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A COMBINATORIAL BIJECTION BETWEEN STANDARD
YOUNG TABLEAUX AND REDUCED WORDS OF
GRASSMANNIAN PERMUTATIONS

RUDOLF WINKEL

Abstract: For every partition A we construct a very simple combinatorial bijec-
tion between the set of standard Young tableaux of shape A and the set of reduced
words for the Grassmannian permutation 7(\) associated to A. The basic tools
in setting up this bijection are partial orders on the respective sets. These partial
orders are interesting in their own right, and we give some first results about them:
(1) the poset of standard tableaux for an arbitrary shape D is isomorphic to an or-
der ideal in left weak Bruhat order, (2) for hook shapes the Poincaré polynomial is
the g-binomial coefficient, (3) for general Ferrer shapes a recursion formula for the
Poincaré polynomials is given, (4) the poset of reduced words for a Grassmannian
permutation is anti-isomorphic to the poset of reduced words for its “conjugate”
and inverse permutation, (5) for the Grassmannian and dominant permutation
associated to a hook shape the respective posets of reduced words are isomorphic.

A diagram D is a finite set {(4,j) € Z x Z}, where the index i of the rows
is increasing from top to bottom and the index j of the columns from left to
right. We depict a diagram D as a set of unit squares or boxes in the plane
with center points in D and call N = N(D) := |{(4,J) | 4,j € Z}| the weight
of D. Usually we are interested only in the shape of D, i.e. the equivalence
class of all diagrams congruent under translations in the Z x Z plane; it
will cause no confusion to denote the shape of D by D, too, but it may
be convenient to characterize the shape of D by a certain representative:
a Ferrer diagram is a diagram of the form {(i,7) | 1 < j < A;} for some
partition A= Ay ... Ay F N with A\; > --- > Ay > 1 and length [()) :=s.

A numbering of the boxes of a diagram D with natural numbers is called
a tableau. And a numbering using the set {1,..., N}, such that the numbers
are strictly increasing in rows and columns, is called a standard tableau. The
sets of all tableaux and standard tableaux of a given shape D are denoted
by T(D) and ST (D), respectively, where in case of D = ) it is customary
to use the notation SYT()\) (Y for ‘Young’) instead of ST (\). The number
fA:=|SYT()\)| can be computed by the famous hook formula ([M, S]).
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For every diagram D the conjugate diagram D' is defined as D' := {(j,1) |
(i,7) € D}, and for any tableau n € T'(D) the conjugate tableau n' € T'(D’)
is defined in the obvious way. Note that the conjugate of a standard tableau
is again standard.

Let D be an arbitrary diagram; then we call

(0.1) D™= | {(, ) i <4, 5 <4}

(4,§)€D
the shadow of D and

the (shadow) boundary of D. Two boxes in Z x Z are called adjacent iff they
have a common side. For k¥ € N and any (4,j) € D with (i, +1) € 0-D
we say to move upwards by k steps from (i,j) to some box (i, jx) € 0~ D iff
there is a chain (i1, 71) = (4,7 +1),..., (i, jk) of k different adjacent boxes
in 9~ D, such that (i,11,7Ju+1) = (4, J» + 1) or (iy41,Juy1) = (i, — 1,7,) for
v=1,...,k—1. Similarly for any (4, j) € D with (i+1,j) € 0D and k € N
we say to move downwards by k steps from (i, j) to some box (ig, jx) € 0~ D
iff there is a chain (i1, 51) := (¢,5+1), - .., (i, jx) of k different adjacent boxes
in 8_D, such that (iy+1,jy+1) = (ZU + 1,j,,) or (iy+1,jy+1) = (i,,,ju — 1) for
v=1,...,k—1.

Turning now to the symmetric groups S, on n ‘letters’ 1,...,n it is well
known that every permutation 7 = 7(1)...m(n) € S, can be generated as a
composition of the elementary transpositions o; = (i,i+1) fori =1,...,n—1,

which obey the relations

(i) o7 =id, (i) 030; = 0jo; for |i — j| > 1, (iii) 0i04410% = 041040411 -

If for some m € S, the number pin m = 0y, ... 0,4, is minimal, then oy, ...0,,
is called a reduced word for m, a = a,...a, a reduced sequence for m, and
I[(m) := p the length of m. The set of all reduced sequences of 7 is denoted
by R(r) and its cardinality by r(r) := [R(w)|. Moreover ¢* = aj...a; =
a, . ..ap is the reversed sequence of a.

The left (weak Bruhat) order on S, is defined as the transitive closure of
the following covering relation:

[7'covers m| = w =om, Ur)=1Ur)+1.

The permutation 7(A) € S, (n := s+ A1) associated to a partition A of
length s is defined as

(0.3) TA):=X+1 A 142 ... A+s 123..

where the ellipsis 1 2 3 ... means that all letters 1,...,n not occurring on
the first s places are appended in increasing order. The m(\) defined such
are Grassmannian permutations, i.e. permutations with a unique descent:
m(i) > w(i + 1) for exactly one i € {1,...,n — 1}. In fact one can obtain
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all Grassmannian permutations in this way, if one admits Ay > 0 instead of
As > 1.

In [S1] R. P. Stanley has proven that for all permutations 7 the number of
reduced words r(7) can be expressed as

(0.4) r(m) =Y anf

ARI(m)

where, moreover, by the results of Edelman and Greene ([EG]) the coefficients
ar» are nonnegative integers; under special circumstances specified in [S1,
Cor.4.2] the sum contains exactly one or two summands f* with coefficients
equal to 1. The main goal of the present paper is to give a combinatorial
bijection proving the following

Theorem. Let A = N be a partition and w(\) its associated Grassmannian
permutation, then

(0.5) r(r(A) = f*

It is possible to derive equality (0.5) purely algebraically from [S1, Cor.4.2]
using some results of [W1, W2], and we include such a proof for the sake of
completeness, but a combinatorial understanding of the relation between the
sets SYT()\) and R(w())) clearly demands a combinatorial construction as
provided by our bijection. In fact we prove the stronger result that for every
partition A the partial orders on the sets SY7T'(A) and R(w())) are isomorphic
(cf. Prop.4.1).

Proof. (algebraic) Let L(r) and K () denote certain codes of m = w(\) € S,
(cf. [W1,W2]), and let A(M) be the partition built up from some finite set
or sequence of natural numbers M; let X'(M) be the conjugate partition of
AMM) and w, :=n...1 the permutation of maximal length in S,,.

