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INVERSES OF WORDS

Dominique Foata and Guo-Niu Han

Abstract. The inverse of a permutation is one of the basic operations
in the symmetric group. In this paper we propose an extension of this
operation to words (with repetitions) by constructing an explicit one-to-
one transformation on words. We also show that there exists another
transformation having one more property that would be the definitive
bijection for deriving the inverse of a word. The open problem is to imagine
its construction.

1. Introduction

Back in the Fall of 1997 we received a letter from Don Knuth [Kn97] saying
the following: “While proofreading the new edition of my book Sorting
and Searching, I ran across a remark in the last paragraph of the answer
to exercise 5.1.2-14 that I had forgotten (page 583 of the first edition).
Basically it asks for a bijective way to define the inverse of a multiset
permutation (word). Has anybody come up with a satisfactory solution
of that problem?”

Well, the immediate reaction was to go back to the theory of partially
commutative monoids, where the notion of cycle (see [CF69]) had been
introduced and try to use the result on unique decomposition of words. As
we shall see, we can come up with a satisfactory answer that is developed
in the next two sections. However an easy calculation on q-multinomial co-
efficients shows that there exists another transformation on words having
one more property that would make it the definitive bijection to define the
inverse of a word. In the last section we give the list of the properties of
that ideal transformation and invite the reader to imagine its construction.

Let us first recall the basic properties of the inverse of a permutation.
If σ = σ(1)σ(2) . . . σ(n) is a permutation of order n, its inverse σ−1 is
defined by σ−1(σ(i)) = i for all i and its number of inversions “inv” by

inv σ = #{(i, j) : 1 ≤ i < j ≤ n, σ(i) > σ(j)}.

For the material on Young tableaux and the Robinson-Schensted corre-
spondence the reader is referred to the book by Knuth [Kn73, pp. 52].
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That famous correspondence maps each permutation σ onto an ordered
pair of standard Young tableaux (P,Q) of the same shape. We shall denote
it by σ 7→ (P,Q).

Let us enumerate some basic properties of the inverse.
(P1) The map σ 7→ σ−1 is involutive.

(P2) Each pair (i, σ(i)) is mapped onto the pair (σ(i), i).

(P3) The number of inversions “inv” is preserved under the transfor-
mation σ 7→ σ−1, i.e., inv σ−1 = inv σ.

(P4) If σ 7→ (P,Q), then σ−1 7→ (Q,P ).

Our two results are the following.

1) In section 2 we construct an explicit transformation w 7→ w∗ that ex-
tends the inverse mapping σ 7→ σ−1 to words. Furthermore, the properties
(P1), (P2), (P3), once suitably reinterpreted for dealing with words, also
hold (section 3).

2) In section 4 we prove the existence of a transformation that has all the
properties (P1), (P2), (P3), (P4) adapted to words. However the explict
construction of such a transformation is still an open problem.

2. The transformation

For convenience, let X be the alphabet {1, 2, . . . , r}. If c = (c1, c2, . . . , cr)
is a sequence of r nonnegative integers, then 1c12c2 . . . rcr = y1y2 . . . ym
is a nondecreasing word of length m with m = c1 + c2 + · · · + cr and
y1 = · · · = yc1 = 1, yc1+1 = · · · = yc1+c2 = 2, . . . , yc1+···+cr−1+1 = · · · =
ym = r. Denote by R(c) be the set of all rearrangements of the word
y1y2 . . . ym.

A circuit is defined to be an ordered pair
(
u

v

)
, where the words u =

y1y2 . . . ym and v = x1x2 . . . xm are rearrangements of each other.
We use the following commutation rule for two adjacent biletters

(♠)
(
a

b

)(
c

d

)
=
(
c

d

)(
a

b

)
if and only if a 6= c

to change a circuit to another. Two circuits
(
u

v

)
and

(
u1

v1

)
are said to

be equivalent, if we can go from one to the other by a finite sequence of
adjacent transpositions of bi-letters as defined in (♠).

Construction of the transformation w 7→ w∗. Let w be a word in R(c).

We first form the circuit Γ(w) =
(
w

w

)
, where w is the nondecreasing
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rearrangement of w. Using the same example as in [Lo83 p. 199] namely
w = 31514226672615, we get

Γ(w) =
(
w

w

)
=
(

1 1 1 2 2 2 3 4 5 5 6 6 6 7
3 1 5 1 4 2 2 6 6 7 2 6 1 5

)
.

Next we form the dominated circuit factorization of the circuit Γ(w) as
described in [Lo83 p. 199]

Γ(w) =
(

1 1 2 3
3 1 1 2

)(
4 2 2 6
6 4 2 2

)(
6
6

)(
5 1 6
6 5 1

)(
5 7
7 5

)
.

Now such a circuit can be decomposed into a product of cycles. The theory
is not made in [Lo83], but is made in [CF69] (see page 42, Proposition 4.1).
It is also discussed in [Kn73, theorem C, p. 28]. With the previous example

Γ(w) =
(

1 2 3
3 1 2

)(
1
1

)(
4 2 6
6 4 2

)(
2
2

)(
6
6

)(
5 1 6
6 5 1

)(
5 7
7 5

)
.

