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Abstract

Denote by H(t, q), t ≤ q, the incidence matrix (with respect to inclusion) of
the t–sets versus the q–sets of the n–set {1, 2, . . . , n}. This matrix is considered
as a linear map of Q–vector spaces

Cq(n) −→ Ct(n),

where Cs(n) is the Q–vector space having the s–sets as a basis (s ≤ n).
As a basic tool, we introduce a connection of the vector spaces to a graded

Q–algebra (which is at the same time an Artinian local ring). We define map-
pings 4 and X of this algebra of degree −1 and 1, respectively. These two
mappings correspond up to a scalar factor to the linear mappings H(s − 1, s)
and H(s− 1, s)T , respectively.

Then, a relation between the algebra maps 4 and X is established. This
relation allows to rewrite a term4β

X
α with α, β non–negative integers (subject

to some restrictions) as a sum
β∑
k=0

(
β
k

)
·Xα−k ·4β−k (up to some scalar factors).

As a main result of this relation surjectivity of the map4q−t (related to H(t, q)
up to a scalar factor) is proved under the assumption

(
n
t

)
≤
(
n
q

)
. Moreover, a

right inverse for the matrix H(t, q) is given explicitely.
This result is exploited to give an inverse of the (square) incidence matrix

H(t, q) in the case t = n− q.
These results extend some work done by J.B. Graver and W.B. Jurkat.

1



1. For n ∈ N we put
n = {1, 2, . . . , n}.

For 0 ≤ t ≤ q ≤ n we denote by H (t, q) the incidence matrix (with respect to inclu-
sion) of the t–sets versus the q–sets of the n–set n and by Cq(n) the Q–vector space

having the basis
{

[M ]
}
M⊆n,|M |=q. Then H (t, q) defines a linear mapping (“incidence

mapping”)

Cq(n) −→ Ct(n), [M ] −→
|N |=t∑
N⊆M

[N ],

which is denoted by the same symbol H (t, q). –

The transpose H (t, q)T of H (t, q) defines a linear mapping

Ct(n) −→ Cq(n), [N ] −→
|M |=q∑
N⊆M

[M ],

which is denoted by the same symbol H (t, q)T . Finally we define the “augmentation
mapping”

H (−1, 0) : C0(n) −→ 0.

Assume that dimQCt(n) =
(
n
t

)
≤
(
n
q

)
= dimQCq(n). Then it is known that the

mapping H (t, q) is surjective ([3], 2.3, 2.4), therefore in case of equality of the two
dimensions under consideration an isomorphism. In this case moreover we exhibit
a method to compute explicitely H (t, q)−1 by defining a structure of a graded com-

mutative algebra on the graded Q–vector space C∗(n) :=
n⊕
q=0

Cq(n) such that at the

same time C∗(n) becomes an Artinian local ring.

We provide an example for the computation of H (n− q, q)−1:

• Assume n odd and q = bn
2
c+ 1. Then one has

H (q − 1, q)−1 =

q∑
j=1

(−1)j+1

j
·H (q − j, q)T ◦H (q − j, q − 1).

There is the following generalization:
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•• Assume q ≤ n
2

if n is even or q ≤ bn
2
c+ 1 if n is odd. Then the mapping

K (q, q − 1) : Cq−1(n) −→ Cq(n)

defined by

K (q, q − 1) =

q∑
j=1

(−1)j+1

j

(
n− 2q + j + 1

j

)−1

·H (q − j, q)T ◦H (q − j, q − 1)

is a right inverse of H (q − 1, q).

2. One defines the structure of a commutative Q–algebra on C∗(n) =
n⊕
q=0

Cq(n) by

setting for subsets M,N of n

[M ] · [N ] =

{
[M ∪N ], if M ∩N = ∅,

0, otherwise.

This Q–algebra which we denote by C∗(n) is isomorphic to

A (n) := Q [T1, . . . , Tn]/(T 2
1 , T

2
2 , . . . , T

2
n) = Q [X1, . . . , Xn],

where T1, . . . , Tn are algebraically independent elements andXj = Tj mod (T 2
1 , . . . , T

2
n).