Now [S1, Cor.4.2] asserts in our terminology that

N(L(m)) = ME(r)) = () = PO
But for 7 = 7 () it follows from [W1, Sec.2, Prop.4.9] that
AK (7)) = ML(wamwn)) = ML(r(X))) = N (L(r)) = X',
and therefore (1) = f» = f>. O

We describe next for a given partition A a combinatorial rule, which sets
up a bijection ¥ between the sets R(m())) of reduced words and SYT ()
of standard tableaux:

For a € R(w())) the corresponding ¢ := ¥(a) € SYT()) is found as
follows: for aj draw a box numbered with 1; assume that for some v €
{1,...,p — 1} a tableau D containing the numbers 1,...,v has been con-
structed, then the next box to be added to D is found by
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moving upwards by k, steps from the box v € D iff k, :=a}_; —
a,, >0,
moving downwards by —k, steps from the box v € D iff k, < 0.

The new box is numbered with v + 1.

For ¢ € SYT()) the corresponding a := ¥~!(¢) € R(w())) is found by the
obvious reversal of the above process, where a} := [()).

The combinatorial rule for ¥ described above will be called the u-rule,
where y stands for ‘movements’.

Example 0.1. Take A =4 2 1. Then the associated Grassmannian permu-
tation is 7 = w(\) = 2471356 € S; of length 7. An elementary calculation
shows that a = 3651423 € R(w). The above bijection ¥ then yields the
following correspondences, where instead of using a* (which gives convenient
indices in the description of ¥) we simply read a backwards. Boundary boxes
used in moving up or down are marked by a dot.

...... 3 —
-1 (1]
..... 23 — 7
2 1]3
- 42 TR 2.'
3 1]3]
-14- - — 121"
i.
4 1[3]5]
51 .- — 124 -
i.
1[3]5]6]
1
265 - - - PRE 2]
[4]
s 1[3]5]6]

Historical remark. The combinatorics of tableaux and its relationship with
other combinatorial and algebraic structures has been thoroughly investi-
gated by Marcel-Paul Schiitzenberger (1920 - 1996). Therefore the link be-
tween reduced decompositions and tableaux was first described by A. Lascoux
and Marcel-Paul Schiitzenberger in [LS] in terms of ‘nilplactic classes’: the set
R() is partitioned into nilplactic classes, where each element inside a given
nilplactic class is characterized by its ‘Q-symbol’ in the sense of the usual
Robinson-Schenstedt-Knuth correspondence. Taking into consideration that
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for Grassmannian permutations (and more generally vexillary permutations)
the set R(7) consists only of one nilplactic class, this correspondence can be
used to set up a bijection between reduced compositions and standard Young
tableaux. This line of reasoning has been generalized by V. Reiner and M.
Shimozono in [RS1] eliminating the use of the Q-symbol.

In [FGRS, Thm.2.4] a bijection is described between the set R(7) and
the set BL(D) of ‘injective balanced labelings’ of the diagrams D = D(n)
associated with a permutation 7. In the case of the Grassmannian permu-
tations 7(A) this bijection is as a mapping almost identical to our bijection
(see Rem.4.3 below), but its description is far more complicated. In [FGRS,
Thm.2.6] the ‘balanced column strict labelings’ of diagrams D(7) are used to
rewrite the Billey-Jockusch-Stanley (BJS) formula for Schubert polynomials
(cf. [FS]). In fact our bijection originates from work on Schubert polynomi-
als, too, namely the observation that Schubert polynomials generalize Schur
polynomials in the same way as the reduced words appearing in the BJS
formula generalize the standard Young tableaux appearing in the combina-
torial definition of Schur polynomials. This will be made precise in a future
paper about ‘Schubert functions’, where we generalize the ‘TPx’ or ‘Baxter
sequence’ formulas for Schur functions (cf. [T, W3], see also Sec.2 below).

Once the p-rule for the bijection ¥ is established, it turns out that one
can simplify it further to a d-rule: let the Ferrer diagram of a partition A be
given as in the first paragraph, then the diagonal tableau 05 of shape X is the
numbering of boxes (4,j) € A with 0,(4,7) :=I(\) +j — i , i.e. the entries of
0, are constant on the ‘diagonals’ 7 — ¢ =constant . It will be convenient to
count the positions of the numbers in a diagonal of some §, by 1,2,3,... as
their row or column index increases.

For example:

5]6]

[SSIES

6421 -

|>—~woa

where the 1% 3 is in the place (1,1), and the 2"¢ 3 is in the place (2, 2).
Let now a € R(7(A\)) and ¢ € SYT()\) correspond via W, then the J-rule
for ¥ (4 stands for ‘diagonal’) can be described as follows:

Assume that C is given; then the entry a’, of a := U (() isa} = I(\)+j—1,
where (i,7) is the box containing v in (, or, alternatively, a}, is the entry in
0y standing in the the same place as v in (.

Assume on the other hand that a € R(w())) is given; then the entry v
in ¢ := ¥(a) is placed in the same place as the number af, in Jd,, where the
position of the number aj, in 0y is chosen to be [{j | aj = a;, 1 < j < v}
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The reader may convince himself that the J-rule immediately yields the
correspondence

3[5]6]

3651423 ILIN

|.J>NJ|—A
EN|

We now briefly describe the plan of the paper: In Section 1 we introduce a
natural partial order on the set ST(D) of standard tableaux for an arbitrary
shape D and show that this poset is isomorphic to an order ideal in weak left
Bruhat order. Moreover, for hook shapes the Poincaré polynomial is shown
to be the g-binomial coefficient, and for general Ferrer shapes a recursion
formula for the Poincaré polynomials is given. Section 2 contains a descrip-
tion of the polynomials and functions associated by G.P. Thomas to every
shape D, and addresses the question of the symmetry of these functions. In
Section 3 we introduce a partial order on the set R(7) of reduced words of
a permutation 7; we show that the elements of R(m(\)) are generated us-
ing only the relations of the type (ii) above, and that for the Grassmannian
and dominant permutation associated to a hook shape the respective posets
of reduced words are isomorphic. In Section 4 we prove the validity of the
p-rule and the d-rule for the bijection W. Finally in Section 5 we show that
the permutations 7, wrw, 77! and wr™'w (W = w, :=n...1for 7 € S,,)
have (anti-)isomorphic posets of reduced words in the Grassmannian case,
and formulate a conjecture, which extends the Main Theorem to the case of
signed permutations. Especially in Sections 1, 2, and 3 there are many open
questions, which we believe to be worthy of further study.

