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Abstract

Denote by H(t,q), t < g, the incidence matrix (with respect to inclusion) of
the t—sets versus the g—sets of the n—set {1,2,... ,n}. This matrix is considered
as a linear map of Q—vector spaces

Cq(n) — Ci(n),

where Cs(n) is the Q-vector space having the s—sets as a basis (s < n).

As a basic tool, we introduce a connection of the vector spaces to a graded
Q-algebra (which is at the same time an Artinian local ring). We define map-
pings A and X of this algebra of degree —1 and 1, respectively. These two
mappings correspond up to a scalar factor to the linear mappings H(s — 1, s)
and H(s —1,s)7, respectively.

Then, a relation between the algebra maps A and X is established. This
relation allows to rewrite a term A”X® with a, 3 non-negative integers (subject

B
to some restrictions) as a sum (g) X~k AB=F (up to some scalar factors).
k=0

As a main result of this relation surjectivity of the map A4t (related to H(t,q)
up to a scalar factor) is proved under the assumption (?) < (’;) Moreover, a
right inverse for the matrix H (¢, q) is given explicitely.

This result is exploited to give an inverse of the (square) incidence matrix
H(t,q) in the case t =n — q.

These results extend some work done by J.B. Graver and W.B. Jurkat.



1. For n € N we put
n={1,2,... ,n}

For 0 <t < ¢ <n we denote by H (t,q) the incidence matrix (with respect to inclu-
sion) of the t-sets versus the g-sets of the n-set n and by Cy(n) the Q-vector space

having the basis {[M ~ . Then H (t,q) defines a linear mapping (“incidence
MCn,|M|=q
mapping”)
|N|=t
Cy(n) — Ciln), [M] — Y [N],
NCM

which is denoted by the same symbol H (¢, q). —
The transpose H (t,q)" of H (t,q) defines a linear mapping
|M]=q

Ciln) — Cyn), [N] — 3 [M],

NCM

which is denoted by the same symbol H (¢,¢)”. Finally we define the “augmentation
mapping”
H(—1,0) : Cy(n) — 0.

Assume that dimg Cy(n) = (}) < (Z) = dimg Cy(n). Then it is known that the

mapping H (t,q) is surjective ([3], 2.3, 2.4), therefore in case of equality of the two
dimensions under consideration an isomorphism. In this case moreover we exhibit
a method to compute explicitely H (t,q)~! by defining a structure of a graded com-

mutative algebra on the graded Q-vector space Cy(n) := @ C,(n) such that at the
q=0

same time C,(n) becomes an Artinian local ring.

We provide an example for the computation of H (n — q,q)™*:

o Assumen odd and q = | 5] + 1. Then one has

Hig-197 =3 200

=1

“H(q—j,q)" oH(q—j,q—1).

There is the following generalization:



ee Assume q < § if nis even or ¢ < | 5] + 1 if n is odd. Then the mapping
K (q,q—1): Cy-r(n) — Cy(n)
defined by

q i . —1

—1)* fn—2¢+j5+1 . .

KX%q—1)=§:( ; ( j ) "H(q—j,q)" oH(qg—j.qa—1)
j=1

is a right inverse of H (¢ — 1,q).

n

2. One defines the structure of a commutative Q-algebra on C,(n) = @ C,(n) by
q=0
setting for subsets M, N of n

[MUN], if MNN =10,
0, otherwise.

- v = {
This Q-algebra which we denote by €,(n) is isomorphic to
An):=QITy,... , T,/ (T Ty,... . T3 =Q[X1,..., Xy,

where T}, . .. , T,, are algebraically independent elements and X; = T; mod (7%, ... ,T2).
The isomorphism C.(n) — A (n) is induced by

[M]: [{jh?]q}} - XJIX]2XJQ’ lf|M’:q21,
0] — 1€Q.
In the sequel we identify €, (n) and A (n).

Let €,(n), denote the Q-module of the elements of degree p of the graded algebra
C.(n). Then one has
Cp(n), 0<p<n,

)y = { 0, p>n.

To the mappings H (¢ — 1,¢), 0 < ¢ < n, corresponds the map A : €,(n) — €,(n)
of degree —1 defined by

Al =0.0% = Ljen

A(X]X]X]q) - ZXHXJkX



(1<j1<j2<...<jg<mn, denotes the deleting operator).
q
Finally we define X = ) X;.