As shown in [CF69, p. 42] or [Kn73, p. 28] the above factorization (“de-
composition”) is unique in the sense that if two such factorizations are
equal to the same Γ(w) we can go from the first one to the second by a
finite sequence of elementary transformations consisting of permuting two
consecutive cycles having no letter in common.
Having such a product we can take the inverse of each cycle consisting of
permuting the top and the bottom rows within each cycle. Call it τ Γ(w):

τ Γ(w) =
(

3 1 2
1 2 3

)(
1
1

)(
6 4 2
4 2 6

)(
2
2

)(
6
6

)(
6 5 1
5 1 6

)(
7 5
5 7

)
.

Next using the commutation rule (♠) we rearrange the above product
τ Γ(w) in such a way that the top row is nondecreasing. We get a circuit
that corresponds to a rearrangement w∗ of w:

Γ(w∗) =
(

1 1 1 2 2 2 3 4 5 5 6 6 6 7
2 1 6 3 6 2 1 2 1 7 4 6 5 5

)
.

The word w∗ is defined as the bottom row of the previous two-matrix,
that is

w∗ = 21636212174655.

The above construction can be described as the sequence:

(♣) w 7→ Γ(w) =
(
w

w

)
7→
(
u

v

)
τ7→
(
v

u

)
7→ Γ(w∗) =

(
w

w∗

)
7→ w∗.
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Note that the unique decompositions
(
u

v

)
and

(
v

u

)
are equivalent to the

two circuits Γ(w) and Γ(w∗), respectively.

Remark. In a subsequent letter [Kn98] Knuth told us that he had thought
of the same construction for w 7→ w∗.

3. Properties

Let w = x1x2 . . . xm belong to R(c). When dealing with words (with rep-
etitions) two kinds of inversions can be introduced, the internal and the
external inversions. An internal inversion of a word w = x1x2 . . . xm in
R(c) is an inversion that occurs inside any one of the r factors x1 . . . xc1 ,
xc1+1 . . . xc1+c2 , . . . , xc1+···+cr−1+1 . . . xm of the word w. An external
inversion is an inversion of two letters belonging to two different factors.
Let intinvw (resp. extinvw) denote the number of internal (resp. exter-
nal) inversions of the word w. Of course, intinv + extinv = inv, the usual
number of inversions. If w has no repetitions (if it is a permutation), then
intinvw = 0 while extinvw = invw.

Let
(
u

v

)
be a circuit. Remember that u = y1y2 . . . ym and v = x1x2 . . . xm

are rearrangements of each other and v is not necessarily nondecreasing.

The number of external inversions extinv
(
u

v

)
of the circuit

(
u

v

)
is defined

to be the number of pairs (i, j) such that 1 ≤ i < j ≤ m and either yi < yj
and xi > xj , or yi > yj and xi < xj .

Proposition 1. Let w be the nondecreasing rearrangement of a word w
and let u, v, u1, v1 be four rearrangements of w. Then

(E1) extinv
(
w

w

)
= extinvw;

(E2) extinv
(
u

v

)
= extinv

(
v

u

)
;

(E3) If two circuits
(
u

v

)
and

(
u1

v1

)
are equivalent, then

extinv
(
u

v

)
= extinv

(
u1

v1

)
.

Proof: When the top word in a biword is the nondecreasing rearrangement
of the bottom word w, the definitions of “extinv” for the circuit

(
w
w

)
and

for the word w coincide. Property (E2) is the extension to words of the
invariance of the inversion number when a permutation is mapped onto its
inverse. Property (E3) is true for two circuits differing by a transposition
of two adjacent letters satisfying (♠) and then holds for two equivalent
circuits.
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Theorem 2. The transformation w 7→ w∗ is a bijection of R(c) onto itself
having the following properties

(W0) If w = σ is a permutation, then w∗ = σ−1;
(W1) w 7→ w∗ is an involution;

(W2) For each biletter
(
y

x

)
, the number of occurrences of the biletter(

y

x

)
in
(
w

w

)
is equal to the number of occurrences of the biletter(

x

y

)
in
(
w

w∗

)
.

(W3) extinvw = extinvw∗;
Proof: Properties (W0), (W1), (W2) follows immediately from the con-
struction of w 7→ w∗ described in (♣). Property (W3) is a consequence of
both (♣) and Proposition 1.
Example. With w and w∗ derived in section 2 we have extinvw∗ =
extinvw = 27. Here intinvw∗ = intinvw = 4 and invw∗ = invw = 31,
but this is a simple coincidence (see the example at the end of section 4.)