1. THE PARTIAL ORDER ON THE SET ST(D)

Let D be any diagram as defined in the introduction, where for our purpose
it is adequate to assume that D doesn’t contain empty rows and columns.
The numbering of D with 1,2,3,... in (Latin) reading order, i.e. inside the
rows from left to right and the rows from top to bottom, is called the row
(order) tableau of shape D, which will be denoted by (o(D) € ST(D). Simi-
larly the column (order) tableau of shape D is defined as (; (D) := ((o(D"))' €
ST (D) using conjugation.

For a fixed ¢ € ST(D) let i(v) and j(v) denote the row and column index,
respectively, of the box with entry v in (. If j(v) # j(v + 1) for some
¢ € ST(D) and v € {1,...,|D| — 1}, it will be possible to interchanges the
entries v and v + 1 of { by an elementary transposition 7,. The partial order
on ST (D) or the poset PST(D) is defined as the transitive closure of the
following covering relation on ST'(D):

[¢" (v-)covers ¢ | <= (' =1,(, i(v) <i(v+1),and j(v) # j(v + 1).
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Moreover we introduce the set of inversions of

I(Q) :=={(w V) v <V, i(v) > i(v), j(v) #5(/) },

and the in and out set of

In(Q) == {v |i(v) > i(v +1), j) #iv+1) },
Out(¢) := {v | i(v) < i(v+1), j(v) £ v +1) } -

It will be convenient to label the edges in the Hasse diagram of PST(D)
with the index of the elementary transposition used, i.e. the labels of edges
coming from below to some ¢ or going up from some ( are taken from In(¢)
and Out((), respectively.

Remark 1.1. The above partial order can be ‘enriched’ to a strong order, if
one allows not only elementary transpositions 7,, but general transpositions
T, with 1 < v < v < |D| —1. Clearly PST(D) embeds into ST (D)
equipped with strong order, but we will not pursue this further in the present
paper.

Proposition 1.2. For any diagram D the poset PST (D) is ranked by i(¢) :=
[1(C)|. The unique minimal or bottom element is (p.

Proof. Tt is not hard to see that In((y) = 0, and that for all ¢ # (y there
exist at least one ¢’ covered by (, i.e. In(¢) # (0. If ¢' v-covers (, then I(¢')
is the same as I(¢) with v and v + 1 interchanged in the pairs and (v,v + 1)
in addition. Hence: i(¢') = i({) +1 <= (’ covers ¢, which proves the
assertion on the rank. O

Example 1.3. We draw the (labeled) Hasse diagram of PST(D) for the

|
LT

shape D =
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[1]4
5
[2] 3]
6
[1]3
5
[2] 4]
@,/ \®
[1]3 [1]2
4 5
[2] [5] 3] [4
ONY )
[1]2
4
3] [5
@
[1]2
3
4] 5

The above example especially shows that (; is not necessarily maximal,
namely, r(¢;) = 2 and Out(¢;) = {4} # (). In general an element ¢ € ST (D)
for some shape D is maximal iff Out(¢) = ), and it is an interesting question
to find an algorithm, which yields directly all mazimal ¢ for a given shape D
without enumerating the whole set ST (D).

1]
For the shape one has two maximal elements: the column tableau
|
3
(1 and P 2 7] . In fact as the next example shows the number of maximal

standard tableaux for an arbitrary shape D may be arbitrarily large.

Example 1.4. Let ((n) be the following standard tableau:
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Clearly Out(¢(n)) = @, hence ((n) is maximal. It is now possible to in-
terchange the ”diagonal elements” 3,6,9,...,3n in such a way that the re-
sulting tableau is again standard and maximal. For this purpose we write
[3,6,9,...,3n] for {(n) indicating only the “linear order” of the ”diagonal
elements”.

For n = 2 the entries 3 and 6 can be interchanged or in abbreviated
notation: [3,6] and [6, 3] are maximal elements. For n = 3 one has [3, 6, 9] and
[6,3,9] as “embeddings” from the former case, and in addition [6,9, 3] and
[3,9,6]. For n = 4 the “new” maximal elements are [6,9,12, 3], [3,9,12, 6],
and [3,6,12,9]. The pattern is clear now, and we can conclude that the shape
of ¢(n) admits at least 1 +2+ --- + (n — 1) maximal standard tableau.

For special classes of shapes D much more can be said. We are interested
especially in Ferrer diagrams A\, skew Ferrer diagrams \/u, i.e. the shape
of A without the boxes of y for some partition u C A, and shifted Ferrer
diagrams. The latter is defined for all partitions AY = \; ...\, with distinct
parts Ay > --- > Agas {(4,5) | 1 < j < AN +14, 1 <i< s} The associated
sets of standard diagrams ST(D) are denoted by SYT'(\), SYT(\/u), and
SST(A\V), respectively. Moreover, for an arbitrary shape D let w(() be the
word (or permutation) obtained from ¢ € ST (D) by reading the entries in
row order.

Proposition 1.5. In case of D being an ordinary, skew, or shifted Ferrer
diagram the poset ST (D) is a ranked lattice with (o as bottom (or unique
minimal) element and (; as top (or unique mazimal) element. Moreover the
posets PST (D) and PST(D') are anti-isomorphic under conjugation.

In the skew case — including the ordinary case as u = () — the poset
PSYT (A ) is isomorphic to a lower left interval [id, w(\/u)], i.e. an in-
terval of the form [id, 7] with respect to left order of Sp).

Proof. Prop.1.1 already implies that PST'(D) is a ranked poset with bottom
element (y. Observe now that under conjugation in and out sets interchange,
i.e. for ¢ € ST(D) one has In(¢") = Out(¢) and Out({") = In((), because
for all v,v + 1 with i(v) #i(v +1), j(v) # j(v + 1) one has necessarily that
i(v) <i(v+1) < j(v) > j(v + 1); otherwise by standardness there would
be a natural number properly between v and v + 1 ! Therefore the posets
PST(D) and PST(D') are anti-isomorphic under conjugation. (Compare (;
of Ex.1.3 for an other behavior under conjugation.)

By Prop.1.1 again (] is the bottom element of PST(D') and consequently
¢y is the top element of PST(D).