Jj=1

Proposition 1. Assume 0 <t < g <n. Then with the agreement A° = id, X° =1
the following identities hold

—t)-H(t,q) = AT ,
(g—1) (t,q) o

(q - t)' H (tu q>T(w) - Xq—t Cw, w - C’t(n)

Proof. To prove the first statement we show by induction with respect to
m, 0 < m < ¢, that the identity

(1)... AT

=m! H(qg—m,q
Cq(n) ( )

holds. Of course, this is true for m = 0,1. Assume this identity has been proved
already in case m — 1 > 1.
The following relation is well known in case 0 < s <t <gq

(1)... H<s,t)oH<t,q):<§_5>H(s,q)

(see for example [2], Chapt 15, LEMMA 8.1).
Therefore one has

— A o Amfl
Cq(n) Cq—m+1(n)

Am

Cq(n)

To prove the second statement we show by induction with respect to m > 0,
t +m <mn, that for w € Cy(n) the following relation holds
X" w=m! H(t,t+m)" (w).
It is sufficient for our purpose to take w as an element Xj, -...- X, of the “canonical”
basis of Cy(n). The claim is evident in case m = 0; moreover one has

k
Xw = Z leXj X]th:H(t,t—i—l)T(lU)

k#1525 5t



Assume that the statement has already been proved in case m—1 > 0. By transposing
one gets from Eq (1)

H(tt+m)" =m-H(@t+1,t+m)" o H(t,t+1)7,
Therefore according to the induction hypothesis (applied to Xw € Cy11(n))

Xy =X""1.Xw =m—-1)Ht+1,t+m)ToH(tt+ 1) (w)
=m! H (t,t+m)" (w).

]
Suppose w € €,(n). Then we define the “foundation” of w (in signs Fund (w)) to be

the product of all X; which appear in the basis decomposition of w with a coefficient
unequal to zero.

For example one has with pairwise distinct X, X;,, ..., X},

2t
Fund <(le = X ) (Xjy = X)) oo (X — Xm)) =%
k=1
In a self-explaining manner we can treat the foundation also as a subset of n.

Proposition 2. i) Assume v,w € €.(n) and Fund (v)N Fund (w) = 0.
Then we have that
A (vw) = vA (w) + wA (v).

P
i) Denote Z = Y Xj,, the X, pairwise distinct. Assume 1 < m < p (and put
k=1
Z° =1). Then we have that

ANZ™)y=m(p—m+1)Z" "

Proof. Ad i) Assume in the first instance v = X, -...- X,,, w = X;, - ... X}, are
elements from a basis of €,(n). According to hypothesis one has

[{in, o visy o et = s+ L



Therefore

A(UUJ) ik "Xis'le"”'th

:ZXH

k=1

t ~
+;Xi1'--"Xz's'le"--'le'

= wA (v) + vA (w).

The general case follows now from the law of distributivity.

p
Ad ii) Without loss of generality assume Z = ) X;. Then we have
j=1

k! Z le""'lew 1§]€§p,
(2)... 7k = 1<j1<.<jr<p
0, k > p.
In this sum a term X;, -...- X; |, (1 <143 <...<i,_1 <p) occurs exactly in the
terms A (X, ... X, - Xy), t € p\{i1,... ,im—1} With factor 1; therefore it occurs
in A (Z™) with factor m!(p—m+1) = m (p—m~+1)(m —1)!. The conclusion follows
now from equation (2). O

We remark that A is no derivation of €,(n).

Let m := (Xy,...,X,) denote the maximal ideal of €,(n). Then it holds that

m™t = 0. If p is a prime ideal of €,(n), then from m"** C p one concludes m = p.
Therefore @,(n) is an Artinian local ring. Let A denote a derivation of €,(n) (into
itself). Then it must hold for all j € n that

0=A(X?) =2X;A (X;),

therefore A (X;) € m. —So A maps m (and €,(n), too) into m (compare with [4],
§1, Exercise 4).

Now we extend Prop.2, ii):

Proposition 3. Assume 0 <s<n-—1, a € N, a+s <n andw € Cy(n). Then the
following identity holds:

AX*w) =X Aw)+an—a—2s+1)X* 1. w.