4. Another analogue?

For each word w and each element i = 1, 2, . . . , r in the alphabet let |w|i
denote the number of letters of w equal to i. Let A = (a(i, j)) be an r× r
matrix with nonnegative coefficients such that the sum of the entries in
the first row and also in the first column is c1, . . . , the sum of the entries
in the r-th row and also in the r-th column is cr. Let w = x1x2 . . . xm
belong to R(c). It is said to be of A-type, if the following conditions hold:

|x1 . . . xc1 |1 = a(1, 1), . . . , |x1 . . . xc1 |r = a(1, r);
|xc1+1 . . . xc1+c2 |1 = a(2, 1), . . . , |xc1+1 . . . xc1+c2 |r = a(2, r);

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

|xc1+···+cr−1+1 . . . xm|1 = a(r, 1), . . . , |xc1+···+cr−1+1 . . . xm|r = a(r, r).

When c1 = c2 = · · · = cr = 1, each word w in R(c) may be identified with
a permutation of 1, 2, . . . , r. If it is of type A, then A is the permutation
matrix corresponding to w. The inverse of w is of type AT (the transpose
of A).

Proposition 3. Let R(c, A) be the set of the words in R(c) which are of
A-type. Then the generating polynomials for R(c, A) and for R(c, AT ) by
the number of internal inversions are identical. Moreover,∑

w∈R(c,A)

qintinvw =
[

c1
a(1, 1) . . . a(1, r)

]
q

· · ·
[

cr
a(r, 1) . . . a(r, r)

]
q
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=
[

c1
a(1, 1) . . . a(r, 1)

]
q

· · ·
[

cr
a(1, r) . . . a(r, r)

]
q

=
∑

w∈R(c,AT )

qintinvw

Proof. As is well-known (see, e.g., [An76, p. 41]) the generating polyno-
mial for the rearrangements of the word 1a(1,1) . . . ra(1,r) by the number
of inversions is equal to multinomial coefficient

[
c1

a(1,1)...a(1,r)

]
q
.

Remarks.
1) Proposition 3 implies that there exists a bijection of R(c, A) onto
R(c, AT ) that preserves the number of internal inversions. As will be
explained, constructing such a bijection is the crucial problem still un-
solved.
2) Our transformation w 7→ w∗ gives a bijective proof of Proposition 3 in
the case q = 1.

Say that a word w = x1x2 . . . xm in R(c, A) is minimal, it it has no internal
inversions. This means that all the factors x1 . . . xc1 , xc1+1 . . . xc1+c2 , . . . ,
xc1+...cr−1+1 . . . xm are nondecreasing. In each A-type class there is one
and only one minimal word. Write it as the bottom word in the following
two-row matrix:(

1 . . . 1 2 . . . 2 . . . r . . . r
x1 . . . xc1 xc1+1 . . . xc1+c2 . . . xc1+···+cr−1+1 . . . xm

)
.

Interchange the two rows; then rearrange the vertical bi-letters
(
a′

a

)
of

the resulting two-row matrix in such a way that the top row becomes
1c12c2 . . . rcr , using the commutation rule (♠). Let w′ be the bottom
word in the final two-row matrix. This implies the following proposition.

Proposition 4. The mapping w 7→ w′ is an involution of the set of the
minimal words in R(c) that sends each minimal word of A-type onto a
minimal word of AT -type. Moreover

extinvw′ = extinvw.

Example. The word w = 3, 1, 2, 2 is minimal and of type A =

 0 0 1
1 1 0
0 1 0

.
It is mapped onto(

1 2 2 3
3 1 2 2

)
7→
(

3 1 2 2
1 2 2 3

)
=
(

1 2 2 3
2 2 3 1

)
7→ 2, 2, 3, 1 = w′,

which is minimal and of type AT =

 0 1 0
0 1 1
1 0 0

. Moreover extinvw′ =
extinvw = 3.
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In [Kn70] Knuth derived an extension of the Robinson-Schensted corre-
spondence. When that extension is applied to a minimal word w, it can

be viewed as a one-to-one mapping of each circuit
(
w

w

)
onto an ordered

pair of semi-standard Young tableaux (P,Q) of the same shape and the
same evaluation. Again denote that one-to-one mapping by w 7→ (P,Q).
Knuth also proved the following property:

If w 7→ (P,Q), then w′ 7→ (Q,P ).

As all words belonging to the same class R(c, A) have the same number
of external inversions, the previous two propositions imply the following
theorem.

Theorem 5. There exists a bijection w 7→ w′ of R(c) having the following
properties

(N0) If w = σ is a permutation, then w′ = σ−1;
(N1) w 7→ w′ is an involution;

(N2) For each biletter
(
y

x

)
, the number of occurrences of the biletter(

y

x

)
in
(
w

w

)
is equal to the number of occurrences of the biletter(

x

y

)
in
(
w

w′

)
.

(N2’) if w is of A-type, then w′ is of AT -type;
(N3) extinvw = extinvw′;
(N4) If w is a minimal word and w is mapped onto (P,Q) by the

Robinson-Schensted correspondence, then w′ 7→ (Q,P );
(N4’) intinvw = intinvw′;
(N4”) invw = invw′;

Take the minimal word w = 3122. We have w∗ = 2321, which is not a
minimal word. We know that our transformation w 7→ w∗ in section 2 does
not verify all the properties of theorem 5. Finding such a transformation
is the open problem that we propose to the reader.
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