Inversion of Incidence Mappings

Helmut Krämer
Mathematisches Seminar der Universität Hamburg
Bundesstraße 55
D-20146 Hamburg

Abstract

Denote by $H(t, q), t \leq q$, the incidence matrix (with respect to inclusion) of the t-sets versus the q-sets of the n-set $\{1,2, \ldots, n\}$. This matrix is considered as a linear map of \mathbb{Q}-vector spaces $$
C_{q}(n) \longrightarrow C_{t}(n)
$$ where $C_{s}(n)$ is the \mathbb{Q}-vector space having the s-sets as a basis $(s \leq n)$. As a basic tool, we introduce a connection of the vector spaces to a graded \mathbb{Q}-algebra (which is at the same time an Artinian local ring). We define mappings \triangle and \mathbb{X} of this algebra of degree -1 and 1 , respectively. These two mappings correspond up to a scalar factor to the linear mappings $H(s-1, s)$ and $H(s-1, s)^{T}$, respectively.

Then, a relation between the algebra maps \triangle and \mathbb{X} is established. This relation allows to rewrite a term $\triangle^{\beta} \mathbb{X}^{\alpha}$ with α, β non-negative integers (subject to some restrictions) as a sum $\sum_{k=0}^{\beta}\binom{\beta}{k} \cdot \mathbb{X}^{\alpha-k} \cdot \triangle^{\beta-k}$ (up to some scalar factors). As a main result of this relation surjectivity of the map \triangle^{q-t} (related to $H(t, q)$ up to a scalar factor) is proved under the assumption $\binom{n}{t} \leq\binom{ n}{q}$. Moreover, a right inverse for the matrix $H(t, q)$ is given explicitely.

This result is exploited to give an inverse of the (square) incidence matrix $H(t, q)$ in the case $t=n-q$.

These results extend some work done by J.B. Graver and W.B. Jurkat.

1. For $n \in \mathbb{N}$ we put

$$
\underline{\underline{n}}=\{1,2, \ldots, n\} .
$$

For $0 \leq t \leq q \leq n$ we denote by $H(t, q)$ the incidence matrix (with respect to inclusion) of the t-sets versus the q-sets of the n-set \underline{n} and by $C_{q}(n)$ the \mathbb{Q}-vector space having the basis $\{[M]\}_{M \subseteq \underline{n},|M|=q}$. Then $H(t, q)$ defines a linear mapping ("incidence mapping")

$$
C_{q}(n) \longrightarrow C_{t}(n),[M] \longrightarrow \sum_{N \subseteq M}^{|N|=t}[N],
$$

which is denoted by the same symbol $H(t, q)$. -
The transpose $H(t, q)^{T}$ of $H(t, q)$ defines a linear mapping

$$
C_{t}(n) \longrightarrow C_{q}(n),[N] \longrightarrow \sum_{N \subseteq M}^{|M|=q}[M],
$$

which is denoted by the same symbol $H(t, q)^{T}$. Finally we define the "augmentation mapping"

$$
H(-1,0): C_{0}(n) \longrightarrow 0
$$

Assume that $\operatorname{dim}_{\mathbb{Q}} C_{t}(n)=\binom{n}{t} \leq\binom{ n}{q}=\operatorname{dim}_{\mathbb{Q}} C_{q}(n)$. Then it is known that the mapping $H(t, q)$ is surjective ([3], 2.3, 2.4), therefore in case of equality of the two dimensions under consideration an isomorphism. In this case moreover we exhibit a method to compute explicitely $H(t, q)^{-1}$ by defining a structure of a graded commutative algebra on the graded \mathbb{Q}-vector space $C_{*}(n):=\bigoplus_{q=0}^{n} C_{q}(n)$ such that at the same time $C_{*}(n)$ becomes an Artinian local ring.
We provide an example for the computation of $H(n-q, q)^{-1}$:

- Assume n odd and $q=\left\lfloor\frac{n}{2}\right\rfloor+1$. Then one has

$$
H(q-1, q)^{-1}=\sum_{j=1}^{q} \frac{(-1)^{j+1}}{j} \cdot H(q-j, q)^{T} \circ H(q-j, q-1) .
$$

There is the following generalization:

- Assume $q \leq \frac{n}{2}$ if n is even or $q \leq\left\lfloor\frac{n}{2}\right\rfloor+1$ if n is odd. Then the mapping

$$
K(q, q-1): C_{q-1}(n) \longrightarrow C_{q}(n)
$$

defined by

$$
K(q, q-1)=\sum_{j=1}^{q} \frac{(-1)^{j+1}}{j}\binom{n-2 q+j+1}{j}^{-1} \cdot H(q-j, q)^{T} \circ H(q-j, q-1)
$$

is a right inverse of $H(q-1, q)$.
2. One defines the structure of a commutative \mathbb{Q}-algebra on $C_{*}(n)=\bigoplus_{q=0}^{n} C_{q}(n)$ by setting for subsets M, N of $\underline{\underline{n}}$

$$
[M] \cdot[N]=\left\{\begin{array}{cl}
{[M \cup N],} & \text { if } M \cap N=\emptyset \\
0, & \text { otherwise }
\end{array}\right.
$$

This \mathbb{Q}-algebra which we denote by $\mathfrak{C}_{*}(n)$ is isomorphic to

$$
\mathcal{A}(n):=\mathbb{Q}\left[T_{1}, \ldots, T_{n}\right] /\left(T_{1}^{2}, T_{2}^{2}, \ldots, T_{n}^{2}\right)=\mathbb{Q}\left[X_{1}, \ldots, X_{n}\right],
$$

where T_{1}, \ldots, T_{n} are algebraically independent elements and $X_{j}=T_{j} \bmod \left(T_{1}^{2}, \ldots, T_{n}^{2}\right)$. The isomorphism $\mathcal{C}_{*}(n) \longrightarrow \mathcal{A}(n)$ is induced by

$$
\begin{aligned}
{[M]=\left[\left\{j_{1}, \ldots, j_{q}\right\}\right] } & \longrightarrow X_{j_{1}} X_{j_{2}} \cdot \ldots \cdot X_{j_{q}}, \text { if }|M|=q \geq 1, \\
{[\emptyset] } & \longrightarrow 1 \in \mathbb{Q} .
\end{aligned}
$$

