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Abstract

We want to draw the combintorialists attention to an important,
but apparently little known paper by the function theorist A. Hurwitz,
published in 1891, where he announces the solution of a counting prob-
lem which has gained some attention recently: in how many ways can a
given permutation be written as the product of transpositions such that
the transpositions generate the full symmetric group, and such that the
number of factors is as small as possible (under this side condition).
The function theoretic origin and interest of this problem will not be
discussed in the present note — see the original paper by Hurwitz[14].
Current work on related problems is contained e.g. in the article by El

Marraki et al. [9] in this volume.

Let A denote a set with cardinality #A = n, let τ1, τ2, . . . , τµ be (not
necessarily distinct) transpositions on A, and let Gτ1,... ,τµ = (A, {τ1, . . . , τµ})
denote the graph on A whose edges correspond to the vertex pairs exchanged
by the transpositions. Denote by ρ the number of cyles of the permutation
τ1 ◦ . . .◦τµ, and let γ denote the number of connected components of the graph
Gτ1,... ,τµ . The following inequality can be proved by an easy induction:

Lemma 1 n− µ+ ρ ≤ 2 γ

We will say that the sequence τ1, . . . , τµ is minimal (w.r.t. the number
µ of transpositions) if n − µ + ρ = 2 γ, and we will say that τ1, . . . , τµ is
transitive if γ = 1 holds. Here we are concerned with minimal transitive
products of transpositions, i.e., sequences τ1, τ2, . . . , τµ of transpositions of
{1, 2, . . . , n} such that the set {τ1, τ2, . . . , τµ} generates the symmetric group
Sn, i.e., Gτ1,... ,τµ is connected, and such that the permutation τ1 ◦ τ2 ◦ . . . ◦ τµ
has precisely ρ = µ− n+ 2 cycles, where µ (≥ n− 1) is the minimum number
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of transpositions needed to represent a permutation with ρ cycles under this
requirement of connectedness.

The simplest case to consider is the situation where ρ = 1, i.e., where
Gτ1,... ,τµ is a tree. The following result is well known:

Proposition 2 A cyclic permutation of an n-element set has precisely nn−2

distinct factorisations as a product of n− 1 transpositions.

This result is usually attributed to Dénes [7], and it apprears at vari-
ous places in the literature, see e.g., Berge [3], Comtet [5], and Eden,

Schützenberger [8]. Bijective proofs of this result have been given by
Moszkowski [16] and by Goulden, Pepper [13]. Extensions of this re-
sult can be found e.g. in articles by Biane [4], Goulden [10], Goulden,

Jackson [11], and the recent thesis by Poulalhon [17].
Here we are interested in the general problem: in how many ways can a

permutation σ ∈ Sn be represented as a minimal transitive product of trans-
positions. Let k = (k1, k2, . . . , kρ) denote a composition of n and let σ ∈ S be
a permutation of {1, 2, . . . , n} of type k, i.e., σ has ρ cycles of lengths given
by k1, k2, . . . , kρ, so that in particular k1 + . . .+ kρ = n. Now we define

f(k1, . . . , kρ) :=



the number of factorisations

τ1 · τ2 · . . . · τn+ρ−2 = σ

of the permutation σ into a product of

transpositions τi of {1, 2, . . . , n},
where 〈τ1, . . . , τn+ρ−2〉 = Sn

It is obvious that f(k1, . . . , kρ) only depends on the type k and that it is a
symmetric function of the variables k1, . . . , kρ.

The following special cases have appeared in the literature:

k = (n) : f(n) = nn−2 (Dénes [7])

k = (1, . . . , 1︸ ︷︷ ︸
n

) : f(1n) = (2n− 2)!nn−3 (Crescimanno, Taylor [6])

k = (p, q) : f(p, q) = pp qq
(p+ q − 1)!

(p− 1)! (q − 1)!
(Arnol’d [2])

Quite recently the general solution to our problem has been published by
Goulden and Jackson in [12]:

Theorem 3

f(k1, . . . , kρ) = (n+ ρ− 2)! · nρ−3 k
k1+1
1 · · · kkρ+1

ρ

k1! · · · kρ!
(1)
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In the following, it will be instructive to take a look at the Goulden—
Jackson proof. (An exposition of this proof and a discussion of its relation
with the enumeration of maps is contained, among other related items, in the
thesis by Poulalhon [17]).