The isomorphism C∗(n) −→ A (n) is induced by

[M ] =
[
{j1, . . . , jq}

]
−→ Xj1Xj2 · . . . ·Xjq , if |M | = q ≥ 1,

[∅] −→ 1 ∈ Q.

In the sequel we identify C∗(n) and A (n).

Let C∗(n)p denote the Q–module of the elements of degree p of the graded algebra
C∗(n). Then one has

C∗(n)p =

{
Cp(n), 0 ≤ p ≤ n,

0, p > n.

To the mappings H (q − 1, q), 0 ≤ q ≤ n, corresponds the map 4 : C∗(n) −→ C∗(n)
of degree −1 defined by

4
∣∣∣
Q

= 0, 4Xj = 1, j ∈ n,

4 (Xj1 ·Xj2 · . . . ·Xjq) =
q∑

k=1

Xj1 · . . . · X̂jk · . . . ·Xjq , 2 ≤ q ≤ n,
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(1 ≤ j1 < j2 < . . . < jq ≤ n, ̂ denotes the deleting operator).

Finally we define X =
q∑
j=1

Xj.

Proposition 1. Assume 0 ≤ t ≤ q ≤ n. Then with the agreement 4◦ = id, X◦ = 1
the following identities hold

(q − t)! ·H (t, q) = 4q−t
∣∣∣
Cq(n)

,

(q − t)!H (t, q)T (w) = X
q−t · w, w ∈ Ct(n).

Proof. To prove the first statement we show by induction with respect to
m, 0 ≤ m ≤ q, that the identity

(1) . . . 4m
∣∣∣
Cq(n)

= m! H (q −m, q)

holds. Of course, this is true for m = 0, 1. Assume this identity has been proved
already in case m− 1 ≥ 1.

The following relation is well known in case 0 ≤ s ≤ t ≤ q

(1) . . . H (s, t) ◦H (t, q) =

(
q − s
t− s

)
H (s, q)

(see for example [2], Chapt 15, Lemma 8.1).

Therefore one has

4m
∣∣∣
Cq(n)

= 4
∣∣∣
Cq−m+1(n)

◦ 4m−1
∣∣∣
Cq(n)

= H (q −m, q −m+ 1) · (m− 1)!H (q −m+ 1, q)

= m · (m− 1)! ·H (q −m, q) = m!H (q −m, q). −

To prove the second statement we show by induction with respect to m ≥ 0,
t+m ≤ n, that for w ∈ Ct(n) the following relation holds

X
m · w = m! H (t, t+m)T (w).

It is sufficient for our purpose to take w as an element Xj1 · . . . ·Xjt of the “canonical”
basis of Ct(n). The claim is evident in case m = 0; moreover one has

Xw =
k∑

k 6=j1,j2,... ,jt

Xj1Xj2 · . . . ·Xjt ·Xk = H (t, t+ 1)T (w).
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Assume that the statement has already been proved in case m−1 ≥ 0. By transposing
one gets from Eq (1)

H (t, t+m)T = m ·H (t+ 1, t+m)T ◦H (t, t+ 1)T ,

Therefore according to the induction hypothesis (applied to Xw ∈ Ct+1(n))

X
mw = Xm−1 · Xw = (m− 1)! H (t+ 1, t+m)T ◦H (t, t+ 1)T (w)

= m! H (t, t+m)T (w).

Suppose w ∈ C∗(n). Then we define the “foundation” of w (in signs Fund (w)) to be
the product of all Xj which appear in the basis decomposition of w with a coefficient
unequal to zero.

For example one has with pairwise distinct Xj1 , Xj2 , . . . , Xj2t

Fund
(

(Xj1 −Xj2)(Xj3 −Xj4) · . . . · (Xj2t−1 −Xj2t)
)

=
2t∏
k=1

Xjk .

In a self–explaining manner we can treat the foundation also as a subset of n.

Proposition 2. i) Assume v, w ∈ C∗(n) and Fund (v)∩ Fund (w) = ∅.
Then we have that

4 (vw) = v4 (w) + w4 (v).

ii) Denote Z =
p∑

k=1

Xjk , the Xjk pairwise distinct. Assume 1 ≤ m ≤ p (and put

Z
0 = 1). Then we have that

4 (Zm) = m (p−m+ 1)Zm−1.