In the sequel we identify $\mathfrak{C}_{*}(n)$ and $\mathcal{A}(n)$.
Let $\mathfrak{C}_{*}(n)_{p}$ denote the \mathbb{Q}-module of the elements of degree p of the graded algebra $\mathfrak{C}_{*}(n)$. Then one has

$$
\mathfrak{C}_{*}(n)_{p}=\left\{\begin{array}{cl}
C_{p}(n), & 0 \leq p \leq n \\
0, & p>n
\end{array}\right.
$$

To the mappings $H(q-1, q), 0 \leq q \leq n$, corresponds the map $\triangle: \mathfrak{C}_{*}(n) \longrightarrow \mathfrak{C}_{*}(n)$ of degree -1 defined by

$$
\begin{aligned}
\left.\Delta\right|_{\mathbb{Q}}=0, \Delta X_{j} & =1, j \in \underline{\underline{n}} \\
\triangle\left(X_{j_{1}} \cdot X_{j_{2}} \cdot \ldots \cdot X_{j_{q}}\right) & =\sum_{k=1}^{q} X_{j_{1}} \cdot \ldots \cdot \widehat{X}_{j_{k}} \cdot \ldots \cdot X_{j_{q}}, 2 \leq q \leq n,
\end{aligned}
$$

$\left(1 \leq j_{1}<j_{2}<\ldots<j_{q} \leq n,{ }^{\wedge}\right.$ denotes the deleting operator).
Finally we define $\mathbb{X}=\sum_{j=1}^{q} X_{j}$.
Proposition 1. Assume $0 \leq t \leq q \leq n$. Then with the agreement $\triangle^{\circ}=i d$, $\mathbb{X}^{\circ}=1$ the following identities hold

$$
\begin{aligned}
(q-t)!\cdot H(t, q) & =\left.\triangle^{q-t}\right|_{C_{q}(n)} \\
(q-t)!H(t, q)^{T}(w) & =\mathbb{X}^{q-t} \cdot w, w \in C_{t}(n)
\end{aligned}
$$

Proof. To prove the first statement we show by induction with respect to $m, 0 \leq m \leq q$, that the identity
(1) \ldots

$$
\left.\triangle^{m}\right|_{C_{q}(n)}=m!H(q-m, q)
$$

holds. Of course, this is true for $m=0,1$. Assume this identity has been proved already in case $m-1 \geq 1$.
The following relation is well known in case $0 \leq s \leq t \leq q$

$$
\begin{equation*}
H(s, t) \circ H(t, q)=\binom{q-s}{t-s} H(s, q) \tag{1}
\end{equation*}
$$

(see for example [2], Chapt 15, Lemma 8.1).
Therefore one has

$$
\begin{aligned}
& \left.\Delta^{m}\right|_{C_{q}(n)}=\left.\left.\triangle\right|_{C_{q-m+1}(n)} \circ \Delta^{m-1}\right|_{C_{q}(n)} \\
= & H(q-m, q-m+1) \cdot(m-1)!H(q-m+1, q) \\
= & m \cdot(m-1)!\cdot H(q-m, q)=m!H(q-m, q)
\end{aligned}
$$

To prove the second statement we show by induction with respect to $m \geq 0$, $t+m \leq n$, that for $w \in C_{t}(n)$ the following relation holds

$$
\mathbb{X}^{m} \cdot w=m!H(t, t+m)^{T}(w) .
$$

It is sufficient for our purpose to take w as an element $X_{j_{1}} \cdot \ldots \cdot X_{j_{t}}$ of the "canonical" basis of $C_{t}(n)$. The claim is evident in case $m=0$; moreover one has

$$
\mathbb{X} w=\sum_{k \neq j_{1}, j_{2}, \ldots, j_{t}}^{k} X_{j_{1}} X_{j_{2}} \cdot \ldots \cdot X_{j_{t}} \cdot X_{k}=H(t, t+1)^{T}(w)
$$

Assume that the statement has already been proved in case $m-1 \geq 0$. By transposing one gets from Eq (1)

$$
H(t, t+m)^{T}=m \cdot H(t+1, t+m)^{T} \circ H(t, t+1)^{T}
$$

Therefore according to the induction hypothesis (applied to $\mathbb{X} w \in C_{t+1}(n)$)

$$
\begin{aligned}
\mathbb{X}^{m} w=\mathbb{X}^{m-1} \cdot \mathbb{X} w & =(m-1)!H(t+1, t+m)^{T} \circ H(t, t+1)^{T}(w) \\
& =m!H(t, t+m)^{T}(w) .
\end{aligned}
$$

Suppose $w \in \mathfrak{C}_{*}(n)$. Then we define the "foundation" of w (in signs Fund (w)) to be the product of all X_{j} which appear in the basis decomposition of w with a coefficient unequal to zero.
For example one has with pairwise distinct $X_{j_{1}}, X_{j_{2}}, \ldots, X_{j_{2 t}}$

$$
\text { Fund }\left(\left(X_{j_{1}}-X_{j_{2}}\right)\left(X_{j_{3}}-X_{j_{4}}\right) \cdot \ldots \cdot\left(X_{j_{2 t-1}}-X_{j_{2 t}}\right)\right)=\prod_{k=1}^{2 t} X_{j_{k}} .
$$

In a self-explaining manner we can treat the foundation also as a subset of $\underline{\underline{n}}$.