Proof. In case s = 0 the statement is true according to Prop. 2, ii). Assume now
s > 1 and take
as a basis element of Cs(n). One defines

Ik

Yzi)( Z=X-Y.
k=1

Since w is a word in all Xj,,... , X, one has Y -w = 0. Assume ¢t > 0. Then the
following holds

t
t
Xt _ Y Zt' —_ Zrytfr' :Zt
w=(Y+Z) - w E (T) w w,

r=0

furthermore according to the definition of Y and Z Fund (w)N Fund (Z') = 0; from
Prop. 2 one concludes

AXYw) =AZY w)=2% N (w) +w- A (Z)
(3)... =7 AN(w)+an—s—a+1)Z w
=7 AN(w)+a(n—s—a+1)Xlw,

Now we use

0, t>1,
s-w, t=1.

v aw = {

Therefore

XA (w) = (TZ: (‘j)Y’"ZO‘_T’) A (w) = (@Y - Z 4+ Z%) - A (w)
:ozsio"lw%—Za-A(w) =a-s-Xlw+Z% A(w).

Replacing the term Z*A (w) in Eq. (3) yields
A (Xw) =X*A(w)+a(n—2s—a+1) X" w,

as claimed. — 0

Prop. 3 is a special case of



Proposition 4. The same assumptions about s, o are in force as in Prop. 3. Assume

r€R and k € N and define
rle=r(r—=1)-(r=2)-...-(r—k+1), [r]o =1
Let 3 be a non—negative integer and assume 0 < B < a. Then the following identity

holds
B

AP(X w) = Z (i) [a]r[n — a — 25+ B, - X*F . AR (w).

k=0

Proof. There is nothing to prove in case # = 0; in case 3 = 1 the claim boils down
to Prop. 3. If 0 < j < 3 we put

(8,4 = X7 AP (w)
and prove first of all by induction with respect to 8 > 1, that the identity
B
(4)... AP(XOw) = e (B,4) - [8.4], ¢(B.4) € Q,
§=0

holds; furthermore this will yield recursion formulas for the coefficients ¢ (83, j). In
case 0 = 1 one has according to Prop. 3

c(1,0)=1,c(l,)=a(n—a—-2s+1) = A, s).
Since A (w) € Cy_g1;(n), Prop. 3 now yields
A ([, f]) = DX A (w) =
=XT AT W)+ (a—j) - (n—(a—j)—2(s —k+j) + 1) - X971 AR (w) =
= X AR ) + X (= j, 8 — k + ) - XoTI7L AR (w),

that is
A(kg) =[k+1+Ma—j,s—k+j)[k+1,5+1].

According to the induction hypothesis we obtain
AﬁJrl(Xaw) — A (Aﬂ(xa . w)) _
B
c(6,0)[6 +1,0] +;{c(ﬁ,j>+c<6,j— - AMa—j+1s=F+j—1)}[B+1,]]
+/\(Oé—ﬂ,8) C(ﬂaﬁ)[ﬁ—f_l?ﬁ—'— 1]7

8



which proves Eq. (4); at the same time we have proved the following recursion
formulas

(5.1) ... c(f+1,0)=c(8,0), c(B+1,8+1)=A(a—03,s)c(B,0),

(5.2) ... c(B+1j)=c(B,j)+A(a—j+1,s=F+j—1)-c(B,j—1),(1<j<0).

Eq. (5.1) yields immediately

c(8,0)=1
(6) ... (0<B<a).
c(8,8) =lalsln —a —2s+ Gg

Now we claim that the following holds in case 3 > j

7). c0.3) = ()bt - a-254.

which we prove by induction with respect to the pairs ((3,7), # > j. The claim is
true for pairs (3,0) according to Eq. (6). Assume that it has already been proved
that in case j > 1 the claim is true for all pairs (y,7 — 1), v > j — 1. We rewrite a
term in the recursion formula (5.2)

Ma—j+1l,s=0F+j—1)=(a—j+1)(n—a—-2s+20—7+2).
Now we proceed by induction with respect to 3,3 > j. In case 3 = j the statement

is true according to Eq. (6). Assume that the statement has already be proved for

some [ > j. Then we have according to Eq. (5.2)
c(f+1,7)= (?)[a]j[n—a— 25+ j]; +

+(n—a—2s+28—j+2) (°)[a][n—a—2s+ 61

j_

Using the identities (f) = (jfl) . % and (f) + (jfl) = (6;1) we conclude
c(B+1,5) = laljln—a+2s+ 51 {(ﬁjﬂ)(” —a—=2s)+ (H(B-j+1)+

e +2)