Proof. Ad i) Assume in the first instance v = Xi1 · . . . · Xis , w = Xj1 · . . . · Xjt are
elements from a basis of C∗(n). According to hypothesis one has∣∣{i1, . . . , is, j1, . . . , jt}∣∣ = s+ t.
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Therefore

4 (vw) =
s∑

k=1

Xi1 · . . . · X̂ik · . . . ·Xis ·Xj1 · . . . ·Xjt

+
t∑
l=1

Xi1 · . . . ·Xis ·Xj1 · . . . · X̂jl · . . . ·Xjt

= w4 (v) + v4 (w).

The general case follows now from the law of distributivity.

Ad ii) Without loss of generality assume Z =
p∑
j=1

Xj. Then we have

(2) . . . Z
k =

 k!
∑

1≤j1<...<jk≤p
Xj1 · . . . ·Xjk , 1 ≤ k ≤ p,

0, k > p.

In this sum a term Xi1 · . . . ·Xim−1 , (1 ≤ i1 < . . . < im−1 ≤ p) occurs exactly in the
terms 4 (Xi1 · . . . ·Xim−1 ·Xt), t ∈ p\{i1, . . . , im−1} with factor 1; therefore it occurs

in 4 (Zm) with factor m!(p−m+ 1) = m (p−m+ 1)(m−1)!. The conclusion follows
now from equation (2).

We remark that 4 is no derivation of C∗(n).

Let m := (X1, . . . , Xn) denote the maximal ideal of C∗(n). Then it holds that
mn+1 = 0. If p is a prime ideal of C∗(n), then from mn+1 ⊆ p one concludes m = p.

Therefore C∗(n) is an Artinian local ring. Let 4̃ denote a derivation of C∗(n) (into
itself). Then it must hold for all j ∈ n that

0 = 4̃ (X2
j ) = 2Xj4̃ (Xj),

therefore 4̃ (Xj) ∈ m. – So 4̃ maps m (and C∗(n), too) into m (compare with [4],
§1, Exercise 4).

Now we extend Prop.2, ii):

Proposition 3. Assume 0 ≤ s ≤ n− 1, α ∈ N, α+ s ≤ n and w ∈ Cs(n). Then the
following identity holds:

4 (Xα · w) = Xα · 4 (w) + α (n− α− 2s+ 1)Xα−1 · w.
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Proof. In case s = 0 the statement is true according to Prop. 2, ii). Assume now
s ≥ 1 and take

w = Xj1 · . . . ·Xjs

as a basis element of Cs(n). One defines

Y =
s∑

k=1

Xjk , Z = X− Y.

Since w is a word in all Xj1 , . . . , Xjs one has Y · w = 0. Assume t ≥ 0. Then the
following holds

X
tw = (Y+ Z)t · w =

t∑
r=0

(
t

r

)
Z
r
Y
t−r · w = Ztw,

furthermore according to the definition of Y and Z Fund (w)∩ Fund (Zt) = ∅; from
Prop. 2 one concludes

(3) . . .


4 (Xα · w) = 4 (Zα · w) = Zα · 4 (w) + w · 4 (Zα)

= Zα · 4 (w) + α (n− s− α + 1)Zα−1w

= Zα · 4 (w) + α (n− s− α + 1)Xα−1w.

Now we use

Y
t · 4 (w) =

{
0, t > 1,

s · w, t = 1.

Therefore

X
α4 (w) =

(
α∑
r=0

(
α
r

)
Y
r
Z
α−r
)
· 4 (w) = (αY · Zα−1 + Zα) · 4 (w)

= αsZα−1 w + Zα · 4 (w) = α · s · Xα−1w + Zα · 4 (w).

Replacing the term Z
α4 (w) in Eq. (3) yields

4 (Xαw) = Xα · 4 (w) + α (n− 2s− α + 1)Xα−1 · w,

as claimed. –

Prop. 3 is a special case of
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Proposition 4. The same assumptions about s, α are in force as in Prop. 3. Assume
r ∈ R and k ∈ N and define

[r]k = r (r − 1) · (r − 2) · . . . · (r − k + 1), [r]0 = 1.