Proposition 2. i) Assume $v, w \in \mathfrak{C}_{*}(n)$ and Fund $(v) \cap$ Fund $(w)=\emptyset$.
Then we have that

$$
\triangle(v w)=v \triangle(w)+w \triangle(v)
$$

ii) Denote $\mathbb{Z}=\sum_{k=1}^{p} X_{j_{k}}$, the $X_{j_{k}}$ pairwise distinct. Assume $1 \leq m \leq p$ (and put $\mathbb{Z}^{0}=1$). Then we have that

$$
\triangle\left(\mathbb{Z}^{m}\right)=m(p-m+1) \mathbb{Z}^{m-1}
$$

Proof. Ad i) Assume in the first instance $v=X_{i_{1}} \cdot \ldots \cdot X_{i_{s}}, w=X_{j_{1}} \cdot \ldots \cdot X_{j_{t}}$ are elements from a basis of $\mathfrak{C}_{*}(n)$. According to hypothesis one has

$$
\left|\left\{i_{1}, \ldots, i_{s}, j_{1}, \ldots, j_{t}\right\}\right|=s+t .
$$

Therefore

$$
\begin{aligned}
\triangle(v w) & =\sum_{k=1}^{s} X_{i_{1}} \cdot \ldots \cdot \widehat{X}_{i_{k}} \cdot \ldots \cdot X_{i_{s}} \cdot X_{j_{1}} \cdot \ldots \cdot X_{j_{t}} \\
& +\sum_{l=1}^{t} X_{i_{1}} \cdot \ldots \cdot X_{i_{s}} \cdot X_{j_{1}} \cdot \ldots \cdot \widehat{X}_{j_{l}} \cdot \ldots \cdot X_{j_{t}} \\
& =w \triangle(v)+v \triangle(w) .
\end{aligned}
$$

The general case follows now from the law of distributivity.
Ad ii) Without loss of generality assume $\mathbb{Z}=\sum_{j=1}^{p} X_{j}$. Then we have

$$
\mathbb{Z}^{k}=\left\{\begin{array}{cl}
k!\sum_{1 \leq j_{1}<\ldots<j_{k} \leq p} X_{j_{1}} \cdot \ldots \cdot X_{j_{k}}, & 1 \leq k \leq p, \tag{2}\\
0, & k>p .
\end{array}\right.
$$

In this sum a term $X_{i_{1}} \cdot \ldots \cdot X_{i_{m-1}},\left(1 \leq i_{1}<\ldots<i_{m-1} \leq p\right)$ occurs exactly in the terms $\triangle\left(X_{i_{1}} \cdot \ldots \cdot X_{i_{m-1}} \cdot X_{t}\right), t \in \underline{p} \backslash\left\{i_{1}, \ldots, i_{m-1}\right\}$ with factor 1 ; therefore it occurs in $\triangle\left(\mathbb{Z}^{m}\right)$ with factor $m!(p-m+1)=m(p-m+1)(m-1)!$. The conclusion follows now from equation (2).

We remark that \triangle is no derivation of $\mathfrak{C}_{*}(n)$.
Let $\mathfrak{m}:=\left(X_{1}, \ldots, X_{n}\right)$ denote the maximal ideal of $\mathfrak{C}_{*}(n)$. Then it holds that $\mathfrak{m}^{n+1}=0$. If \mathfrak{p} is a prime ideal of $\mathfrak{C}_{*}(n)$, then from $\mathfrak{m}^{n+1} \subseteq \mathfrak{p}$ one concludes $\mathfrak{m}=\mathfrak{p}$. Therefore $\mathfrak{C}_{*}(n)$ is an Artinian local ring. Let $\widetilde{\triangle}$ denote a derivation of $\mathfrak{C}_{*}(n)$ (into itself). Then it must hold for all $j \in \underline{\underline{n}}$ that

$$
0=\widetilde{\triangle}\left(X_{j}^{2}\right)=2 X_{j} \widetilde{\triangle}\left(X_{j}\right)
$$

therefore $\widetilde{\triangle}\left(X_{j}\right) \in \mathfrak{m}$. - So $\widetilde{\triangle}$ maps \mathfrak{m} (and $\mathfrak{C}_{*}(n)$, too) into \mathfrak{m} (compare with [4], §1, Exercise 4).

Now we extend Prop.2, ii):
Proposition 3. Assume $0 \leq s \leq n-1, \alpha \in \mathbb{N}, \alpha+s \leq n$ and $w \in C_{s}(n)$. Then the following identity holds:

$$
\triangle\left(\mathbb{X}^{\alpha} \cdot w\right)=\mathbb{X}^{\alpha} \cdot \triangle(w)+\alpha(n-\alpha-2 s+1) \mathbb{X}^{\alpha-1} \cdot w
$$

Proof. In case $s=0$ the statement is true according to Prop. 2, ii). Assume now $s \geq 1$ and take

$$
w=X_{j_{1}} \cdot \ldots \cdot X_{j_{s}}
$$

as a basis element of $C_{s}(n)$. One defines

$$
\mathbb{Y}=\sum_{k=1}^{s} X_{j_{k}}, \mathbb{Z}=\mathbb{X}-\mathbb{Y}
$$

Since w is a word in all $X_{j_{1}}, \ldots, X_{j_{s}}$ one has $\mathbb{Y} \cdot w=0$. Assume $t \geq 0$. Then the following holds

$$
\mathbb{X}^{t} w=(\mathbb{Y}+\mathbb{Z})^{t} \cdot w=\sum_{r=0}^{t}\binom{t}{r} \mathbb{Z}^{r} \mathbb{Y}^{t-r} \cdot w=\mathbb{Z}^{t} w
$$

furthermore according to the definition of \mathbb{Y} and \mathbb{Z} Fund $(w) \cap$ Fund $\left(\mathbb{Z}^{t}\right)=\emptyset$; from Prop. 2 one concludes

$$
\left\{\begin{align*}
\triangle\left(\mathbb{X}^{\alpha} \cdot w\right) & =\triangle\left(\mathbb{Z}^{\alpha} \cdot w\right)=\mathbb{Z}^{\alpha} \cdot \triangle(w)+w \cdot \triangle\left(\mathbb{Z}^{\alpha}\right) \tag{3}\\
& =\mathbb{Z}^{\alpha} \cdot \triangle(w)+\alpha(n-s-\alpha+1) \mathbb{Z}^{\alpha-1} w \\
& =\mathbb{Z}^{\alpha} \cdot \triangle(w)+\alpha(n-s-\alpha+1) \mathbb{X}^{\alpha-1} w
\end{align*}\right.
$$