= laliln—a—2s+ 0 (") (n—a-25+5+1)

= ("Malln—a—2s+ (B+1)];

This proves Eq. (7). — O



3. Assume now 0 <t < ¢ <n and (TZ) < (Z) We denote V := A~
Cy(n) — Ci(n) and fix some w € Cy(n). Our aim is to construct explicitely a
primage u € Cy(n) of w with respect to V. Therefore we make the following ansatz
(we will see later that this method will work): If 0 < j < ¢ we denote

Uj = X A (w)
and put

t
u = E ZL’jUj
=0

where the z; € Q have to be determined. To compute VU, apply Prop. 4 (replace
here w by AJ(w) € Cy—;j(n)) and obtain with the convention

e clhdi= (T, Yot rihe - 2tshe 0<isn0<ksg-0

k
q—t
VU; = Y ek g) - X AT R W) € Cy),
k=0
therefore
qg—t t
(9) o Yu = z;c (]{;h]) B Caar il Aqftﬂ'fk(w).
k=0 j=0

We order the right hand side of this equation with respect to the terms
Vi =X A™(w), 0 <m < t,

by defining
Vk,j — Xq—t—i—j—k’ . Aq—t—&-j—k(w).

Then it holds that V;, ; =0if ¢ —t+ 7 —k >t and
‘/kg':Vm

exactly if k = (¢—t) —1, j =m—1,0 <1 <min{m, ¢ — t}. Therefore Eq. (9) yields
now

t
Vu = Z A Vin
m=0

10



with

min{m,q—t}

(10) ... dy = Z c(lg=t)=lL,m=1) Ty

=0

We observe that Vy = w. — So u is in fact a preimage, if the system of linear equations

in the unknowns zg, ... , z;
do =1,

dnm=0,1<m <t,

is solvable. This will be the case if all ¢ (¢ — t,m) don’t vanish. In fact we have in
the trivial case ¢ —t =0
c(0,m)=1,0<m<t,

(and the system has the solution 2o =1, 1y =23 =... =2, =0). Incase ¢ —t >0
it is sufficient (see Eq. (8)) to show that the

[n— 2t +m],—
don’t vanish. Now the smallest factor f,, in the above mentioned falling factorial is
fm=n—=-2t+m—(¢g—t)+1=n—(qg+t)+m+1.

Assume first (7;) = (Tq‘) Then it holds that t + ¢ = n, therefore f,, = m + 1. In

") < (Z) is equivalent to ¢ +t + 1 < n, therefore

the second case the condition (k

fm=>m+ 2.
So our ansatz has worked and we have proved

Theorem 1. Assume 0 <t < q<n and (?) < (Z) Then the mapping
V= A" Cy(n) — Cy(n)

is surjektiv. There exist xo, x1,...,x; € Q such that the mapping

t
; ! Ct(n)

is a right inverse with respect to V (in case (TZ) = (Z) VI s the inverse of V).

11



If one denotes in case 0 <k <qg—1t,0<j<t,

c(k,j) = (q;t) g —t+jli- [n—2t + jli,

then one can choose the xq,... ,x; as the (existing) solution of the system of linear

equations
c(q—1t,0) -zo =1,
min{m,qg—t}
c((g=t)=lm—=1) 2y =0,1<m<t
1=0

Corollary 1. If one defines
yi= (=g —t+ ) z;, 0<j<t,

then the mapping K (q,t) : Ci(n) — Cy(n) defined by

t

K(qt)=> vy - H(t—jq  oH(t—jt)

=0

is a right inverse of H (t,q).

Proof (of the corollary). According to Prop. 1 one has
V=(q—t)! Htq)

and
X1 A (I H(t—j,q)" o H(t—j1). 0
Ce(n
Now we exploit the the theorem and the corollary. The following result is properly
spoken another corollary; however, we state it as

Theorem 2. Assume 0 < t < g < n andt+ q = n. Then the following identity
holds:

t

_ . q—1 : :
H(t,q) 122(_1)j7—t—|— H (t—j,q)" o H(t—j,1).
~ J

12



Proof. We introduce a new parameter p = ¢ — t. Then we obtain n — 2t = p and

(k) = (,ﬁ) I+ dh)”

We switch now to new indeterminates «; in the system of linear equations of the
Theorem by defining