Let β be a non–negative integer and assume 0 ≤ β ≤ α. Then the following identity
holds

4β(Xα · w) =

β∑
k=0

(
β

k

)
[α]k[n− α− 2s+ β]k · Xα−k · 4β−k(w).

Proof. There is nothing to prove in case β = 0; in case β = 1 the claim boils down
to Prop. 3. If 0 ≤ j ≤ β we put

[β, j] = Xα−j · 4β−j(w)

and prove first of all by induction with respect to β ≥ 1, that the identity

(4) . . . 4β(Xαw) =

β∑
j=0

c (β, j) · [β, j], c (β, j) ∈ Q,

holds; furthermore this will yield recursion formulas for the coefficients c (β, j). In
case β = 1 one has according to Prop. 3

c (1, 0) = 1, c (1, 1) = α (n− α− 2s+ 1) =: λ (α, s).

Since 4k−j(w) ∈ Cs−k+j(n), Prop. 3 now yields

4
(
[k, j]

)
= 4

(
X
α−j · 4k−j(w)

)
=

= Xα−j · 4k−j+1(w) + (α− j) ·
(
n− (α− j)− 2(s− k + j) + 1

)
· Xα−j−1 · 4k−j(w) =

= Xα−j · 4k−j+1(w) + λ (α− j, s− k + j) · Xα−j−1 · 4k−j(w),

that is
4
(
[k, j]

)
= [k + 1, j] + λ(α− j, s− k + j)[k + 1, j + 1].

According to the induction hypothesis we obtain

4β+1(Xαw) = 4
(
4β(Xα · w)

)
=

c (β, 0)[β + 1, 0] +
β∑
j=1

{
c (β, j) + c (β, j − 1) · λ (α− j + 1, s− β + j − 1)

}
· [β + 1, j]

+λ (α− β, s) · c (β, β)[β + 1, β + 1],
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which proves Eq. (4); at the same time we have proved the following recursion
formulas

(5.1) . . . c (β + 1, 0) = c (β, 0), c (β + 1, β + 1) = λ (α− β, s) c (β, β),

(5.2) . . . c (β+ 1, j) = c (β, j) +λ (α− j+ 1, s−β+ j− 1) · c (β, j− 1), (1 ≤ j ≤ β).

Eq. (5.1) yields immediately

(6) . . .


c (β, 0) = 1

(0 ≤ β ≤ α).
c (β, β) = [α]β[n− α− 2s+ β]β

Now we claim that the following holds in case β ≥ j

(7) . . . c (β, j) =

(
β

j

)
[α]j[n− α− 2s+ β]j

which we prove by induction with respect to the pairs (β, j), β ≥ j. The claim is
true for pairs (β, 0) according to Eq. (6). Assume that it has already been proved
that in case j ≥ 1 the claim is true for all pairs (γ, j − 1), γ ≥ j − 1. We rewrite a
term in the recursion formula (5.2)

λ (α− j + 1, s− β + j − 1) = (α− j + 1)(n− α− 2s+ 2β − j + 2).

Now we proceed by induction with respect to β, β ≥ j. In case β = j the statement
is true according to Eq. (6). Assume that the statement has already be proved for
some β ≥ j. Then we have according to Eq. (5.2)

c (β + 1, j) =
(
β
j

)
[α]j[n− α− 2s+ j]j +

+(n− α− 2s+ 2β − j + 2) ·
(
β
j−1

)
[α]j[n− α− 2s+ β]j−1.