Now we use

$$
\mathbb{Y}^{t} \cdot \Delta(w)=\left\{\begin{array}{cc}
0, & t>1 \\
s \cdot w, & t=1
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
\mathbb{X}^{\alpha} \triangle(w) & =\left(\sum_{r=0}^{\alpha}\binom{\alpha}{r} \mathbb{Y}^{r} \mathbb{Z}^{\alpha-r}\right. \\
& =\alpha s \mathbb{Z}^{\alpha-1} w+\mathbb{Z}^{\alpha} \cdot \Delta(w)=\alpha \cdot s \cdot \mathbb{X}^{\alpha-1} w+\mathbb{Z}^{\alpha} \cdot \triangle(w) .
\end{aligned}
$$

Replacing the term $\mathbb{Z}^{\alpha} \triangle(w)$ in Eq. (3) yields

$$
\triangle\left(\mathbb{X}^{\alpha} w\right)=\mathbb{X}^{\alpha} \cdot \triangle(w)+\alpha(n-2 s-\alpha+1) \mathbb{X}^{\alpha-1} \cdot w
$$

as claimed. -

Prop. 3 is a special case of

Proposition 4. The same assumptions about s, α are in force as in Prop. 3. Assume $r \in \mathbb{R}$ and $k \in \mathbb{N}$ and define

$$
[r]_{k}=r(r-1) \cdot(r-2) \cdot \ldots \cdot(r-k+1),[r]_{0}=1 .
$$

Let β be a non-negative integer and assume $0 \leq \beta \leq \alpha$. Then the following identity holds

$$
\triangle^{\beta}\left(\mathbb{X}^{\alpha} \cdot w\right)=\sum_{k=0}^{\beta}\binom{\beta}{k}[\alpha]_{k}[n-\alpha-2 s+\beta]_{k} \cdot \mathbb{X}^{\alpha-k} \cdot \triangle^{\beta-k}(w)
$$

Proof. There is nothing to prove in case $\beta=0$; in case $\beta=1$ the claim boils down to Prop. 3. If $0 \leq j \leq \beta$ we put

$$
[\beta, j]=\mathbb{X}^{\alpha-j} \cdot \triangle^{\beta-j}(w)
$$

and prove first of all by induction with respect to $\beta \geq 1$, that the identity

$$
\begin{equation*}
\triangle^{\beta}\left(\mathbb{X}^{\alpha} w\right)=\sum_{j=0}^{\beta} c(\beta, j) \cdot[\beta, j], \quad c(\beta, j) \in \mathbb{Q} \tag{4}
\end{equation*}
$$

holds; furthermore this will yield recursion formulas for the coefficients $c(\beta, j)$. In case $\beta=1$ one has according to Prop. 3

$$
c(1,0)=1, c(1,1)=\alpha(n-\alpha-2 s+1)=: \lambda(\alpha, s) .
$$

Since $\triangle^{k-j}(w) \in C_{s-k+j}(n)$, Prop. 3 now yields

$$
\begin{gathered}
\triangle([k, j])=\triangle\left(\mathbb{X}^{\alpha-j} \cdot \triangle^{k-j}(w)\right)= \\
=\mathbb{X}^{\alpha-j} \cdot \triangle^{k-j+1}(w)+(\alpha-j) \cdot(n-(\alpha-j)-2(s-k+j)+1) \cdot \mathbb{X}^{\alpha-j-1} \cdot \triangle^{k-j}(w)= \\
=\mathbb{X}^{\alpha-j} \cdot \triangle^{k-j+1}(w)+\lambda(\alpha-j, s-k+j) \cdot \mathbb{X}^{\alpha-j-1} \cdot \triangle^{k-j}(w),
\end{gathered}
$$

that is

$$
\triangle([k, j])=[k+1, j]+\lambda(\alpha-j, s-k+j)[k+1, j+1]
$$

According to the induction hypothesis we obtain

$$
\begin{aligned}
\triangle^{\beta+1}\left(\mathbb{X}^{\alpha} w\right) & =\triangle\left(\triangle^{\beta}\left(\mathbb{X}^{\alpha} \cdot w\right)\right)= \\
c(\beta, 0)[\beta+1,0] & +\sum_{j=1}^{\beta}\{c(\beta, j)+c(\beta, j-1) \cdot \lambda(\alpha-j+1, s-\beta+j-1)\} \cdot[\beta+1, j] \\
& +\lambda(\alpha-\beta, s) \cdot c(\beta, \beta)[\beta+1, \beta+1],
\end{aligned}
$$

which proves Eq. (4); at the same time we have proved the following recursion formulas

$$
\begin{equation*}
c(\beta+1,0)=c(\beta, 0), c(\beta+1, \beta+1)=\lambda(\alpha-\beta, s) c(\beta, \beta), \tag{5.1}
\end{equation*}
$$

$$
\begin{equation*}
\ldots c(\beta+1, j)=c(\beta, j)+\lambda(\alpha-j+1, s-\beta+j-1) \cdot c(\beta, j-1),(1 \leq j \leq \beta) . \tag{5.2}
\end{equation*}
$$

Eq. (5.1) yields immediately
(6) ...

$$
\left\{\begin{array}{l}
c(\beta, 0)=1 \\
c(\beta, \beta)=[\alpha]_{\beta}[n-\alpha-2 s+\beta]_{\beta}
\end{array} \quad(0 \leq \beta \leq \alpha) .\right.
$$

Now we claim that the following holds in case $\beta \geq j$

$$
\begin{equation*}
c(\beta, j)=\binom{\beta}{j}[\alpha]_{j}[n-\alpha-2 s+\beta]_{j} \tag{7}
\end{equation*}
$$

which we prove by induction with respect to the pairs $(\beta, j), \beta \geq j$. The claim is true for pairs $(\beta, 0)$ according to Eq. (6). Assume that it has already been proved that in case $j \geq 1$ the claim is true for all pairs $(\gamma, j-1), \gamma \geq j-1$. We rewrite a term in the recursion formula (5.2)

$$
\lambda(\alpha-j+1, s-\beta+j-1)=(\alpha-j+1)(n-\alpha-2 s+2 \beta-j+2)
$$

Now we proceed by induction with respect to $\beta, \beta \geq j$. In case $\beta=j$ the statement is true according to Eq. (6). Assume that the statement has already be proved for some $\beta \geq j$. Then we have according to Eq. (5.2)

$$
\begin{aligned}
c(\beta+1, j)= & \binom{\beta}{j}[\alpha]_{j}[n-\alpha-2 s+j]_{j}+ \\
& +(n-\alpha-2 s+2 \beta-j+2) \cdot\binom{\beta}{j-1}[\alpha]_{j}[n-\alpha-2 s+\beta]_{j-1} .
\end{aligned}
$$