The assertion on PSYT(A\/u) being isomorphic to a lower left interval of
S\p| is a simple consequence of the fact that w((y) = id and for all ¢ C €
SYT(M\/p) the relation ¢ = 7, implies w(¢) = o,w(¢). Hence by well known
results on left order PSYT(\/u) is a lattice. O

Remark 1.6. The posets PSYT(A\/u) have been considered already in the
paper [BW] of Bjorner and Wachs. They have actually described a general
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criterion for a partial order on the set of linear extensions of a fixed poset to
be isomorphic to a left interval of some S, ([BW, Thm.7.6]). [BW] contains
as Fig.1 a picture of PSYT(321/1), which is isomorphic to PSYT(321).

Remark 1.7. A shape D is called reflezive ifft PST (D) and PST(D') are
anti-isomorphic under conjugation. The different types of Ferrer diagrams
are reflexive by the preceding proposition. Naturally one wants to know a
simple geometric criterion for a shape D to be reflexive. Is it true that D is
reflexive iff (; € ST (D) is the unique maximal element of PST (D) ?

Example 1.8. As an illustration of the preceding theorem and for later use
we depict PSST(42):

[1]2]3]4]
5(6

Proposition 1.9. For an arbitrary shape D the poset PST (D) embeds into a
lower left interval of S\p| as an order ideal generated by the mazimal elements
of PST(D).

Proof. Bjorner and Wachs ([BW, Rem.7.3]) have defined the set ST(D) of
‘standard tableaux’ of an arbitrary shape D by the condition that the num-
bering with 1,...,|D| increases in rows and columns, but in columns not

N

necessarily across gaps! Therefore ST (D) C ST(D) and an appropriate
¢ € ST(D) may be covered by 7,((), where 7, is the ‘elementary transposi-
tion across a gap’ of entries ¥ and v + 1 in the same column. Clearly there

can be no element of ST(D) above an element of ST(D) \ ST (D), whence
the assertion follows from the fact stated in [BW, Rem.7.3| that the poset

—_——

ST (D) is isomorphic to a lower left interval. O

The following questions require some more research: define two shapes D
and D to be order equivalent iff they generate isomorphic posets of standard
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tableaux, in signs:
D~ D <= PST(D) = PST(D) .

Describe the equivalence class of order equivalent shapes by a simple and
natural representant! And in view of Prop.1.9: given any order ideal in the
left order of some S,, is there a shape D with PST (D) isomorphic to this
order ideal?

Let S be an arbitrary (finite) poset with rank function 7. Then the rank
generating or Poincaré polynomial of S is given by

Ps(q) := Zqi(s) :

SES

It would be nice to have an explicit formula for Ppgr(py(q) at least in case of
D = ), ie. for P\(q) := Ppsyr)(g). Such a formula would both refine the
the hook formula (f* = P5(1)) and explain via inversions the occurrence of
hooks. But: ”A general formula ... does unfortunately not seem to exist.”
(BW, p.31]) For the moment we must be content with the following two
results:

Proposition 1.10. (Recursion formula) For a partition A = A\...A\s B N
let1<ip <---<i, <---<i, <s betheindices with \;, > Aj,+1 (As+1:=0)
and

Ay = At Aiy—1 (i, — DAiyr--- A

i.e. the A, are exactly the partitions covered by A in the Young lattice.
Then:

Py(q) =) _ ¢t py (g)

v=1

Proof. Observe that for any ( € SYT()\) the entry N can occur only at the
end of some of the rows 7,,. In other words: ¢ without the box N is an element
of SYT(A;,)) and adding it causes exactly X;,41 + -+ + A; new inversions,
whence the formula. O

Let (Z)q = m, where (n)!, := (1)4(2)4...(n)y and (n)y =1+ ¢+
-+-+¢"" 1. Let moreover the (n, k)-hook be the partition A = (n+1—k) 1¥ F

n + 1 with leg length £ and arm length n — k, then by the hook formula
S = (}), which is refined by

Proposition 1.11. With the above notation the Poincaré polynomial for the
(n, k)-hook X is given by
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Proof. Every ¢ € SYT()) is uniquely determined by the set I = I({) =
{i1,...,ix} of numbers 1 < 4; < --- < i < n + 1 appearing in its leg
or equivalently by the partition p = puq...pu, with parts p, = |{i | i >
iWwIN{1,...,n+1}\I)|. Clearly n—k > py > --- > px > 0 and 7(¢) = |pl.
In other words, there is a bijection between SYT'(\) and the set of partitions
with at most £ parts of size at most n — k, such that the rank in SYT ()
is equal to the weight of the associated partition. But the weight generating
polynomial for exactly this set of partitions is (Z)q by [S2, Prop.1.3.19]. O

For general A the Poincaré polynomial Py(g¢) is unfortunately not given by
the ¢g-hook formula!

Example 1.12. For A = 3 2 1 one computes Py(q) = ¢*Pa21(q) + qP311(q) +
Psy(q) with Paoi(q) = qPoi(q) + Pa(q) = Q(g)q + Pyi(q) = q(3)q+ (2)g =
1+29+q¢*+ ¢, Pui(q) = (3)(1 =1+qg+2¢+ ¢+ q¢* and Py(q) =
*Pas(q) + P31(q) = ¢*(2)y + (3)g = 1 + q + 2¢*> + ¢*. Therefore: Pss1(q) =
1+ 2q + 3¢% + 4¢> + 3¢* + 2¢° + ¢°.

2. D-POLYNOMIALS AND D-FUNCTIONS

In this section we discuss the polynomials and (graded) functions asso-
ciated by G.P. Thomas to an arbitrary shape D (see [T, W3]). The set
SST (D) of semistandard tableauz of shape D is the set of all numberings of
D with entries increasing strictly in columns from top to bottom and weakly
increasing (‘=" allowed) in rows from left to right; for every m € N the
subsets of SST (D) with entries at most m and maximal entry = m are de-
noted SST (D) and SST, (D), respectively. To every n € SST (D) there
is associated the monomial ", which is the product over all (commuting)
Zy, v being an entry of n. It is possible now to define the D-polynomial in

T1y.--,Tm AS
s%n)(m) = Z ",

neSST(D)

and the graded D-function in x1,2o,2x3,... as

si(@) = (s (2), 55 (2), 5 (@), - )

with s[gl] (x) == S%n) (x)— sgn_l)(x). The latter is an element of the Z-algebra
(componentwise operations)