. o
rj=(-1Y)—2L— a; €Q.
! ((p+5)H2"
An elementary computation which we omit yields
g = 1
and the following recursion formula

min{p,j}
aj= Y (- (1;)%._,, 1<j<t

=1

We compute the «; by elementary difference calculus; let us define therefore functions
f p - NO — Q

by the following conditions

). sty
i ="8 o (N pG -0 1<

Then we claim
Jj+p— 1>

12)... = ("0

In order to prove Eq. (12) we need the following

Lemma. Assume p > 1 and 0 <1 < p. Then the following identity holds

()= (o)== ()

13



Proof (of the lemma): Denote the left hand side of this identity by S;(p). Then we

have
Si(p) = (];) — Si-1(p)-

Now we proceed by induction with respect to [. 0

Denote by Af, the first difference series of f,, that is

(Afp)J) = ol +1) = f(4), J € No.

Then we have by placing f,(k) = o and h = min{p, j}, in case j > 1
ajpn—a; = [({) = @] (=) = [() = () + )] (1 —aj2) £

HEDPE) = () 4 (L) F oot (1)) - (o — o)

According to the lemma this rewrites to

min;p} -
ISR SRSV G [N RS

=1

Furthermore we have

(Afp)(o) =D 1= fp71(1)7 p > 2.

This yields in case p > 2

(13)... (Afp)(J) = fo—1(7 + 1), 7 € N,

since A f, satisfies the same recursion formula (see Eq. (12)) as f,—1 does.

Now Eq. (12) is certainly true if p = 1. Assume our claim is true if p — 1 > 1. Then

according to Eq. (13) we have

j+p—1
p—2

@i = ( ) iem

Therefore the function F': Ny — Q defined by
. J+p—1
F (i) =
o=

14



is a discrete indefinite integral of A f,; that is AF = Af,. It follows that
F = f, + const,

but £ (0) = f,(0), so we have F' = f,. Therefore the claim Eq. (12) is proved.

Now we use the notations introduced in the corollary of Theorem 1 and obtain

g P ) (=1 P At
e R R G R O e

The statement of Theorem 2 now follows from the corollary to Theorem 1. 0

n
t

to the condition ¢ —¢ = 1. We then have ¢ < % if n is even and ¢ < |5 | + 1 if n is
odd.

Here we have under the assumption 0 < j <t=qg—1

To exploit Theorem 1 and the corollary in the case ( ) < (Z), we restrict ourselves

c(0,j) = 1,
c(l,j) = G+Dn—2¢+7+2).

We obtain the following system of linear equations in the unknowns x,... ,z;
c(1,0)xy = 1,
0(17])x3+x]—1 - 07 1§j§t7

which has the solution

(1) |
T = — - , 0< 7L<t
TG ) —2q4 120

Again with the notations of the corollary to Theorem 1 we obtain

. (=17 (n—2q+j+2\"
=G D), = : .

Now we change the indices from j+ 1 to j and obtain the statement of example ee .

Finally let us evaluate Theorem 2 in case n =5, ¢ = 3, t = 2. With the notation
{1, J2, Js, 1, js} = B we obtain

15



H<273>_1(Xj1 : ij) =
1
6 [2Xj1Xj2Xj3 _ijXjan4 + QXjSXj4Xj5 - leXj4Xj5 + 2Xj1Xj2Xj4 - lestXj5+

+2Xj1Xj2Xj5 - (leXjSXj4 + Xj2Xj3Xj5 + Xj2Xj4Xj5)]7

and conclude that the matrix H (2,3)"! is “non-sparse”.

4. Finally we demonstrate the usefulness (as we hope) of the algebra €,(n) by giving
new proofs or extending, respectively, some results in [2].

eee (lc,3.3) Letv € Ker A, w € Cy(n), such that Fund (v) N Fund (w) = 0. Then
it holds that A" (v -w) = 0.

This is an immidediate consequence of the property of A to be a “quasi—derivation”
(see Prop. 2).
Secondly, we exhibit a system of generators of Ker H (¢, q) provided (Z) < (Z)

We denote K,(n) = Ker A . Then obviosly one has K,(n — 1) C K,(n). To

Cq(n)
determine remaining candidates u of K ,(n) we make the following ansatz

(14) .. .. u=vX,+w,veCii(n—1), weCyn—1).