Using the identities $\binom{\beta}{j}=\binom{\beta}{j-1} \cdot \frac{\beta-j+1}{j}$ and $\binom{\beta}{j}+\binom{\beta}{j-1}=\binom{\beta+1}{j}$ we conclude

$$
\begin{aligned}
c(\beta+1, j)= & {[\alpha]_{j}[n-\alpha+2 s+\beta]_{j-1} \cdot\left\{\binom{\beta+1}{j}(n-\alpha-2 s)+\binom{\beta}{j}(\beta-j+1)+\right.} \\
& \left.+\binom{\beta}{j-1}(2 \beta-j+2)\right\} \\
= & {[\alpha]_{j}[n-\alpha-2 s+\beta]_{j-1} \cdot\binom{\beta+1}{j}(n-\alpha-2 s+\beta+1) } \\
= & \binom{\beta+1}{j}[\alpha]_{j}[n-\alpha-2 s+(\beta+1)]_{j}
\end{aligned}
$$

This proves Eq. (7).
3. Assume now $0 \leq t \leq q \leq n$ and $\binom{n}{t} \leq\binom{ n}{q}$. We denote $\nabla:=\triangle^{q-t}$: $C_{q}(n) \longrightarrow C_{t}(n)$ and fix some $w \in C_{t}(n)$. Our aim is to construct explicitely a primage $u \in C_{q}(n)$ of w with respect to ∇. Therefore we make the following ansatz (we will see later that this method will work): If $0 \leq j \leq t$ we denote

$$
U_{j}:=\mathbb{X}^{q-t+j} \cdot \triangle^{j}(w)
$$

and put

$$
u=\sum_{j=0}^{t} x_{j} U_{j}
$$

where the $x_{j} \in \mathbb{Q}$ have to be determined. To compute ∇U_{j} apply Prop. 4 (replace here w by $\left.\triangle^{j}(w) \in C_{t-j}(n)\right)$ and obtain with the convention

$$
\begin{gathered}
\text { (8) } \ldots \quad c(k, j):=\binom{q-t}{k}[q-t+j]_{k} \cdot[n-2 t+j]_{k}, \quad(0 \leq j \leq t, 0 \leq k \leq q-t) \\
\nabla U_{j}=\sum_{k=0}^{q-t} c(k, j) \cdot \mathbb{X}^{q-t+j-k} \cdot \triangle^{q-t+j-k}(w) \in C_{t}(n),
\end{gathered}
$$

therefore

$$
\begin{equation*}
\nabla u=\sum_{k=0}^{q-t} \sum_{j=0}^{t} x_{j} c(k, j) \cdot \mathbb{X}^{q-t+j-k} \cdot \triangle^{q-t+j-k}(w) . \tag{9}
\end{equation*}
$$

We order the right hand side of this equation with respect to the terms

$$
V_{m}:=\mathbb{X}^{m} \cdot \Delta^{m}(w), 0 \leq m \leq t,
$$

by defining

$$
V_{k, j}=\mathbb{X}^{q-t+j-k} \cdot \triangle^{q-t+j-k}(w) .
$$

Then it holds that $V_{k, j}=0$ if $q-t+j-k>t$ and

$$
V_{k, j}=V_{m}
$$

exactly if $k=(q-t)-l, j=m-l, 0 \leq l \leq \min \{m, q-t\}$. Therefore Eq. (9) yields now

$$
\nabla u=\sum_{m=0}^{t} d_{m} V_{m}
$$

with

$$
\begin{equation*}
d_{m}=\sum_{l=0}^{\min \{m, q-t\}} c((q-t)-l, m-l) \cdot x_{m-l} \tag{10}
\end{equation*}
$$

We observe that $V_{0}=w$. - So u is in fact a preimage, if the system of linear equations in the unknowns x_{0}, \ldots, x_{t}

$$
\begin{gathered}
d_{0}=1 \\
d_{m}=0,1 \leq m \leq t
\end{gathered}
$$

is solvable. This will be the case if all $c(q-t, m)$ don't vanish. In fact we have in the trivial case $q-t=0$

$$
c(0, m)=1,0 \leq m \leq t
$$

(and the system has the solution $x_{0}=1, x_{1}=x_{2}=\ldots=x_{t}=0$). In case $q-t>0$ it is sufficient (see Eq. (8)) to show that the

$$
[n-2 t+m]_{q-t}
$$

don't vanish. Now the smallest factor f_{m} in the above mentioned falling factorial is

$$
f_{m}=n-2 t+m-(q-t)+1=n-(q+t)+m+1
$$

Assume first $\binom{n}{t}=\binom{n}{q}$. Then it holds that $t+q=n$, therefore $f_{m}=m+1$. In the second case the condition $\binom{n}{k}<\binom{n}{q}$ is equivalent to $q+t+1 \leq n$, therefore $f_{m} \geq m+2$.

So our ansatz has worked and we have proved

Theorem 1. Assume $0 \leq t \leq q \leq n$ and $\binom{n}{t} \leq\binom{ n}{q}$. Then the mapping

$$
\nabla:=\triangle^{q-t}: C_{q}(n) \longrightarrow C_{t}(n)
$$

is surjektiv. There exist $x_{0}, x_{1}, \ldots, x_{t} \in \mathbb{Q}$ such that the mapping

$$
\nabla^{[-1]}:=\left.\sum_{j=0}^{t} x_{j} \cdot \mathbb{X}^{q-t+j} \cdot \triangle^{j}\right|_{C_{t}(n)}
$$

is a right inverse with respect to ∇ (in case $\binom{n}{t}=\binom{n}{q} \quad \nabla^{[-1]}$ is the inverse of $\left.\nabla\right)$.