The combinatorial picture is quite obvious: let τ1, . . . , τµ−1, τµ be a mini-
mal transitive sequence of transpositions on {1, 2, . . . , n}, then there are two
possibilities:

• τµ is a “split”:

this means that the sequence τ1, . . . , τµ−1 is already minimal
transitive on {1, 2, . . . , n} and τµ decomposes a cycle of length
i + j of τ1 ◦ . . . ◦ τµ−1 into a cycle of length i and a cycle of
length j.

• τµ is a “join”:

this means that the graph Gτ1,... ,τµ−1 has two connected com-
ponents, A and B, say, such that A ] B = {1, 2, . . . , n}, such
that τ1, . . . , τµ−1 is a shuffle of the two subsequences τ ′1, . . . , τ

′
µ′ ,

minimal transitive on A, and τ ′′1 , . . . , τ
′′
µ′′ , minimal transitive on

B. Here τµ joins a cycle of length i of τ ′1 ◦ . . . ◦ τ ′µ′ and a cy-
cle of length j of τ ′′1 ◦ . . . ◦ τ ′′µ′′ into a cycle of length i + j of
τ1 ◦ . . . ◦ τµ−1

Now introduce commuting variables p1, p2, p3, . . . and for any composition
k = (k1, . . . , kρ) put pk := pk1 · . . . · pkρ . Correspondingly, for any permutation
σ of type k we put pσ := pk and for any sequence of transpositions τ1, . . . , τµ
we consider the weight function

w(τ1, . . . , τµ) :=
tµ

µ!
pτ1◦...◦τµ

The main object of study is now the generating function

F̃ = F̃ (p1, p2, . . . ; z, t)
∑
n≥1

zn

n!
:=

∑
τ1,... ,τµ m.t.

w(τ1, . . . , τµ)

where the inner summation runs over all minimal transitive sequences of trans-
positions on {1, 2, . . . , n}.

It is not difficult to see that the above combinatorial consideration materi-
alizes into the following partial differential equation:

Lemma 4

∂F̃

∂t
=

1

2

∑
i,j

pi+j · i ·
∂F̃

∂pi
· j · ∂F̃

∂pj︸ ︷︷ ︸
τµ join

+ pi · pj · (i+ j) · ∂F̃
∂pi+j︸ ︷︷ ︸

τµ split
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Putting t = 1 this turns into

Corollary 5 For F = F (p1, p2, . . . ; z) := F̃ (p1, p2, . . . ; z, 1)

z
∂F

∂z
+
∑
i

pi
∂F

∂pi
− 2F =

=
1

2

∑
i,j

pi+j · i ·
∂F

∂pi
· j · ∂F

∂pj
+ pi · pj · (i+ j) · ∂F

∂pi+j

since µ = n+ ρ− 2 and ρ =
∑

j kj =
∑

i #{j ; kj = i}︸ ︷︷ ︸
=: `i

Now we put for any composition k = (k1, . . . , kρ) :

σ(k) := the number of permutations of type k

=
n!

k1 · . . . · kρ · `1! · . . . · `n!

π(k) := the number of partitions of type k

=
n!

k1! · . . . · kρ! · `1! · . . . · `n!

µ(k) :=
∑
i

ki + ρ− 2 = n+ ρ− 2

where `i = #{j ; kj = i}. It is then easy to check that the above generating
function can be written as

F (p1, p2, . . . ; z) =
∑
n≥1

zn

n!

∑
k`n

σ(k) · f(k)

µ(k)!
pk

Now, if we define

G(p1, p2, . . . ; z) =
∑
n≥1

zn

n!

∑
k`n

nρ−3

ρ∏
j=1

k
kj
j · π(k) pk

then one has to show that

F (p1, p2, . . . ; z) = G(p1, p2, . . . ; z)

i.e., one has to show that

G =
∑
n≥1

zn

n!
· 1

n3

[
yn

n!

]
exp

(
n ·
∑
i

ii

i!
pi y

i

)

=
∑
n≥1

zn

n3
[yn] exp

(
n ·
∑
i

ii

i!
pi y

i

)
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satisfies the same differential equation as F (see the above corollary), together
with appropriate initial conditions. Here, as usual, [yn] denotes “the coefficient
of yn in . . . ”.