Using the identities
(
β
j

)
=
(
β
j−1

)
· β − j + 1

j
and

(
β
j

)
+
(
β
j−1

)
=
(
β+1
j

)
we conclude

c (β + 1, j) = [α]j[n− α + 2s+ β]j−1 ·
{(

β+1
j

)
(n− α− 2s) +

(
β
j

)
(β − j + 1)+

+
(
β
j−1

)
(2β − j + 2)

}
= [α]j[n− α− 2s+ β]j−1 ·

(
β+1
j

)
(n− α− 2s+ β + 1)

=
(
β+1
j

)
[α]j[n− α− 2s+ (β + 1)]j

This proves Eq. (7). –
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3. Assume now 0 ≤ t ≤ q ≤ n and
(
n
t

)
≤
(
n
q

)
. We denote ∇ := 4q−t :

Cq(n) −→ Ct(n) and fix some w ∈ Ct(n). Our aim is to construct explicitely a
primage u ∈ Cq(n) of w with respect to ∇. Therefore we make the following ansatz
(we will see later that this method will work): If 0 ≤ j ≤ t we denote

Uj := Xq−t+j · 4j(w)

and put

u =
t∑

j=0

xjUj

where the xj ∈ Q have to be determined. To compute ∇Uj apply Prop. 4 (replace
here w by 4j(w) ∈ Ct−j(n)) and obtain with the convention

(8) . . . c (k, j) :=

(
q − t
k

)
[q − t+ j]k · [n− 2t+ j]k, (0 ≤ j ≤ t, 0 ≤ k ≤ q − t)

∇Uj =

q−t∑
k=0

c (k, j) · Xq−t+j−k · 4q−t+j−k(w) ∈ Ct(n),

therefore

(9) . . . ∇u =

q−t∑
k=0

t∑
j=0

xjc (k, j) · Xq−t+j−k · 4q−t+j−k(w).

We order the right hand side of this equation with respect to the terms

Vm := Xm · 4m(w), 0 ≤ m ≤ t,

by defining
Vk,j = Xq−t+j−k · 4q−t+j−k(w).

Then it holds that Vk,j = 0 if q − t+ j − k > t and

Vk,j = Vm

exactly if k = (q− t)− l, j = m− l, 0 ≤ l ≤ min{m, q− t}. Therefore Eq. (9) yields
now

∇u =
t∑

m=0

dmVm
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with

(10) . . . dm =

min{m,q−t}∑
l=0

c
(
(q − t)− l, m− l

)
· xm−l.

We observe that V0 = w. – So u is in fact a preimage, if the system of linear equations
in the unknowns x0, . . . , xt

d0 = 1,

dm = 0, 1 ≤ m ≤ t,

is solvable. This will be the case if all c (q − t,m) don’t vanish. In fact we have in
the trivial case q − t = 0

c (0,m) = 1, 0 ≤ m ≤ t,

(and the system has the solution x0 = 1, x1 = x2 = . . . = xt = 0). In case q − t > 0
it is sufficient (see Eq. (8)) to show that the

[n− 2t+m]q−t

don’t vanish. Now the smallest factor fm in the above mentioned falling factorial is

fm = n− 2t+m− (q − t) + 1 = n− (q + t) +m+ 1.

Assume first
(
n
t

)
=
(
n
q

)
. Then it holds that t + q = n, therefore fm = m + 1. In

the second case the condition
(
n
k

)
<
(
n
q

)
is equivalent to q + t + 1 ≤ n, therefore

fm ≥ m+ 2.

So our ansatz has worked and we have proved

Theorem 1. Assume 0 ≤ t ≤ q ≤ n and
(
n
t

)
≤
(
n
q

)
. Then the mapping

∇ := 4q−t : Cq(n) −→ Ct(n)

is surjektiv. There exist x0, x1, . . . , xt ∈ Q such that the mapping

∇[−1] :=
t∑

j=0

xj · Xq−t+j · 4j
∣∣∣
Ct(n)

is a right inverse with respect to ∇ (in case
(
n
t

)
=
(
n
q

)
∇[−1] is the inverse of ∇).
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If one denotes in case 0 ≤ k ≤ q − t, 0 ≤ j ≤ t,

c (k, j) :=

(
q − t
k

)
· [q − t+ j]k · [n− 2t+ j]k,

then one can choose the x0, . . . , xt as the (existing) solution of the system of linear
equations

c (q − t, 0) · x0 = 1,
min{m,q−t}∑

l=0

c
(
(q − t)− l,m− l

)
· xm−l = 0, 1 ≤ m ≤ t.