If one denotes in case $0 \leq k \leq q-t, 0 \leq j \leq t$,

$$
c(k, j):=\binom{q-t}{k} \cdot[q-t+j]_{k} \cdot[n-2 t+j]_{k},
$$

then one can choose the x_{0}, \ldots, x_{t} as the (existing) solution of the system of linear equations

$$
\begin{gathered}
c(q-t, 0) \cdot x_{0}=1 \\
\sum_{l=0}^{\min \{m, q-t\}} c((q-t)-l, m-l) \cdot x_{m-l}=0,1 \leq m \leq t .
\end{gathered}
$$

Corollary 1. If one defines

$$
y_{j}=(q-t)!j!(q-t+j)!\cdot x_{j}, 0 \leq j \leq t
$$

then the mapping $K(q, t): C_{t}(n) \longrightarrow C_{q}(n)$ defined by

$$
K(q, t):=\sum_{j=0}^{t} y_{j} \cdot H(t-j, q)^{T} \circ H(t-j, t)
$$

is a right inverse of $H(t, q)$.

Proof (of the corollary). According to Prop. 1 one has

$$
\nabla=(q-t)!\cdot H(t, q)
$$

and

$$
\left.\mathbb{X}^{q-t+j} \cdot \triangle^{j}\right|_{C_{t}(n)}=(q-t+j)!j!\cdot H(t-j, q)^{T} \circ H(t-j, t)
$$

Now we exploit the the theorem and the corollary. The following result is properly spoken another corollary; however, we state it as

Theorem 2. Assume $0 \leq t<q \leq n$ and $t+q=n$. Then the following identity holds:

$$
H(t, q)^{-1}=\sum_{j=0}^{t}(-1)^{j} \frac{q-t}{q-t+j} H(t-j, q)^{T} \circ H(t-j, t)
$$

Proof. We introduce a new parameter $p=q-t$. Then we obtain $n-2 t=p$ and

$$
c(k, j)=\binom{p}{k} \cdot\left([p+j]_{k}\right)^{2} .
$$

We switch now to new indeterminates α_{j} in the system of linear equations of the Theorem by defining

$$
x_{j}=(-1)^{j} \frac{\alpha_{j}}{((p+j)!)^{2}}, \alpha_{j} \in \mathbb{Q} .
$$

An elementary computation which we omit yields

$$
\alpha_{0}=1
$$

and the following recursion formula

$$
\alpha_{j}=\sum_{l=1}^{\min \{p, j\}}(-1)^{l+1}\binom{p}{l} \alpha_{j-l}, 1 \leq j \leq t
$$

We compute the α_{j} by elementary difference calculus; let us define therefore functions

$$
f_{p}: \mathbb{N}_{0} \longrightarrow \mathbb{Q}
$$

by the following conditions
(11) ...

$$
\left\{\begin{array}{c}
f_{p}(0)=1 \\
f_{p}(j)=\sum_{l=1}^{\min \{p, j\}}(-1)^{l+1}\binom{p}{l} f_{p}(j-l), 1 \leq j
\end{array}\right.
$$

Then we claim

$$
\begin{equation*}
f_{p}(j)=\binom{j+p-1}{p-1} \tag{12}
\end{equation*}
$$

In order to prove Eq. (12) we need the following
Lemma. Assume $p \geq 1$ and $0 \leq l \leq p$. Then the following identity holds

$$
\binom{p}{l}-\binom{p}{l-1}+\binom{p}{l-2} \mp \ldots+(-1)^{l}\binom{p}{0}=\binom{p-1}{l} .
$$

Proof (of the lemma): Denote the left hand side of this identity by $S_{l}(p)$. Then we have

$$
S_{l}(p)=\binom{p}{l}-S_{l-1}(p) .
$$

Now we proceed by induction with respect to l.
Denote by $\triangle f_{p}$ the first difference series of f_{p}, that is

$$
\left(\triangle f_{p}\right)(j)=f_{p}(j+1)-f_{p}(j), j \in \mathbb{N}_{0}
$$

Then we have by placing $f_{p}(k)=\alpha_{k}$ and $h=\min \{p, j\}$, in case $j \geq 1$

$$
\begin{aligned}
\alpha_{j+1}-\alpha_{j} & =\left[\binom{p}{1}-\binom{p}{0}\right] \cdot\left(\alpha_{j}-\alpha_{j-1}\right)-\left[\binom{p}{2}-\binom{p}{1}+\binom{p}{0}\right]\left(\alpha_{j-1}-\alpha_{j-2}\right) \pm \ldots \\
& +(-1)^{h+1}\left[\binom{p}{h}-\binom{p}{h-1}+\binom{p}{h-2} \mp \ldots+(-1)^{h}\binom{p}{0}\right] \cdot\left(\alpha_{j-h+1}-\alpha_{j-h}\right) .
\end{aligned}
$$

According to the lemma this rewrites to

$$
\left(\triangle f_{p}\right)(j)=\sum_{l=1}^{\min \{j, p\}}(-1)^{l+1}\binom{p-1}{l}\left(\triangle f_{p}\right)(j-l), j \geq 1 .
$$

Furthermore we have

$$
\left(\triangle f_{p}\right)(0)=p-1=f_{p-1}(1), p \geq 2 .
$$

This yields in case $p \geq 2$

$$
\begin{equation*}
\left(\triangle f_{p}\right)(j)=f_{p-1}(j+1), j \in \mathbb{N}_{0} \tag{13}
\end{equation*}
$$

since $\triangle f_{p}$ satisfies the same recursion formula (see Eq. (12)) as f_{p-1} does.
Now Eq. (12) is certainly true if $p=1$. Assume our claim is true if $p-1 \geq 1$. Then according to Eq. (13) we have

$$
\left(\triangle f_{p}\right)(j)=\binom{j+p-1}{p-2}, j \in \mathbb{N}_{0}
$$

Therefore the function $F: \mathbb{N}_{0} \rightarrow \mathbb{Q}$ defined by

$$
F(j)=\binom{j+p-1}{p-1}
$$

is a discrete indefinite integral of $\triangle f_{p}$; that is $\triangle F=\triangle f_{p}$. It follows that

$$
F=f_{p}+\text { const },
$$

but $F(0)=f_{p}(0)$, so we have $F=f_{p}$. Therefore the claim Eq. (12) is proved. Now we use the notations introduced in the corollary of Theorem 1 and obtain

$$
y_{j}=(-1)^{j} \frac{p!j!(p+j)!}{((p+j)!)^{2}}\binom{j+p-1}{p-1}=(-1)^{j} \frac{p}{p+j}=(-1)^{j} \frac{q-t}{q-t+j} .
$$