Goulden–Jackson proceed by introducing the function

φ(y) := exp

(
n ·
∑
i

ii

i!
pi y

i

)
and they let w = w(p1, p2, . . . ; y) denote the solution of the implicit equation

w = z · φ(w)

Then, by Lagrange’s formula, applied to log(y/z), it turns out that G can
be written as

G =
∑
n≥1

zn

n2
[zn]

∑
i≥1

ii

i!
piw

i

Goulden-Jackson go on and derive various formulas for

∂w

∂pk
,
∂w

∂z
,
∂G

∂z
,

∂2G

∂z∂pk
,
∂G

∂pk
. . .

in terms of implicitly defined function w, such as

z
∂G

∂z
=
∑
i≥1

ii−1

i!
piw

i − 1

2

(∑
i≥1

ii

i!
piw

i

)2

which they use to show that G (and F , of course) satisfy(
z
∂

∂z

)(
z
∂Y

∂z
+
∑
i

pi
∂Y

∂pi
− 2Y

)
=

=

(
z
∂

∂z

)
1

2

{∑
i,j

pi+j · i ·
∂Y

∂pi
· j · ∂Y

∂pj
+ pi · pj · (i+ j) · ∂Y

∂pi+j

}

The verification of all the detail is tedious, and it eventually boils down to
showing two particular results:

Lemma 6 Let

Sm :=
∑
i,j≥1
i+j=m

ii

i!

jj−1

j!

Then

Sm =
mm

m!
− mm−1

m!
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This (easy) statement is in fact a version of Abel’s binomial theorem.
Quite a bit more intricate is

Lemma 7 Let

Tk,m :=
kk+1

k!

∑
i≥1,j≥0
i+j=m

1

k + j

ii

i!

jj

j!

Then

Tk,m + Tm,k =
(k +m)k+m

(k +m)!

As a matter of fact, the main result (1) was already presented as early
as 1891 by Hurwitz in his big article ([14], p. 21). Indeed, Hurwitz does
not present a complete proof, he only mentions that he has been guided to
formulate (1) as a conjecture as the result of a very laborious induction (...durch
eine sehr mühsame Induktion zu der Vermutung geführt...), and that he does
not want to present a detailed proof in his article. However, he gives a hint
about the way he proved the result: he shows that the above combinatorial
analysis of the situation leads to the recursion

f(k1, . . . , kρ) =∑
1≤i<j≤ρ

ki kj f(. . . , ki + kj, . . . ) +
1

2

∑
1≤i≤ρ

ki

ki−1∑
r=1

Φr(ki|k1, . . . , k̂i, . . . kρ) (2)

where

Φr(ki|k1, . . . , k̂i, . . . kρ) =
∑
(α,β)

(n+ ρ− 3)!

σ! τ !
f(r, kα1 , . . . , kαλ) f(s, kβ1 , . . . , kβµ)

Here k̂i indicates that the term ki is missing. The summation in
∑

(α,β)

runs over all decompositions of {1, 2, . . . , ρ} \ {i} into two disjoint subsets
{α1, . . . , αλ} , {β1, . . . , βµ} where

s = ki − r
ρ = λ+ µ+ 1

σ = r + kα1 + . . .+ kαλ + λ− 1

τ = s+ kβ1 + . . .+ kβµ + µ− 1

σ + τ = n+ λ+ µ− 2 = n+ ρ− 3

Since the solution of the recurrence equation (2) is determined once the initial
value f(1) = 1 has been fixed, it suffices, as remarked by Hurwitz, that after
substituting (1) into this equation it reduces to an identity. It seems that he

6



has found a rather complicated way for doing that, but he mentions that this
task would be accomplished more easily by using (6),(7) below.

It is the purpose of this present note to carry through this proposal by
Hurwitz and thus, ,in a sense, to reconstruct Hurwitz’ proof of (1).

The assertion to be proved reads

(n+ ρ− 2)! · nρ−3 k
k1+1
1 · · · kkρ+1

ρ

k1! · · · kρ!

=
∑
i<j

ki · kj · (n+ ρ− 3)! · nρ−4k
k1+1
1 · · · (ki + kj)

ki+kj+1 · · · kkρ+1
ρ

k1! · · · (ki + kj)! · · · kρ!

+
1

2

∑
i

ki

ki−1∑
r=1

∑
(α,β)

(n+ ρ− 3)! (σ − λ+ 1)λ−2(τ − µ+ 1)µ−2 ×

×
rr+1k

kα1+1
α1 · · · kkαλ+1

αλ · ss+1k
kβ1

+1

β1
· · · kkβµ+1

βµ

r! kα1 ! · · · kαλ ! s! kβ1 ! · · · kβµ !