Corollary 1. If one defines

yj = (q − t)!j!(q − t+ j)! · xj, 0 ≤ j ≤ t,

then the mapping K (q, t) : Ct(n) −→ Cq(n) defined by

K (q, t) :=
t∑

j=0

yj ·H (t− j, q)T ◦H (t− j, t)

is a right inverse of H (t, q).

Proof (of the corollary). According to Prop. 1 one has

∇ = (q − t)! ·H (t, q)

and
X
q−t+j · 4j

∣∣∣
Ct(n)

= (q − t+ j)!j! ·H (t− j, q)T ◦H (t− j, t). �

Now we exploit the the theorem and the corollary. The following result is properly
spoken another corollary; however, we state it as

Theorem 2. Assume 0 ≤ t < q ≤ n and t + q = n. Then the following identity
holds:

H (t, q)−1 =
t∑

j=0

(−1)j
q − t

q − t+ j
H (t− j, q)T ◦H (t− j, t).
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Proof. We introduce a new parameter p = q − t. Then we obtain n− 2t = p and

c (k, j) =

(
p

k

)
·
(
[p+ j]k

)2
.

We switch now to new indeterminates αj in the system of linear equations of the
Theorem by defining

xj = (−1)j
αj

((p+ j)!)2
, αj ∈ Q.

An elementary computation which we omit yields

α0 = 1

and the following recursion formula

αj =

min{p,j}∑
l=1

(−1)l+1

(
p

l

)
αj−l, 1 ≤ j ≤ t.

We compute the αj by elementary difference calculus; let us define therefore functions

fp : N0 −→ Q

by the following conditions

(11) . . .


fp(0) = 1,

fp(j) =
min{p,j}∑
l=1

(−1)l+1

(
p

l

)
fp(j − l), 1 ≤ j.

Then we claim

(12) . . . fp(j) =

(
j + p− 1

p− 1

)
.

In order to prove Eq. (12) we need the following

Lemma. Assume p ≥ 1 and 0 ≤ l ≤ p. Then the following identity holds(
p

l

)
−
(

p

l − 1

)
+

(
p

l − 2

)
∓ . . .+ (−1)l

(
p

0

)
=

(
p− 1

l

)
.
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Proof (of the lemma): Denote the left hand side of this identity by Sl(p). Then we
have

Sl(p) =

(
p

l

)
− Sl−1(p).

Now we proceed by induction with respect to l. �

Denote by 4fp the first difference series of fp, that is

(4fp)(j) = fp(j + 1)− fp(j), j ∈ N0.

Then we have by placing fp(k) = αk and h = min{p, j}, in case j ≥ 1

αj+1 − αj =
[(
p
1

)
−
(
p
0

)]
· (αj − αj−1)−

[(
p
2

)
−
(
p
1

)
+
(
p
0

)]
(αj−1 − αj−2)± . . .

+(−1)h+1
[(
p
h

)
−
(

p
h−1

)
+
(

p
h−2

)
∓ . . .+ (−1)h

(
p
0

)]
· (αj−h+1 − αj−h).

According to the lemma this rewrites to

(4fp)(j) =

min{j,p}∑
l=1

(−1)l+1

(
p− 1

l

)
(4fp)(j − l), j ≥ 1.

Furthermore we have

(4fp)(0) = p− 1 = fp−1(1), p ≥ 2.

This yields in case p ≥ 2

(13) . . . (4fp)(j) = fp−1(j + 1), j ∈ N0,

since 4fp satisfies the same recursion formula (see Eq. (12)) as fp−1 does.

Now Eq. (12) is certainly true if p = 1. Assume our claim is true if p− 1 ≥ 1. Then
according to Eq. (13) we have

(4fp)(j) =

(
j + p− 1

p− 2

)
, j ∈ N0.

Therefore the function F : N0 → Q defined by

F (j) =

(
j + p− 1

p− 1

)
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is a discrete indefinite integral of 4fp; that is 4F = 4fp. It follows that

F = fp + const,

but F (0) = fp(0), so we have F = fp. Therefore the claim Eq. (12) is proved.

Now we use the notations introduced in the corollary of Theorem 1 and obtain

yj = (−1)j
p! j! (p+ j)!

((p+ j)!)2

(
j + p− 1

p− 1

)
= (−1)j

p

p+ j
= (−1)j

q − t
q − t+ j

.