The statement of Theorem 2 now follows from the corollary to Theorem 1.
To exploit Theorem 1 and the corollary in the case $\binom{n}{t} \leq\binom{ n}{q}$, we restrict ourselves to the condition $q-t=1$. We then have $q \leq \frac{n}{2}$ if n is even and $q \leq\left\lfloor\frac{n}{2}\right\rfloor+1$ if n is odd.
Here we have under the assumption $0 \leq j \leq t=q-1$

$$
\begin{aligned}
& c(0, j)=1 \\
& c(1, j)=(j+1)(n-2 q+j+2) .
\end{aligned}
$$

We obtain the following system of linear equations in the unknowns x_{0}, \ldots, x_{t}

$$
\begin{aligned}
c(1,0) x_{0} & =1 \\
c(1, j) x_{j}+x_{j-1} & =0,1 \leq j \leq t
\end{aligned}
$$

which has the solution

$$
x_{j}=\frac{(-1)^{j}}{(j+1)![n-2 q+j+2]_{j+1}}, 0 \leq j \leq t .
$$

Again with the notations of the corollary to Theorem 1 we obtain

$$
y_{j}=j!(j+1)!x_{j}=\frac{(-1)^{j}}{j+1} \cdot\binom{n-2 q+j+2}{j+1}^{-1} .
$$

Now we change the indices from $j+1$ to j and obtain the statement of example
Finally let us evaluate Theorem 2 in case $n=5, q=3, t=2$. With the notation $\left\{j_{1}, j_{2}, j_{3}, j_{4}, j_{5}\right\}=\underline{\underline{5}}$ we obtain

$$
\begin{gathered}
H(2,3)^{-1}\left(X_{j_{1}} \cdot X_{j_{2}}\right)= \\
\frac{1}{6}\left[2 X_{j_{1}} X_{j_{2}} X_{j_{3}}-X_{j_{2}} X_{j_{3}} X_{j_{4}}+2 X_{j_{3}} X_{j_{4}} X_{j_{5}}-X_{j_{1}} X_{j_{4}} X_{j_{5}}+2 X_{j_{1}} X_{j_{2}} X_{j_{4}}-X_{j_{1}} X_{j_{3}} X_{j_{5}}+\right. \\
\left.+2 X_{j_{1}} X_{j_{2}} X_{j_{5}}-\left(X_{j_{1}} X_{j_{3}} X_{j_{4}}+X_{j_{2}} X_{j_{3}} X_{j_{5}}+X_{j_{2}} X_{j_{4}} X_{j_{5}}\right)\right]
\end{gathered}
$$

and conclude that the matrix $H(2,3)^{-1}$ is "non-sparse".
4. Finally we demonstrate the usefulness (as we hope) of the algebra $\mathfrak{C}_{*}(n)$ by giving new proofs or extending, respectively, some results in [2].
$\bullet \bullet$ (1.c., 3.3) Let $v \in \operatorname{Ker} \triangle, w \in C_{t}(n)$, such that $\operatorname{Fund}(v) \cap \operatorname{Fund}(w)=\emptyset$. Then it holds that $\triangle^{t+1}(v \cdot w)=0$.

This is an immidediate consequence of the property of \triangle to be a "quasi-derivation" (see Prop. 2).

Secondly, we exhibit a system of generators of Ker $H(t, q)$ provided $\binom{n}{t}<\binom{n}{q}$.
We denote $K_{q}(n)=\left.\operatorname{Ker} \triangle\right|_{C_{q}(n)}$. Then obviosly one has $K_{q}(n-1) \subset K_{q}(n)$. To determine remaining candidates u of $K_{q}(n)$ we make the following ansatz

$$
\begin{equation*}
u=v X_{n}+w, v \in C_{q-1}(n-1), w \in C_{q}(n-1) . \tag{14}
\end{equation*}
$$

Since Fund $(v) \cap$ Fund $\left(X_{n}\right)=\emptyset$, Prop. 2, i) yields

$$
0=\Delta u=(\Delta v) \cdot X_{n}+(v+\Delta w)
$$

therefore

$$
\begin{equation*}
\Delta v=0, v+\Delta w=0 \tag{15}
\end{equation*}
$$

Assume now that is has been proved by induction with respect to s that $K_{t}(s)$, $t \leq\left\lfloor\frac{s}{2}\right\rfloor, s \leq n-1$, is generated by elements of the shape

$$
\left(X_{j_{1}}-X_{j_{2}}\right)\left(X_{j_{3}}-X_{j_{4}}\right) \cdot \ldots \cdot\left(X_{j_{2 t-1}}-X_{j_{2 t}}\right)
$$

with pairwise distinct $X_{j_{k}}$. Therefore we may assume (in Eq. (14), (15)) that

$$
v=\left(X_{j_{1}}-X_{j_{2}}\right) \cdot \ldots \cdot\left(X_{j_{2(q-1)-1}}-X_{j_{2(q-1)}}\right)
$$

There are two cases to be considered. In the first case assume $2(q-1)=n-1$; then we have n odd, $q=\left\lfloor\frac{n}{2}\right\rfloor+1$. According to $\bullet K_{q}(n)=0$ and then there is no more to prove.