Az(z) := ( R[x1], Rlz1,22], R[z1,x9,23], -..)
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Note that in case of D being a Ferrer tableau A these definitions special-
ize to the Schur polynomials and the (graded) Schur function. Clearly the
knowledge about sipj(z) implies knowledge about every s%n) (z) and sp(x).
It comes therefore as a pleasant surprise that s;pj(z) can be constructed with
ease from the finite set ST (D) alone:

Proposition 2.1. ([T1, Thm.5.2]) For every shape D and ( € ST (D) let
B(¢)(x) :=xBp_1x...Bix

denote a sequence of multiplication operators © = (z1,x9,%3,...) and shift
operators B, € {P,S} on Az(x), where B, = S iff i(v) < i(v + 1) in
¢, S:=71P, P := )2 7" and 7 is the left shift on Az(z) defined by
7(a1, a9, a3,-..) := (0,a1,as,...) for every a = (a1,as,...) € Az(x). Then

si(@) = Y B(O().

¢esST(D)

This formula for the graded D-function behaves nicely under conjugation
of diagrams, namely:

Proposition 2.2. ([T1, Thm.7.2]) Let D' be the shape conjugate to D and
B'({) the same as B(() in Prop.2.1 above, but with P <> S (P interchanged
with S); then

CEST(D)

Remark 2.3. Using the results of [W3] it is not hard to generalize Hall-
Littlewood, Jack, and Macdonald polynomials and functions and their ‘super’
variants for arbitrary diagrams.

A natural question is: for which diagrams D are the associated polynomials
sg") (z) and functions sp(z) symmetric ? We conjecture that either all sg") (x)

(and hence sp(x)) are symmetric or no one.
Let ) #C C D and

C= U {@.NeZ|i=iorj=j};

(i.5)eC
then C is called a component of D iff C N (D \ C) = @. Clearly every
diagram D is the disjoint union of its components C,...,C,; D is called

connected iff r = 1. Eliminating empty rows and columns from the diagrams
of the components gives the irreducible components of D and D as the direct

sum of its irreducible components, e.g. the shape D = [x] [X] has the
irreducible decomposition:

b= O % o
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Proposition 2.4. Let D = @' _, D, be a irreducible decomposition of D.

Then:

a) D determines its irreducible decomposition up to permutation of compo-

nents;

b) ‘having the same irreducible components’ is an equivalence relation on di-

agrams;
c) there is a bijection:

SST(D) 2 éSST(Dy) = (SST(Dy), ..., SST(D,)) ;

T

d) s%n)(x) = [ _, S(DTZ)(Z‘), and s(Dm)(:c) is symmetric, if all polynomials

sg'z) (x) are symmetric.

Proof. a) and b) are trivial, and the bijection of c) is given as the mapping

between boxes of D and boxes in the irreducible decomposition, which pre-
serves the relative order of boxes and the entries. The first equality of d) is
immediate from c), and the ‘if’ part is obvious.

The reversal of d): “3(5”) (x) is symmetric, then all polynomials s

symmetric” is in general not true. For example let D =

[1]1

. Then s\ (z) = 2323 is symmetric:

in x1,x9 of the irreducible parts are not symmetric. The same is true for
all other m > 2. Is there a general geometric reason for this phenomenon?
Is it connected with a “theory” of plane puzzles? Is there a representation
theoretic meaning of D-polynomials, D-functions, and irreducible decompo-

2

S

1

[a¥)

2

(m)
D,

@

(x) are

3] , but the polynomials

sitions for arbitrary shapes D ? How is it related to the Specht, Schur, and

flagged Schur modules associated to an arbitrary shape D (cf. e.g. [RS2,

Sec.2]) ?

We conjecture, that the D-polynomials are symmetric for a connected

shape D iff D is a (skew) Ferrer shape \/p.

3. THE PARTIAL ORDER ON THE SET R(7)

Recall that R(m) is the set of reduced words or sequences of a finite per-
mutation 7 € S,. R(7) can be made into a graph GR(w) with the vertex set
R(m) as follows: two ‘vertices’ a,b € R(m) are adjacent iff a can be trans-

formed into b by exactly one application of the relation (ii) or (iii). (Note
that reduced words correspond to chains in weak (left or right Bruhat) or-

der, and that two chains, which differ by one application of the relation (ii)

or (iii), enclose a square or a hexagon, respectively, in their Hasse diagram;

therefore:) Transformations of reduced sequences using relations (ii) or (iii)

will be called applications of the square rule or hexagon rule, respectively.
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Proposition 3.1. The graph R(n) is connected, i.e. for all a,b € R(w) there
is a chain of pairwise adjacent elements of GR(w) connecting a and b.

Proof. The result has been proved first in the general framework of finite
Coxeter groups by J. Tits (1968) (cf. [B]). A proof in the present special case
of symmetric groups can be found for example in [W3, Prop.1.2]. O

The graph GR(w) is called hezagon free iff no adjacency originates from
the hexagon rule.

Lemmma 3.2. The graph GR(r) is hexzagon free iff one (and consequently
all) a € R(w) has the following property

(%) VmeN: a=...mad m ... and m not a letter of '

= m+1,m—1 letters of d'.

Proof. Assume first that « = ...m o’ m ... with &' containing both m + 1
and m —1, but not m. Assume furthermore that both m+1 and m —1 occur
with multiplicity one; then by application of the square rule the subword
‘m o' m’ of a can be transformed into ‘6 m m + 1 m — 1 m’ (with b not
containing m — 1,m,m + 1). If on the other hand m — 1 (or m + 1) occurs
more than one time in o/, then consider again () with m — 1 (or m + 1) in
place of m. In any case it is not possible to generate a subword m m —1 m
orm m+ 1 m of a for some m € N, whence the hexagon rule can not be
applied.