The statement of Theorem 2 now follows from the corollary to Theorem 1. �

To exploit Theorem 1 and the corollary in the case
(
n
t

)
≤
(
n
q

)
, we restrict ourselves

to the condition q − t = 1. We then have q ≤ n
2

if n is even and q ≤ bn
2
c + 1 if n is

odd.

Here we have under the assumption 0 ≤ j ≤ t = q − 1

c (0, j) = 1,

c (1, j) = (j + 1)(n− 2q + j + 2).

We obtain the following system of linear equations in the unknowns x0, . . . , xt

c (1, 0)x0 = 1,

c (1, j)xj + xj−1 = 0, 1 ≤ j ≤ t,

which has the solution

xj =
(−1)j

(j + 1)![n− 2q + j + 2]j+1

, 0 ≤ j ≤ t.

Again with the notations of the corollary to Theorem 1 we obtain

yj = j! (j + 1)!xj =
(−1)j

j + 1
·
(
n− 2q + j + 2

j + 1

)−1

.

Now we change the indices from j+1 to j and obtain the statement of example •• .

Finally let us evaluate Theorem 2 in case n = 5, q = 3, t = 2. With the notation
{j1, j2, j3, j4, j5} = 5 we obtain

15



H (2, 3)−1(Xj1 ·Xj2) =

1

6

[
2Xj1Xj2Xj3 −Xj2Xj3Xj4 + 2Xj3Xj4Xj5 −Xj1Xj4Xj5 + 2Xj1Xj2Xj4 −Xj1Xj3Xj5+

+2Xj1Xj2Xj5 − (Xj1Xj3Xj4 +Xj2Xj3Xj5 +Xj2Xj4Xj5)
]
,

and conclude that the matrix H (2, 3)−1 is “non–sparse”.

4. Finally we demonstrate the usefulness (as we hope) of the algebra C∗(n) by giving
new proofs or extending, respectively, some results in [2].

• • • (l.c., 3.3) Let v ∈ Ker 4, w ∈ Ct(n), such that Fund (v)∩ Fund (w) = ∅. Then
it holds that 4t+1(v · w) = 0.

This is an immidediate consequence of the property of 4 to be a “quasi–derivation”
(see Prop. 2).

Secondly, we exhibit a system of generators of Ker H (t, q) provided
(
n
t

)
<
(
n
q

)
.

We denote Kq(n) = Ker 4
∣∣∣
Cq(n)

. Then obviosly one has Kq(n − 1) ⊂ Kq(n). To

determine remaining candidates u of Kq(n) we make the following ansatz

(14) . . .. u = vXn + w, v ∈ Cq−1(n− 1), w ∈ Cq(n− 1).

Since Fund (v)∩ Fund (Xn) = ∅, Prop. 2, i) yields

0 = 4u = (4v) ·Xn + (v +4w),

therefore

(15) . . . 4v = 0, v +4w = 0.

Assume now that is has been proved by induction with respect to s that Kt(s),
t ≤ b s

2
c, s ≤ n− 1, is generated by elements of the shape

(Xj1 −Xj2)(Xj3 −Xj4) · . . . · (Xj2t−1 −Xj2t)

16



with pairwise distinct Xjk . Therefore we may assume (in Eq. (14), (15)) that

v = (Xj1 −Xj2) · . . . ·
(
Xj2(q−1)−1

−Xj2(q−1)

)
.

There are two cases to be considered. In the first case assume 2 (q− 1) = n− 1; then
we have n odd, q = bn

2
c + 1. According to • Kq(n) = 0 and then there is no more

to prove.

In the second case assume 2 (q − 1) < n − 1. Then there exists Xj, j ≤ n − 1 such
that Fund (v) ∩ {Xj} = ∅. We conclude that

w := −v ·Xj

solves the second equation in Eq. (15); furthermore one has u = v (Xn −Xj).

This proves

••• • (contained in l.c., 4.2) Assume q ≤ bn
2
c. Then it holds that Ker H (q−1, q) 6= 0

and this kernel is generated by elements of the shape

(Xj1 −Xj2)(Xj3 −Xj4) · . . . · (Xj2q−1 −Xj2q).