Since Fund (v) N Fund (X,,) = 0, Prop. 2, i) yields
0=Au=(Av) - X,+ (v+ Aw),

therefore

(15)... Av =0, v+ Aw = 0.

Assume now that is has been proved by induction with respect to s that K(s),
t < [5],5 <n—1,is generated by elements of the shape

(X, — X)) (X, — X)) - ooo (X, — Xy)

16



with pairwise distinct X, . Therefore we may assume (in Eq. (14), (15)) that

’ (Xj2<q71)71 - Xj2(q71)>'

There are two cases to be considered. In the first case assume 2 (¢ — 1) = n — 1; then
we have n odd, ¢ = [§] + 1. According to @ K (n) = 0 and then there is no more
to prove.

v= (X5 = X5)

In the second case assume 2 (¢ — 1) < n — 1. Then there exists X;,j < n — 1 such
that Fund (v) N {X;} = 0. We conclude that

W= —v-X;

solves the second equation in Eq. (15); furthermore one has v = v (X,, — X}).
This proves
eeee (containedinl.c., 4.2) Assumeq < |5]. Then it holds that Ker H (¢—1,q) # 0

and this kernel is generated by elements of the shape

(X = X5)(Xjy — Xjy) - - (X

J2q—1

- XjQq)'

In as subsequent paper (in which we use the algebra €.(n) to exhibit explicitely
eigenspace decompositions of the matrix H (¢,q)" o H (t,q)) we will show

Theorem 3. Assume (T;) < (Z) Then it holds that

mln{Q7n_q}

Ker H (t,q) = @ H (s, t)" (KerH(s - 1,5)).

s=t+1

This result provides together with e e @ @ systems of generators of Ker H (¢, q) which
are in general distinct from those which are exhibited in [2].

With the aid of Theorem 3 (and Prop. 4) one easily proves

eeeee (lc,43) Assume 0 <t <q<n—t. Then H(t+1,q) maps the kernel of
H (t,q) onto the kernel of H (t,t + 1).

Finally we exhibit in a special case a system of generators of Ker H (¢ — 1,¢q) which
is different from the ”canonical” one constructed above as follows:

17



Assume n = 7, ¢ = 3. Any enumeration o of the points of the projective plane P
consisting of 7 points and 7 lines yields the family &, C (%) consisting of the lines of
P. We claim that the elements

|M|=3
U =4 Y [M]—= Y [M]
Mc®, ME®,

also generate Ker H (2, 3).

First, we sketch a proof that the u, indeed are contained in the kernel of H (2,3) as
follows: Define for ¢ € n

H, ::H(q—l,q)TOH(q—l,q):Cq(n) — Cy (n).

Then it holds, if [M] is an element of the canonical basis of C,(n),

|M'|=q
(16).... H(M) =q- M+ S (M)
|MAM’|=g—1
Now it can be seen easily that
M
Wq = Z [M]
|M|=q

is an eigenvector of H, with eigenvalue ¢ (n — ¢ + 1). In addition we need the well
known result (see for instance [1], Chapt. II, 2.5 Lemma), that

rang H (t,q) = rang H (t,q)" o H (t,q) (= rang H (t,q) o H (t, Q)T>,

which yields
Ker H (t,q) = Ker (H (t,q)T o H (t,q)).

After this digression suppose now again n = 7, ¢ = 3,t = 2. Since two different
projective lines intersect in one point we have |M; N M| = 1 provided My, M € &,
and M; # M. This in turn yields according to Eq. (16):

|M'|=3
Hs ( > [M]) =3- > [M]+ > aw[M].

Me®, Me&, M'¢&,
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The coefficients Ay, € Q are determined as follows: Any M’ & &, consists of three
non—collinear points; therefore for given M’ there are exactly three M € &, such
that |M' N M| = 2. We conclude Ay = 3, in turn

H3<Z [M]) :3-w3:H3(%w3),

Me&,

that is 1
D> [M] ~ cws € Ker (H (2,3)7 0 H (2,3)) — Ker H (2,3).—
Me®,

Secondly, assume that v is an element of the ”canonical” system of generators of
Ker H (2,3), say
vV = (X1 - Xg)(Xg - X4)<X5 — X6)

Suppose the enumerations 7, 7" of the points of P are given by

1 6
1
5 7 6 3 4

T T

7

Then a lengthy but elementary computation which we omit yields

v == (U — uy).

ot~

We conclude that the u, generate Ker H (2, 3), too.
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