To prove the other direction we assume that there is some m, such that
a =...ma m ... with m and m + 1 not in a'; without restriction of
generality we can assume further that no letter > m is contained in a’. Then
a' contains m — 1, otherwise a would not be reduced. If m — 1 occurs with
multiplicity one, then ‘m o’ m’ can be transformed into ‘b m m — 1 m’, and
the hexagon rule can be applied. If on the other hand m — 1 occurs more
than one time in @/, thena’' =...m—1d" m—1 ... with m —1 and m not
in a”, and the argument applies again. O

The Lehmer code L(w) of some 7 € S, is an element of the set
L, ={[ln-1-- L] |0< ;s <n—ifori=1,...,n}

defined by l,_;(r) == |{j | i < j, mi > wj}|, e.g. L(361542) = [240210]. L
is a bijection between S, and L,, and, moreover, there is an easy way to
compute a reduced word for 7 via its Lehmer code (cf. [W1, W2]):

O(L(m)) :== ®(lp—1) ... P(ln—i) ... ®(lp) with ®(l—;) := (ln—i+i—1) ... (i+
1) iforl,—_; > 0and ®(0) := @ is a reduced sequence for 7, e.g. ®(L(361542)) =
®([240210]) = 21 5432 54 5 € R(361542). We use the notation a(®) = a(® (7)
for the unique reduced sequence ®(L(~)).

Proposition 3.3. GR(w(\)) is hezagon free for every partition .
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Proof. Observe that for A = Ay ...\, by definition of w()) one has L(7()\)) =
[As-.- A1 0...0] (with A\; zeros). Therefore (vertical bars included for clarity):

SLEN) =Ae- 1| Msa 412 o M +s—1)...5

is reduced for () and easily seen to obey () of Lemma 3.2 . O

Remark 3.4. Grassmannian permutations are special cases of 321-avoiding
permutations, i.e. permutations 7 with the property that forno? < j < k one
has 7(7) > w(j) > m(k), and while finishing the present paper we recognized
[BJS, Thm.2.1], which says that 321-avoiding permutations are exactly the
hexagon free permutations.

Proposition 3.5. Let 7 € S, and w =w, :=n...1 € S,. Then the graphs
GR(m), GR(r™"), GR(wnw) are all isomorphic. Consequently:

r(r) =r(r 1) = r(wrw) .

Proof. For a (not necessarily reduced) sequence a = qa; ... a, generating 7 let
a* := a,...a; be the reversed sequence and o' := (n —a;)...(n — a,) the
conjugate sequence. Clearly: ‘a generates 7 iff ‘a* generates 7!’ and [W3,
Prop.3.2] says: ‘a generates 7’ iff ‘a’ generates wrw’. Now under the opera-
tions of reversal and conjugation the relations of type (ii) and (iii) transform
to relations of type (ii) and (iii), respectively, and therefore these operations
are bijections between the sets R(r), R(w!) and the sets R(7), R(wrw),

which preserve adjacency. O

For arbitrary finite permutation = € S,, we define the ranked poset PR(m)
of reduced words for m as follows: take a(®)(7) as the bottom element (of
rank zero) and the elements of rank s > 0 as the reduced sequences for T,
which have distance s to a{®) in GR(7). (The distance between a and b in
a connected graph G is defined as the minimal number of edges in a path
connecting a and b.) We write i(a) for the rank of a. The partial order on
GR(m) is defined as the transitive closure of the following covering relation:

a covers b :<=> a adjacent to b and i(a) > i(b) .

(Of course then i(a) = i(b) + 1.) We label the edge from a to b of the Hasse
diagram of PR(w) by (v), if a, and @}, are interchanged by the square rule,

and by [v], if a}_,, a}, and @, are changed by the hexagon rule. (Recall that
a* is the reverse of a.)

Example 3.6. We draw the labeled Hasse diagram for 7 = 52314 € S;.
L(7) = [41100] and a(®(7) = 432123.
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124321
@ |
142321
6,/ B
412321 143231
N o
413231 143213
@, o 6
431231 413213
O N0
431213
@ |
432123

Remark 3.7. The posets PR(w), PR(7~!), PR(wnw) are in general neither
isomorphic nor anti-isomorphic, because the respective a(?’s and a(")’s are

in general unrelated. But see Prop.5.1 below for the Grassmannian case
7w =7(A).

In general it is hard to determine the Poincaré polynomial P, (q) of PR(7),
but some special statements are possible:

By Prop.4.1 below the posets PR(m(A)) and PSYT()) are isomorphic for
every partition A, and therefore one has Py (¢) = Pi(g). To every partition
A there is associated not only a Grassmannian permutation 7()), but also a
dominant permutation 7(\), which is defined by

T(A) == L' [AAg... A, 0...0]
with a sufficiently large number of zeros. Note that 7 = 52314 from the
Ex.3.6 is in fact 7(411).
Proposition 3.8. r(T(\)) = f* = r(x(N\)) for all partitions .
Proof. We proceed as in the algebraic proof of the Main Theorem:
N(L(#@A)) = (ML(@(N)))) = N = ML(F(X)))

and on the other hand A\(K(7(\))) = A(L(7(A\)™1)). Using the operator F3)
from [W1] one sees E)(L(ﬁ()\))) = L(w(\)). Together with E (L(w)) =
L(m1) for all 7 (cf. [W1, Prop.4.5]) this yields L(7(\)"!)) = L(7()\")) and
N(L(7(A))) = A(K(7(X))), which implies the assertion by [S1, Cor.4.2]. O

The above Ex.3.6 shows that Prui1)(q) = (g)q = Pr1)(g). This is no

accident:
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Proposition 3.9. Let A be a (n, k)-hook. Then PR(w(\)) = PR(w()\)) and
consequently Pry) = (Z)q = Proy-

Proof. Let A = (n+ 1 — k) 1*. In the Young lattice A covers the partitions
Ao = (n—k) 1%¥ and \; = (n+1—k) 17! with shortened arm length and leg
length, respectively. Then

S(L(r(\)=1...(k=1)k (n+2) (n+1)...(k+1),
SLAN) =1...(k—1) (n+2) (n+1)...(k+1),
S(L(r(A\)) =1...(k=1k (n+1)...(k+1),

and

SLEWN) = (n—k+1) (n—k)...12.. .k (k+1),
SLEN)=Mm—k+1) (n—k)...12.. .k,
BLEN))) = (n—k)...12...k (k+1).

Every a € R(m())) begins either with 1 or with n + 2, since by elementary
transpositions none of the numbers 2,...,k can move left to 1, and none
of the numbers n + 1,...,k + 1 left to n + 1. Now the subposet of a =
1... in PR(w())) is obviously isomorphic to PR(m(});)), which by induction
hypothesis is isomorphic to PR(7()\;)), and the subposet of a = (n+2) ...
in PR(w())) is isomorphic to PR(w(),)) = PR(7W()A,)). In other words:
PR(m())) is a ‘stack’ of PR(mw()\,)) above PR(w();)) with ‘covering edges’
given by the interchange of 1 and n + 2.