In as subsequent paper (in which we use the algebra C∗(n) to exhibit explicitely
eigenspace decompositions of the matrix H (t, q)T ◦H (t, q)) we will show

Theorem 3. Assume
(
n
t

)
<
(
n
q

)
. Then it holds that

KerH (t, q) =

min{q,n−q}⊕
s=t+1

H (s, t)T
(

KerH (s− 1, s)
)
.

This result provides together with • • • • systems of generators of Ker H (t, q) which
are in general distinct from those which are exhibited in [2].

With the aid of Theorem 3 (and Prop. 4) one easily proves

• • • • • (l.c., 4.3) Assume 0 ≤ t < q < n − t. Then H (t + 1, q) maps the kernel of
H (t, q) onto the kernel of H (t, t+ 1).

Finally we exhibit in a special case a system of generators of Ker H (q − 1, q) which
is different from the ”canonical” one constructed above as follows:

17



Assume n = 7, q = 3. Any enumeration σ of the points of the projective plane P
consisting of 7 points and 7 lines yields the family Gσ ⊂

(
7

3

)
consisting of the lines of

P. We claim that the elements

uσ := 4 ·
∑
M∈Gσ

[M ]−
|M |=3∑
M 6∈Gσ

[M ]

also generate Ker H (2, 3).

First, we sketch a proof that the uσ indeed are contained in the kernel of H (2, 3) as
follows: Define for q ∈ n

Hq := H (q − 1, q)T ◦H (q − 1, q) : Cq (n) −→ Cq (n).

Then it holds, if [M ] is an element of the canonical basis of Cq(n),

(16) . . . Hq

(
[M ]

)
= q · [M ] +

|M ′|=q∑
|M∩M ′|=q−1

[M ′].

Now it can be seen easily that

wq :=
M∑
|M |=q

[M ]

is an eigenvector of Hq with eigenvalue q (n − q + 1). In addition we need the well
known result (see for instance [1], Chapt. II, 2.5 Lemma), that

rang H (t, q) = rang H (t, q)T ◦H (t, q)
(

= rang H (t, q) ◦H (t, q)T
)
,

which yields

Ker H (t, q) = Ker
(
H (t, q)T ◦H (t, q)

)
.

After this digression suppose now again n = 7, q = 3, t = 2. Since two different
projective lines intersect in one point we have |M1 ∩M2| = 1 provided M1,M2 ∈ Gσ

and M1 6= M2. This in turn yields according to Eq. (16):

H3

( ∑
M∈Gσ

[M ]

)
= 3 ·

∑
M∈Gσ

[M ] +

|M ′|=3∑
M ′ 6∈Gσ

λM ′ [M
′].

18



The coefficients λM ′ ∈ Q are determined as follows: Any M ′ 6∈ Gσ consists of three
non–collinear points; therefore for given M ′ there are exactly three M ∈ Gσ such
that |M ′ ∩M | = 2. We conclude λM ′ = 3, in turn

H3

( ∑
M∈Gσ

[M ]

)
= 3 · w3 = H3

(
1

5
w3

)
,

that is ∑
M∈Gσ

[M ]− 1

5
w3 ∈ Ker

(
H (2, 3)T ◦H (2, 3)

)
= Ker H (2, 3).−

Secondly, assume that v is an element of the ”canonical” system of generators of
Ker H (2, 3), say

v = (X1 −X2)(X3 −X4)(X5 −X6).

Suppose the enumerations τ, τ ′ of the points of P are given by

T
T
T
T
T
T
T
T
T�

�
�
�
�
�
�
�
�r r r

r
r r

"
"

"
"
"

"
""

b
b
b
b
b
b
bb

r
5 7 6

43

1

2

τ

T
T
T
T
T
T
T
T
T�

�
�
�
�
�
�
�
�r r r

r
r r

"
"

"
"
"

"
""

b
b
b
b
b
b
bb

r
3 4 7

51

6

2

τ ′

Then a lengthy but elementary computation which we omit yields

v =
1

5
(uτ − uτ ′).

We conclude that the uσ generate Ker H (2, 3), too.
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