In the second case assume $2(q-1)<n-1$. Then there exists $X_{j}, j \leq n-1$ such that Fund $(v) \cap\left\{X_{j}\right\}=\emptyset$. We conclude that

$$
w:=-v \cdot X_{j}
$$

solves the second equation in Eq. (15); furthermore one has $u=v\left(X_{n}-X_{j}\right)$.
This proves
$\bullet \bullet \bullet\left(\right.$ contained in l.c., 4.2) Assume $q \leq\left\lfloor\frac{n}{2}\right\rfloor$. Then it holds that $\operatorname{Ker} H(q-1, q) \neq 0$ and this kernel is generated by elements of the shape

$$
\left(X_{j_{1}}-X_{j_{2}}\right)\left(X_{j_{3}}-X_{j_{4}}\right) \cdot \ldots \cdot\left(X_{j_{2 q-1}}-X_{j_{2 q}}\right) .
$$

In as subsequent paper (in which we use the algebra $\mathfrak{C}_{*}(n)$ to exhibit explicitely eigenspace decompositions of the matrix $\left.H(t, q)^{T} \circ H(t, q)\right)$ we will show

Theorem 3. Assume $\binom{n}{t}<\binom{n}{q}$. Then it holds that

$$
\operatorname{Ker} H(t, q)=\bigoplus_{s=t+1}^{\min \{q, n-q\}} H(s, t)^{T}(\operatorname{Ker} H(s-1, s)) .
$$

This result provides together with •••• systems of generators of Ker $H(t, q)$ which are in general distinct from those which are exhibited in [2].

With the aid of Theorem 3 (and Prop. 4) one easily proves
-•••(l.c., 4.3) Assume $0 \leq t<q<n-t$. Then $H(t+1, q)$ maps the kernel of $H(t, q)$ onto the kernel of $H(t, t+1)$.

Finally we exhibit in a special case a system of generators of $\operatorname{Ker} H(q-1, q)$ which is different from the "canonical" one constructed above as follows:

Assume $n=7, q=3$. Any enumeration σ of the points of the projective plane \mathbb{P} consisting of 7 points and 7 lines yields the family $\mathfrak{G}_{\sigma} \subset\left(\frac{7}{3}\right)$ consisting of the lines of \mathbb{P}. We claim that the elements

$$
u_{\sigma}:=4 \cdot \sum_{M \in \mathfrak{G}_{\sigma}}[M]-\sum_{M \notin \mathfrak{G}_{\sigma}}^{|M|=3}[M]
$$

also generate $\operatorname{Ker} H(2,3)$.
First, we sketch a proof that the u_{σ} indeed are contained in the kernel of $H(2,3)$ as follows: Define for $q \in \underline{\underline{n}}$

$$
H_{q}:=H(q-1, q)^{T} \circ H(q-1, q): C_{q}(n) \longrightarrow C_{q}(n) .
$$

Then it holds, if $[M]$ is an element of the canonical basis of $C_{q}(n)$,

$$
\begin{equation*}
H_{q}([M])=q \cdot[M]+\sum_{\left|M \cap M^{\prime}\right|=q-1}^{\left|M^{\prime}\right|=q}\left[M^{\prime}\right] . \tag{16}
\end{equation*}
$$

Now it can be seen easily that

$$
w_{q}:=\sum_{|M|=q}^{M}[M]
$$

is an eigenvector of H_{q} with eigenvalue $q(n-q+1)$. In addition we need the well known result (see for instance [1], Chapt. II, 2.5 Lemma), that

$$
\operatorname{rang} H(t, q)=\operatorname{rang} H(t, q)^{T} \circ H(t, q)\left(=\operatorname{rang} H(t, q) \circ H(t, q)^{T}\right),
$$

which yields

$$
\operatorname{Ker} H(t, q)=\operatorname{Ker}\left(H(t, q)^{T} \circ H(t, q)\right) .
$$

After this digression suppose now again $n=7, q=3, t=2$. Since two different projective lines intersect in one point we have $\left|M_{1} \cap M_{2}\right|=1$ provided $M_{1}, M_{2} \in \mathfrak{G}_{\sigma}$ and $M_{1} \neq M_{2}$. This in turn yields according to Eq. (16):

$$
H_{3}\left(\sum_{M \in \mathfrak{G}_{\sigma}}[M]\right)=3 \cdot \sum_{M \in \mathfrak{G}_{\sigma}}[M]+\sum_{M^{\prime} \notin \mathfrak{G}_{\sigma}}^{\left|M^{\prime}\right|=3} \lambda_{M^{\prime}}\left[M^{\prime}\right] .
$$

The coefficients $\lambda_{M^{\prime}} \in \mathbb{Q}$ are determined as follows: Any $M^{\prime} \notin \mathfrak{G}_{\sigma}$ consists of three non-collinear points; therefore for given M^{\prime} there are exactly three $M \in \mathfrak{G}_{\sigma}$ such that $\left|M^{\prime} \cap M\right|=2$. We conclude $\lambda_{M^{\prime}}=3$, in turn

$$
H_{3}\left(\sum_{M \in \mathfrak{G}_{\sigma}}[M]\right)=3 \cdot w_{3}=H_{3}\left(\frac{1}{5} w_{3}\right),
$$

that is

$$
\sum_{M \in \mathfrak{G}_{\sigma}}[M]-\frac{1}{5} w_{3} \in \operatorname{Ker}\left(H(2,3)^{T} \circ H(2,3)\right)=\operatorname{Ker} H(2,3) .-
$$

Secondly, assume that v is an element of the "canonical" system of generators of Ker $H(2,3)$, say

$$
v=\left(X_{1}-X_{2}\right)\left(X_{3}-X_{4}\right)\left(X_{5}-X_{6}\right) .
$$

Suppose the enumerations τ, τ^{\prime} of the points of \mathbb{P} are given by

Then a lengthy but elementary computation which we omit yields

$$
v=\frac{1}{5}\left(u_{\tau}-u_{\tau^{\prime}}\right) .
$$

We conclude that the u_{σ} generate Ker $H(2,3)$, too.

Acknowledgement

The author is indebted to the referee for helpful comments.

References

[1] Th. Beth, D. Jungnickel und H. Lenz: Design Theory. Mannheim / Wien / Zürich 1985 (BI-Wissenschaftsverlag)
[2] C.D. Godsil: Algebraic Combinatorics. New York / London 1993 (Chapman \& Hall)
[3] J.B. Graver und W.B. Jurkat: The module structure of integral designs. Journal of Combinatorial Theory, A 15 (1973), 75-90.
[4] E. Kunz: Kähler Differentials. Braunschweig 1986 (Vieweg)