Similarly every a € R(7()\)) ends either with k+1or 1, thea =...(k+1)
forming a subposet of PR(7())) isomorphic to PR(7();)) and thea = ... 1
a subposet isomorphic to PR(7(),))- They are ‘stacked’ upon each other in
PR(7())) along the ‘covering edges’ given by the interchange of k£ + 1 and
1 (i.e. the edges labeled by (1), see e.g. Ex.3.6). Now the observation that
n+1 stands in position £+ 1 from left in ®(L(7()))) and 1 stands in position
k + 1 from right in ®(L(7(A))), both needing the same number of steps to
the border position, completes the proof. O

Notice that this gives a nice illustration of the recursion formula for g-

binomial coefficients: (:)q = (”gl)q + gk (Zj)q :

In general one has Pr(x) # Pr(y), for example Pr321) = 1+2¢+3¢* +4¢* +
3¢* +2¢° + ¢° (Ex.1.12 and Prop.4.1), but a computation of PR(4321) shows
that Prsany = 1+ 2¢ + 2¢° + 3¢ + 3¢* + 2¢° + 2¢° + ¢".

4. PROOF OF THE p~ AND 0-RULE

We first resume all results, which are important for the proof of the u-
and d-rule for the bijection ¥ between the sets R(m(A)) and SYT()): the
partially ordered set PSYT(A) has as bottom element the row tableau (5 and
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the covering relations are given by elementary transpositions 7,; the partially
ordered set PR(m()\)) has as bottom element the reduced sequence a(®) and
the covering relations are given by transpositions according to the square
rule. Using now that

dO =0(L(r(N)=Xs.. 1 A +1...2] . ] (M +s=1)...5,

it is an easy matter to see from the description of the p- or d-rule that
U(a®) = (;. The lemma below now shows that going up one step in either
poset is compatible with ¥, and therefore we have in fact proved not only ¥
to be a bijection or r(m()\)) = f*, but:

Proposition 4.1. For every partition A the posets PR(mw(\)) and PSYT())
are isomorphic, and consequently PR(m())) is a lattice with bottom element
a® = ®(L(w(N)) and a top element named oY), which can be computed as

aD(7(N) =T (G (V) -

Lemmma 4.2. For a given partition A assume that ( € SYT(X) has been
computed from some a € R(m())) in accordance with the p- or 6-rule for U.
Assume further that k, = a},_, —a}, > 2 so that T,a is reduced for w(X), too.
Then ¢ := W¥(r,a) € SYT(N) coincides with ¢ except for the entries v and
v + 1 being interchanged.

Proof. We give a proof that applies simultaneously to the description of ¥ by
both the p- and the d-rule. Let D,_; denote the Ferrer diagram generated
by ¥ applied to aj,...,a’_;, and D, = D,_; U{(i,,j,)} the Ferrer diagram

*

generated by ¥ applied to aj,...,a}), etc. . By hypothesis we can assume
that a}_; = 1(\) + j,_1 — %_1, and a} = I(\) + j, — iy, etc. . Note that for
the boxes of 0~ D,_; one has in the diagonal tableau of shape A the gapless

ascending chain of natural numbers:

o0 (1 + L gu1) = apy =1, (v + 1, +1) = a)_y,
6)‘(7:,/,1,_].,171 + ].) = a,’j_l + 1, cee

Note moreover that (i,,j,) and (i,41,j,+1) are ‘corner boxes’ in D, 1, since
D, and D, are Ferrer diagrams and &k, > 2.

Therefore applying ¥ to (1,a)" = ...a)_;,a;,,05,0,,9,... yields the
shapes ..., D,y = D,_1, D, = D, \ {(iv, 4)}, D,i1 = Dyiq,..., and
the necessary upward and downward moves for the steps from v — 1 to v,
and from v to v 4+ 1 can be considered as taking place in 9~ D,_;. In other
words: the difference between the standard tableaux of shape D,,H =D,
generated so far is that the entries v and v + 1 are interchanged. .

To complete the proof of the lemma it remains to be shown that D, o =
D, ., and that v 4 2 is in the same place in both cases. Observe that the
movement from box v+ 1 to v+ 2 in D, it starts from box (i, + 1,7, + 1)
with 0,(i, + 1,5, + 1) = a’,, and in D,; starts from box (4,,3j,) with
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Ox(ty, jy) = a. In case of a},, being between a} and a},, the respective
movements can be considered again as taking place in 0~ D,_; as if there
were no boxes (i,,j,) and (i, + 1,7, + 1) placed.

In case of aj ., not being between a; and a;_, one of the movements,
say the one, which builds up D, s from D, ; is as in 07D, _;; the other
movement faces the obstacle of (i,,7j,) placed in 0~ D, 4, but (i,,75,) is a
‘corner box’, and therefore it is possible to circumvent it by moving trough
the positions

e @+ 1,5), 06, + 1,5, + 1), (4,5, + 1), ... instead of
ttt (il/ + ]"jl/)’ (2.1/7..7.1/)’ (iVijI/ + 1)’ R

O

Remark 4.3. For ¢ € SYT()) let ¢* denote the reversal of ¢, which is
obtained from ¢ by replacing every entry v by |A|—v+1. Following the lines of
the proof given in this section it is not hard to show that the bijection defined
in [FGRS, Sec.2] between R(w) and the set BL(D) of ‘injective balanced
labelings of the diagram of 7’ in the Grassmannian case m = m(\) specializes
to our V¥ followed by the operation of reversal.

Indeed the set BL(mw(\)) is the element wise reversal of SYT()), the la-
beled diagram associated to a(®)(7())) by the FGRS-rule is ({, and a trans-
position in R(7())) has under this rule the same effect as a transposition in
Lemma 4.2 above.

But the FGRS-rule is much more complicated then our u- and the §-
rules, and this is necessarily so, because on one hand the FGRS-rule applies
to arbitrary permutations 7, and on the other hand balanced labelings are
intrinsically more complicated than standard numberings.

5. THE ‘FOURFOLD WAY’ & SIGNED PERMUTATIONS

In this section we consider the relations between the finite permutations
7, 771, wrw and wr lw foranyn e N, r € S, and w = wy, :=n...1 € Sy;

as diagram (note that w™! = w):

(5.1) l J

This is the ‘Fourfold Way'.

