monotone rank function f are integral if the rank funktion f is integer-valued.
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