Dividing both sides by

(n+ ρ− 3)! · nρ−4 k
k1+1
1 · · · kkρ+1

ρ

k1! · · · kρ!

one obtains

(n+ ρ− 2) · n =
∑
i<j

ki kj
(ki + kj)

ki+kj+1 ki! kj!

(ki + kj)! k
ki+1
i k

kj+1
j

+
n4−ρ

2

∑
i

ki

ki−1∑
r=1

∑
(α,β)

(σ − λ+ 1)λ−2(τ − µ+ 1)µ−2 r
r+1 ss+1 ki!

r! s! kki+1
i

=
∑
i<j

kikj
(ki + kj)

ki+kj+1 ki! kj!

(ki + kj)! k
ki+1
i k

kj+1
j

+
n4−ρ

2

∑
i

ki!

kkii

ki−1∑
r=1

rr+1ss+1

r! s!
F−2,−2(r, s | k1, . . . , k̂i, . . . , kρ) (3)

where the following notation is used

Fr,s(u, v |x1, . . . , xn) :=
∑
(α,β)

(u+ xα1 + . . .+ xαλ)r+λ(v + xβ1 + . . .+ xβµ)s+µ

using the same convention as above, i.e., the Σα,β runs over all decompositions
{α1, . . . , αλ}, {β1, . . . , βµ} of {1, . . . , n}, where 0 ≤ λ ≤ n and µ = n− λ.
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These functions have been investigated by Hurwitz in [15]. He uses in
particular

Fr,s = u · Fr−1,s +
n∑
k=1

xk · Fr,s(u+ xk, v |x1, . . . , x̂k, . . . , xn) (4)

and similarly

Fr,s = v · Fr,s−1 +
n∑
k=1

xk · Fr,s(u, v + xk |x1, . . . , x̂k, . . . , xn) (5)

and he evaluates the following special cases (see also [5])

F−1,−1(u, v |x1, . . . , xn) =

(
1

u
+

1

v

)
(u+ v + x1 + . . .+ xn)n−1 (6)

F−1,0(u, v |x1, . . . , xn) =
1

u
· (u+ v + x1 + . . .+ xn)n (7)

the second of which is a generalization of Abel’s celebrated generalization [1]
of the binomial identity:

n∑
λ=0

(
n

λ

)
(u+ λx)λ−1(v − λx)n−λ =

1

u
· (u+ v)n (8)

A combinatorial treatment of identity (8) by Abel, of identities (6),(7) by
Hurwitz, and of many other generalisations of Abel’s binomial identity has
been given by the present author in [18].

From (4) and (5) one obtains

r · F−2,−2(r, s | k1, . . . , k̂i, . . . , kρ) = F−1,−2(r, s | k1, . . . , k̂i, . . . , kρ)

−
ρ∑
j=1
j 6=i

kj · F−1,−2(r + kj, s | k1, . . . , k̂i, . . . , k̂j, . . . , kρ)
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and

r · s · F−2,−2(r, s | k1, . . . , k̂i, . . . , kρ)

= s · F−1,−2(r, s | k1, . . . , k̂i, . . . , kρ)

−
ρ∑
j=1
j 6=i

kj · s · F−1,−2(r + kj, s | k1, . . . , k̂i, . . . , k̂j, . . . , kρ)

= F−1,−1(r, s | k1, . . . , k̂i, . . . , kρ)

−
ρ∑
j=1
j 6=i

kj · F−1,−1(r, s+ kj | k1, . . . , k̂i, . . . , k̂j, . . . , kρ)

−
ρ∑
j=1
j 6=i

kj · F−1,−1(r + kj, s | k1, . . . , k̂i, . . . , k̂j, . . . , kρ)

+

ρ∑
j=1
j 6=i

ρ∑
l=1
l 6=i,j

kj · k` · F−1,−1(r + kj, s+ k` | k1, . . . , k̂i, . . . , k̂j, . . . , k̂`, . . . , kρ)

and the evaluation of F−1,−1 mentioned in (6) leads to

r · s · F−2,−2(r, s | k1, . . . , k̂i, . . . , kρ)

= nρ−2

(
1

r
+

1

s

)
−

ρ∑
j=1
j 6=i

kj · nρ−3

(
1

r
+

1

s+ kj

)