It is well known that the length of 7 is invariant under inversion 7 — 7~
and conjugation ™ — wrw (see e.g. [W1, Lemma 2.1]), and in Prop.3.5
we have seen that the graphs GR(7r), GR(7™'), GR(wrw) are isomorphic,

1
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whence r(7) = r(77!) = r(wnw). This has been a consequence of

a € R(r) —— a* € R(rm™)

(5.2) l l

a € Rlwrw) —— (a')* = (a*)' € R(wr™'w)

using the operations of reversion a +— a* and conjugation a +— a' defined
in Sec.3 . We have introduced there moreover the Lehmer code L(m) of a
permutation and a mapping ®* = &, which associates a ‘standard reduced
sequence’ a9 (r) := ®L(L(7)) € R(n) to every Lehmer code. In [W1, W2]
we have introduced and investigated in fact four codes and four mappings
from codes to reduced sequences related by

L(m) ——  H(m)=L(z™)
(5.3) J l
K(r) = L(wrw) —— G(m) = L(wr™'w)
with ®F(L(n)), ®¥(H(r)), ®¥(K(r)), ®“(G(r)) € R(w). This enables us

to show

Proposition 5.1. For every partition \ the poset PR(m(\)) is isomorphic
to PR(m(N)™1) and anti-isomorphic to PR(m(A)™!) and PR(w(\')). In fact
(using the operations of reversion (*) and of conjugation (') on words from
Prop.3.5) one has

(5-4) a® (7 (X)) = [ (x (V)] and o' (7 (X)) = [a® (x(V))]* .

Proof. First we recall from [W1] that the operation of conjugation of per-
mutations m — 7 ! generalizes the conjugation of Ferrer diagrams, i.e. for
m = m(A) the diagram (5.1) reads:

m(\) — a(A)7t

(5.5) l l

T7(N) =wrNw —— (V)™ =wr(\)"lw
We will show now that for the reduced sequences a® (r(\)) := ®L(L(m)(\))
and a(V(7(A)) := U~1(¢y(m(N))) this means:

a®(x() (@) = @)

(5.6) (b)l l
a(r(X)) = [V (@) — aO(z (X)) =[O (z (V)] ,

which by definition of the partial order on GR(7) immediately implies the
remaining assertions.
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Since conjugation of reduced sequences changes the signs of the k,
ay,, — a;, the p-rule for ¥ implies
(5.7) Va € R(n()\)): ¥(d) =[¥(a)] .

Hence one computes

Ua® (r(N)] = Ci(m(N) = [Go(r (X)) = [¥(a@(r(X)) = ¥[al® (7 (X))
implying (b).
In the proof of (a) we use for the equalities () and (3) below the results

[W2, Prop.2.4] and [W2, Prop.3.1], respectively, where («) is true for all 7
and (8) only in the Grassmannian case m = w(\).

b)

@D ()] 2 ([0 @ (W)])* = (@F (LN =
(@ (K (xMW)])* 2 @5 (K (r(\)]" Z [8% (H (x(\))]* =
[@F (H (wr(N)w)]* = [ (K (r(X) )] L [® (K (r(X) ™))

EV

—
KA
h
—
—
—
b
N2
|
—
~—
~—
—
—
S}
—
(=]
=
—
N
—
>
N— —_
|
—
~—
Pt

Having shown (a) and (b) it is easy to calculate

@) L D) E WO @O)T
which finishes the proof. O

Remark 5.2. It is interesting to observe that a similar ‘Fourfold way’ exists
for the Robinson-Schenstedt-Knuth correspondence between permutations

and standard bitableau: 7 =5 (P, Q). As shown first by Schiitzenberger, if
RSK ~1 RSK RSK (1 ,

= (P,Q), then 77! "= (Q,P) and 7" := mw — (P, ev(Q’)), where

‘ev’ stands for the operation of evacuation (cf. [S, Thm.3.8.6, Thm.3.4.3]).

Since wrw = (((7~1)7)~1)" it is easily seen that wrw &5 ((ev(P)), ev(Q)).

In this paper we have not discussed the operation 7 — 7", because I(7") =

I(w) — U(r).

We finally formulate a conjecture, which is the analog of the Main Theorem
for signed permutations or Coxeter groups of type B.

Let AV = Ay ...\, be a partition with distinct parts A\; > --- > A, > 0 and
SST(AY) the poset of standard shifted tableaux of shape AV as discussed in
Sec.1 . As in the case of ordinary permutations we have introduced in [W2]
codes G and a mapping ® = ®“ with the property that ®G(7) € R(#).
permutations 7. To be more specific:

To the above AV is associated the code A ... A, 0...0 with exactly v := n—
s zeros, where n is the smallest number, such that A\; < 2n—1, Ay <2n-3,...
; its “signed Grassmannian permutation” #(\V) := G7'(A\;... ), 0...0) ;
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and a certain reduced sequence
ad@(7(A7)) := ®G(7(AY)) := ®(\,) ... D(\1)
with

(i)(/\):{(n—l/)...(n—l/—i—l—)\u) ifo< A <n-v,
v m—v)...101 ... Ay, —n4+v—-1) ifn—v<A,.

For example \V = 651 gives s = 3, n = 4, v = 1, the code 6510, and
a©@(\Y) = 1/21012(321012 € R(7(\")), where we have included vertical bars
for clarity.

Of course one uses a)(7(A7)) as the bottom element of the partially or-
dered set PR(7(AY)). For example let \Y = 42; one gets s =2, n =3,y =1,
a® (A7) = 10|2101, and the poset PR(7(AY)):

210210
212010
121010

120101

102101

Conjecture: For every partition with distinct parts AV one has:

(5-8) fa=r@A)),
where 7(7(A\Y)) := |R(7(A\Y))] and f2 := |SST(\V)|. (The latter quantity
can be computed by the ‘shifted hook formula’ ([S, Ex.3.12.4]) ). O

Unfortunately a simple bijection ¥ analogous to the case of ordinary per-
mutations does not exist, because (1) the posets PR(7(\Y)) and PSST(\Y)
are in general not isomorphic and (2) the natural candidate for such a bijec-
tion is not “stable under inclusion”. What we mean by this is easily explained
for the concrete example above in connection with Ex.1.8: for AV = 31 the set
of reduced words is {0101,1010} and there are exactly two standard shifted
tableaux of this shape, both occurring twice as subtableau in SST'(42); but
the words 0101 and 1010 occur both only once as initial segments of the
a* € R(7(42)).
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