−
ρ∑
j=1
j 6=i

kj · nρ−3

(
1

r + kj
+

1

s

)
+

ρ∑
j=1
j 6=i

ρ∑
`=1
`6=j,i

kj · k` · nρ−4

(
1

r + kj
+

1

s+ k`

)

= nρ−2

(
1

r
+

1

s

)
− nρ−3n− ki

r
− nρ−3n− ki

s

−nρ−3
∑
j 6=i

kj
s+ kj

− nρ−3
∑
j 6=i

kj
r + kj

+nρ−4
∑
j,`

j 6=` 6=i6=j

kj · k`
(

1

r + kj
+

1

s+ kj

)

= nρ−3 · ki
(

1

r
+

1

s

)
− nρ−3

∑
j 6=i

(
kj

s+ kj
+

kj
r + kj

)

+nρ−4

(∑
j,`

kj
r + kj

(n− ki − kj) +
∑
j,`

k`
s+ k`

(n− ki − k`)

)

= nρ−3 · ki ·
(

1

r
+

1

s

)
− nρ−4

(∑
j 6=i

kj (ki + kj)

r + kj
+
∑
` 6=i

k` (ki + k`)

s+ k`

)
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Thus the second sum on the r.h.s. of (3) equals

n

2

∑
i

ki!

kki−1
i

ki−1∑
r=1

(
1

r
+

1

s

)
rr

r!

ss

s!

−1

2

∑
i

ki!

kkii

ki−1∑
r=1

(∑
j 6=i

kj(ki + kj)

r + kj
+
∑
` 6=i

k`(ki + k`)

s+ k`

)

= n ·
∑
i

(ki − 1)−
∑
i

1

kkii

∑
j 6=i

kj(ki + kj)

ki−1∑
r=1

(
ki
r, s

)
1

r + kj
rrss

= n · (n− ρ)−
∑
i

. . .

where the first equality uses the known identity

ki−1∑
r=1

(
ki
r, s

)
rr−1ss = kki−1

i (ki − 1)

which appears as Proposition 3.2, part 1 in [12], here mentioned as Lemma 6,
and which is in fact an immediate consequence of Abel’s binomial identity
(8).

The identity to be verified now reads

2n (ρ− 1) =∑
i<j

(ki + kj)
ki+kj+1 ki! kj!

kkii k
kj
j (ki + kj)!

−
∑
i

1

kkii

∑
j 6=i

kj(ki + kj)

ki−1∑
r=1

(
ki
r, s

)
1

r + kj
rr ss (9)

It obviously suffices to prove this in the special case ρ = 2, i.e.,

2 (a+ b) =
(a+ b)a+b+1 a! b!

aa bb (a+ b)!

− b(a+ b)

aa

a−1∑
r=1

(
a

r, s

)
1

r + b
rr ss − a(a+ b)

bb

b−1∑
r=1

(
b

r, s

)
1

r + a
rr ss (10)

because summing the
(
ρ
2

)
equalities (10) for a = ki, b = kj with 1 ≤ i < j ≤ ρ

yields (9) since∑
1≤i<j≤ρ

(ki + kj) = (ρ− 1)(k1 + . . .+ kn) = (ρ− 1) · n

(10) is obviously equivalent to

(a+ b)a+b a! b!

aa bb (a+ b)!
=

b

aa

a−1∑
r=0

(
a

r, s

)
1

r + b
rr ss +

a

bb

b−1∑
r=0

(
b

r, s

)
1

r + b
rr tt (11)
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with s = a− r in the first sum and t = b− r in the second. Setting

Tk,m :=
kk+1

k!

∑
i≥1,j≥0
i+j=m

ii jj

i! j!
· 1

k + j

one has

b

aa

a−1∑
r=0

(
a

r, s

)
1

r + b
rr ss =

a! b!

aa bb
Tb,a

and thus (11) follows from

Tk.m + Tm,k =
(k +m)k+m

(k +m)!

which is proved by Goulden and Jackson in [12] using Lagrange inversion
(Proposition 3.2, part 2, here Lemma 7), and which was most probably already
known to Hurwitz. Thus (1) is proved.
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Math. Inst. Hungar. Acad. Sci., vol. 7, ser. A (1962), 353-355.

11



[9] M. El Marraki, N. Hanusse, J. Zipperer and A. Zvonkin, Cacti, braids
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